
PHYSICAL REVIEW E 87, 032804 (2013)

Pattern formation on networks with reactions: A continuous-time random-walk approach
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We derive the generalized master equation for reaction-diffusion on networks from an underlying stochastic
process, the continuous time random walk (CTRW). The nontrivial incorporation of the reaction process into the
CTRW is achieved by splitting the derivation into two stages. The reactions are treated as birth-death processes and
the first stage of the derivation is at the single particle level, taking into account the death process, while the second
stage considers an ensemble of these particles including the birth process. Using this model we have investigated
different types of pattern formation across the vertices on a range of networks. Importantly, the CTRW defines
the Laplacian operator on the network in a non-ad hoc manner and the pattern formation depends on the structure
of this Laplacian. Here we focus attention on CTRWs with exponential waiting times for two cases: one in which
the rate parameter is constant for all vertices and the other where the rate parameter is proportional to the vertex
degree. This results in nonsymmetric and symmetric CTRW Laplacians, respectively. In the case of symmetric
Laplacians, pattern formation follows from the Turing instability. However in nonsymmetric Laplacians, pattern
formation may be possible with or without a Turing instability.
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I. INTRODUCTION

Networks have been extensively studied as models for
highly connected systems in biology [1], physics [2], and the
social sciences [3]. Over the past decade there has been a
great deal of interest in understanding theoretical properties
of transport on networks [4–6] with a growing interest in the
problem of transport on networks with reactions [7–9]. In
this article we provide a detailed derivation of the generalized
master equation for transport on networks with reactions. The
network model we consider allows for reactions of particles on
vertices and diffusion of particles between vertices. A discrete
space description of diffusion can be modeled by a random
walk [10–12]. Random walks on networks have been exten-
sively studied in this context [13–15]. Our derivation of the
generalized master equation is based on the continuous time
random walk (CTRW) formalism in which a random walker
waits a time (drawn from a waiting time probability density)
before jumping [16,17]. This model has been particularly
useful to model diffusion in systems with disorder in waiting
times, resulting in anomalous diffusion [18]. The CTRW on
a spatial continuum or a uniform lattice has been further
generalized to include linear reactions [19,20], linear reactions
with multiple species [21], and nonlinear reactions [22–26].

The precise incorporation of reactions into the CTRW
model for general networks is nontrivial, as, even in the spatial
continuum case, reaction and diffusion processes become
entwined [20,25]. To include reactions in the generalized
master equations for CTRWs on a network, we separate the
derivation into two stages. The first stage is at the single particle
level where the loss of particles due to reactions are treated as
a death process. The second stage considers an ensemble of
such particles and incorporates the remainder of the reaction
kinetics. The resultant generalized master equation, obtained
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from an underlying stochastic process, provides a fundamental
description of reactions with diffusion on networks. This
allows, among other things the study of pattern formation
on networks with diffusion and reactions. For example this
model description could be applied to the analysis of diffusion
tensor imaging data [27,28] and to spatiotemporal models in
epidemiology [29,30].

In spatial continuum systems reaction-diffusion models
form the basis for studies of pattern formation in a wide
range of applications. The classic model for pattern formation
in these systems is Turing pattern formation [31], which
arises from an instability in the reaction dynamics caused by
differing rates of diffusion. Such patterns emerge in biological
morphogenesis [32–36] chemical reactions [37], propagation
of viruses [38,39] and ecosystems encompassing competing
animals [40]. There have also been studies of Turing patterns
on networks. Significantly, the structure of the network has
a direct effect on the resulting pattern [41,42]. Other studies
of pattern formation in networks have considered scale-free
networks [43], coupled reactors [44], functional gene networks
[45], multiple coexisting stationary states [8,9,46,47], the
effects of feedback [46], and the formation of traveling fronts
[47].

In this article we have used the CTRW framework to derive a
family of diffusive network Laplacian operators incorporating
reactions and we have studied pattern formation in these
systems. The reaction-diffusion behavior with these network
Laplacian operators may differ from that with the continuum
Laplacian operator [48]. The generalized master equation that
we derived has few restrictions on the form of the waiting
time density. Importantly, it allows us to model both standard
transport, arising from exponential waiting time densities, and
anomalous transport, arising from power law waiting time
densities. In spatial continuum systems anomalous transport
has been shown to alter the onset and nature of Turing patterns
[49–51]. However, to simplify presentation of results from
this model we have confined our further analysis to pattern
formation arising from exponential waiting time densities
and we have considered both symmetric and nonsymmetric
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Laplacians in this context. We have carried out algebraic
analysis and model simulations that show pattern formation
on Barábasi-Albert networks and [3] Watts-Strogatz networks
[52]. Gierer-Meinhardt reaction kinetics were used in these
examples as representative of reactions that permit Turing
pattern formation on a spatial continuum [32]. The examples
that we considered demonstrate the influence of network
topology and network diffusion on pattern formation.

The remainder of the paper is as follows. In Sec. II we
derive the master equations that describe the CTRW network
reaction diffusion model. In Sec. III we describe different
pattern formation mechanisms that may arise depending on the
form of the CTRW Laplacian. In Sec. IV we present numerical
simulations of pattern formation in the network models. We
conclude with a summary and discussion in Sec. V.

II. DERIVATION OF A CTRW NETWORK REACTION
DIFFUSION MASTER EQUATIONS

Diffusion, or diffusivelike phenomena, can arise on a
network from a variety of sources depending on the details
of the network. In considering diffusion we should begin by
defining a stochastic process that makes physical sense for the
phenomena on the network.

A CTRW is a stochastic process that naturally limits to
diffusion in the continuum [16,17]. To model a reaction-
diffusion process we assume that the motion of each individual
particle can be expressed as a CTRW. That is to say the particles
will jump from vertex to vertex on the network according to the
edges present. On each vertex they will wait for a random time
before randomly jumping to a connected vertex. The model
of random walks with reactions and variation in node degree
is analogous to the reaction-diffusion model with spatially
varying diffusion [53].

The reactions occur between particles that occupy the
same vertex. We consider the reactions to be a birth-death
process of the particles. Particles will be created according
to some probability and destroyed according to a different
probability. These probabilities may depend on the density of
other particles on the vertex. We can then derive the equations
that govern the evolution of a single particle in time. In this
manner the evolution of a single particle is subject to only the
death probabilities. The birth process is included by summing
the initial conditions of each single particle CTRW with the
probability that a particle was created on a particular vertex at
an instant in time.

The assumption that each vertex is a well mixed system
is made so that the rate of the probability of a particle being
destroyed in reactions is not dependent on the amount of time
a particle has been waiting on the vertex. We assume that the
number of particles at any given vertex is sufficiently large to
justify the well mixed approximation, i.e., law of mass action
and reaction kinetics. We also assume that the waiting time
for each newly created particle is independent of the waiting
times of the parent particles. This is similar to Model B in [25],
which was first considered by Vlad and Ross [22]. The first
step in our derivation is to obtain the master equation for the
evolution of a single particle subject to a probability of death
that is inhomogeneous in time and space.

A. Single particle CTRW death process density

Consider a network whose vertices form the set W =
{w1, . . . ,wJ } where J is the number of vertices. Let
ρ(wj,t |w0,0) be the probability density for a random walker
to be on vertex wj at time t given it started on vertex w0 ∈ W
at time t = 0.

Define qn(wj,t |w0,0) as the conditional probability density
for arriving at vertex wj at time t after n steps. We define the

reaction survival function, e− ∫ t

t ′ β(wj ,t
′′)dt ′′ , as the probability

that a particle stays alive from t ′ to t given it does not leave
vertex wj and β is a death rate that, in general, may depend
on vertex and time. The initial condition for n = 0 is given by

q0(wj,t |w0,0) = δwj ,w0δ(t − 0+). (1)

In general, we can write

qn+1(wj,t |w0,0) =
J∑

i=1

∫ t

0
�(wi,wj ,t,t

′)e− ∫ t

t ′ β(wi,t
′′)dt ′′

× qn(wi,t
′|w0,0)dt ′, (2)

where �(wi,wj ,t,t
′) is the probability density of the transition

to vertex wj at time t given the random walker arrived at vertex
wi at an earlier time t ′ after n steps.

We assume that �(wi,wj ,t,t
′) may be expressed as a

product of two independent densities: a jump density λ(wj,wi)
and a waiting time density ψ(wi,t − t ′) so that

�(wi,wj ,t,t
′) = λ(wj,wi)ψ(wi,t − t ′), (3)

where λ and ψ must satisfy the normalizations

J∑
j=1

λ(wj,wi) = 1 for fixed wi (4)

and ∫ ∞

t ′
ψ(wi,t − t ′) dt = 1 for fixed wi and t ′. (5)

The separation in Eq. (3) facilitates the derivation of the
generalized master equations in this paper. The inclusion of
the vertex (spatial) dependence in the waiting time is more
general than the standard independence assumption used in
CTRW derivations [54].

The conditional density for the walker to arrive at wj at
time t after any number of steps is found by summing over all
n steps using Eqs. (2) and (3):

q(wj,t |w0,0) =
∞∑

n=0

qn(wj,t |w0,0)

= δwj ,w0δ(t − 0+) +
∞∑

n=0

J∑
i=1

∫ t

0
�(wi,wj ,t,t

′)

× e− ∫ t

t ′ β(wi,t
′′)dt ′′qn(wi,t

′|w0,0)dt ′

= δwj ,w0δ(t − 0+) +
J∑

i=1

λ(wj,wi)

×
∫ t

0
ψ(wi,t − t ′)e− ∫ t

t ′ β(wi,t
′′)dt ′′

× q(wi,t
′|w0,0)dt ′. (6)
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We can then define the conditional probability density for
the random walker to be at vertex wj at time t :

ρ(wj,t |w0,0) =
∫ t

0
φ(wj,t − t ′)e− ∫ t

t ′ β(wj ,t
′′)dt ′′

× q(wj ,t
′|w0,0)dt ′, (7)

where φ(wj,t − t ′) is the probability that the particle does not
jump during the period of time t − t ′:

φ(wj,t − t ′) = 1 −
∫ t−t ′

0
ψ(wj,t

′′)dt ′′. (8)

B. Single particle CTRW death master equation

The derivation of the master equations describing a CTRW
death process on a network is similar to the derivations pre-
sented in [25,55,56]. Formally, the integrals over probability
densities should be treated as Riemann-Stieltjes integrals and
care has to be taken due to the discontinuity in the arrival
density q(wj,t |w0,0) at time t = 0 [56]. To do this, write

q(wj,t |w0,0) = δwj ,w0δ(t − 0+) + q+(wj,t |w0,0), (9)

where q+ is right side continuous at t = 0. Thus, by substitu-
tion of Eq. (9) into Eq. (7) we get

ρ(wj,t |w0,0)

= δwj ,w0φ(wj,t)e
− ∫ t

0 β(wj ,t
′)dt ′ +

∫ t

0
q+(wj,t

′|w0,0)

× e− ∫ t

t ′ β(wj ,t
′′)dt ′′φ(wj,t − t ′)dt ′. (10)

We now differentiate this equation with respect to time, using
the Leibniz rule for differentiating under the integral sign, to
obtain

dρ(wj,t |w0,0)

dt
= q+(wj,t |w0,0) −

∫ t

0
q+(wj,t

′|w0,0)

× e− ∫ t

t ′ β(wj ,t
′′)dt ′′ψ(wj,t − t ′)dt ′

−β(wj ,t)ρ(wj,t |w0,0) − δwj ,w0

× e− ∫ t

0 β(wj ,t
′′)dt ′′ψ(wj,t). (11)

Define the flux leaving vertex wj at time t as

i(wj,t |w0,0)

= δwj ,w0e
− ∫ t

0 β(wj ,t
′)dt ′ψ(wj,t) +

∫ t

0
q+(wj,t

′|w0,0)

× e− ∫ t

t ′ β(wj ,t
′′)dt ′′ψ(wj,t − t ′)dt ′ (12)

=
∫ t

0
q(wj,t

′|w0,0)e− ∫ t

t ′ β(wj ,t
′′)dt ′′ψ(wj,t − t ′)dt ′.

(13)
We can then rewrite Eq. (11) as

dρ(wj ,t |w0,0)

dt
= q+(wj,t |w0,0) − i(wj,t |w0,0)

−β(wj ,t)ρ(wj,t |w0,0). (14)

Using Eqs. (6), (9), and (13), the rate of arrivals at vertex
wj can be expressed as

q+(wj,t |w0,0) =
J∑

i=1

λ(wj,wi)i(wi,t |w0,0). (15)

Now we can define ρ through an evolution law as follows:

dρ(wj ,t |w0,0)

dt
=

J∑
i=1

λ(wj,wi)i(wi,t |w0,0) − i(wj,t |w0,0)

−β(wj,t)ρ(wj,t |w0,0). (16)

Following Fedotov [25] we can find an expression for the
flux i in terms of ρ using Laplace transform methods on Eq. (7)
and Eq. (13), respectively. We first divide both equations by
e− ∫ t

0 β(wj ,t
′′)dt ′′ ; this yields

L
{
ρ(wj,t |w0,0)e

∫ t

0 β(wj ,t
′′)dt ′′}

= L
{
q(wj,t |w0,0)e

∫ t

0 β(wj ,t
′)dt ′}L{φ(wj,t)} (17)

and

L
{
i(wj,t |w0,0)e

∫ t

0 β(wj ,t
′′)dt ′′}

= L
{
q(wj,t |w0,0)e

∫ t

0 β(wj ,t
′)dt ′}L{ψ(wj,t)}. (18)

Rearranging Eqs. (17) and (18),

L
{
i(wj,t |w0,0)e

∫ t

0 β(wj ,t
′)dt ′}

= L
{
ρ(wj,t |w0,0)e

∫ t

0 β(wj ,t
′)dt ′}L{ψ(wj,t)}

L{φ(wj,t)} . (19)

Inverting the Laplace transform, we get

i(wj,t |w0,0)

=
∫ t

0
K(wj,t − t ′)ρ(wj,t

′|w0,0)e− ∫ t

t ′ β(wj ,t
′′)dt ′′dt ′, (20)

where the memory kernel is defined by

K(wj,t) = L−1

{L{ψ(wj,t)}
L{φ(wj,t)}

}
. (21)

The master equation for the CTRW process on a network is
found by the substituting Eq. (20) into Eq. (16):

dρ(wj,t |w0,0)

dt
=

J∑
i=1

λ(wj,wi)
∫ t

0
K(wi,t − t ′)ρ(wi,t

′|w0,0)

× e− ∫ t

t ′ β(wi,t
′′)dt ′′dt ′ −

∫ t

0
K(wj,t − t ′)

× ρ(wj,t
′|w0,0)e− ∫ t

t ′ β(wj ,t
′′)dt ′′dt ′

−β(wj ,t)ρ(wj,t |w0,t0). (22)

In the case of power law waiting time densities on a uniform
grid network, this is similar to Eq. (29) in [26].

C. Ensemble CTRW birth-death master equations

To describe a birth-death process we also need to account
for the creation of new particles and hence need to consider
ensembles of particles. We define η(wj,t) as the probability
of a particle being created at vertex wj and at time t . Then we
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can define

u(wj,t) =
∑

w0∈W

∫ t

0
ρ(wj,t |w0,t0)η(w0,t0)dt0 (23)

as the density of particles at vertex wi at time t .
Taking care to differentiate Eq. (23) using Leibniz rule, we then substitute in Eq. (22) and simplify to get

du(wj,t)

dt
=

∑
w0∈W

[
η(w0,t)ρ(wj,t |w0,t) +

∫ t

0
η(w0,t0)

dρ(wj,t |w0,t0)

dt
dt0

]
(24)

=
∑

w0∈W

∫ t

0
η(w0,t0)

[ J∑
i=1

∫ t

0
K(wi,t − t ′)λ(wj,wi)e

− ∫ t

t ′ β(wi,t
′′)dt ′′ρ(wi,t

′|w0,t0)dt ′

−
∫ t

0
K(wj,t − t ′)ρ(wj,t

′|w0,0)e− ∫ t

t ′ β(wj ,t
′′)dt ′′dt ′ − β(wj,t)ρ(wj,t

′|w0,t0)

]
dt0 + η(wj,t). (25)

As ρ(w,t |w0,t0) = 0 for all t < t0 we can write

du(wj,t)

dt
=

∫ t

0

[ J∑
i=1

K(wi,t − t ′)λ(wj,wi)e
− ∫ t

t ′ β(wi,t
′′)dt ′′

∑
w0∈W

∫ t ′

0
ρ(wi,t

′|w0,t0)η(w0,t0)dt0 − e− ∫ t

t ′ β(wj ,t
′′)dt ′′K(wj,t − t ′)

×
∑

w0∈W

∫ t ′

0
ρ(wj,t

′|w0,t0)η(w0,t0)dt0

]
dt ′ − β(wj,t)

∑
w0∈W

∫ t

0
ρ(wj,t |w0,t0)η(w0,t0)dt0 + η(wj,t). (26)

Finally, we arrive at the master equation for a CTRW with reactions on networks

du(wj,t)

dt
=

∫ t

0

[ J∑
i=1

K(wi,t − t ′)λ(wj,wi)e
− ∫ t

t ′ β(wi,t
′′)dt ′′u(wi,t

′) − K(wj,t − t ′)e− ∫ t

t ′ β(wj ,t
′′)dt ′′u(wj,t

′)
]

× dt ′ − β(wj,t)u(wj,t) + η(wj,t), (27)

which can be written in the general form of a reaction-diffusion equation

du(wj,t)

dt
= L[u(wj,t)] + f (u(wj,t)), (28)

where

L[u(wj,t)] =
∫ t

0

[ J∑
i=1

K(wi,t − t ′)λ(wj,wi)e
− ∫ t

t ′ β(wi,t
′′)dt ′′u(wi,t

′) − K(wj,t − t ′)e− ∫ t

t ′ β(wj ,t
′′)dt ′′u(wj,t

′)
]
dt ′ (29)

is the CTRW network Laplacian and

f (u(wj,t)) = −β(wj,t)u(wj,t) + η(wj,t) (30)

models the reaction kinetics on a vertex expressed in terms of
birth and death processes. Previously, it has been noted that the
reaction kinetics are incorporated into the transport operator
for a CTRW process [20]. It can be seen from Eq. (29), that
here only the death processes are incorporated in the transport
operator.

D. CTRW Laplacian with exponential waiting times

We now apply Eq. (27) to the case of exponential waiting
times,

ψ(wj,t) = α(wj )e−α(wj )t . (31)

This greatly simplifies the master equation. In general, the
Laplace transform of the waiting time density, ψ̄(wj,s) =
L{ψ(wj,t)}, and the Laplace transform of the survival

probability φ̄(wj,s) = L{φ(wj,t)} are related by φ̄(wj,s) =
1−ψ̄(wj ,s)

s
.

As ψ(wj,s) is exponential, then ψ̄(wj,s) = s
s+α(wj ) so

ψ̄(wj ,s)
φ̄(wj ,s) = α(wj ) with the inverse Laplace transform α(wj )δ(t)
and thus,

K(wj,t) = α(wj )δ(t). (32)

By substitution, we can rewrite the master equation, Eq. (27),
as

du(wj,t)

dt
=

J∑
i=1

α(wi)λ(wj,wi)u(wi,t)

−α(wj )u(wj,t) + f (u(wj,t)) (33)

=
J∑

i=1

Li,ju(wi,t) + f (u(wj,t)), (34)
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where L is a member of the family of general CTRW network
Laplacians defined as

Li,j = {α(wi)λ(wj,wi) − α(wj )δi,j }. (35)

In the following we consider two special cases of Eq. (35).
For both cases, we assume that the jump probability and
the waiting time probability are only functions of vertex
degree and time, respectively. Both of these cases have been
previously considered without reactions [57]. To describe the
network we used the adjacency matrix

Ai,j =
{

1 if vertices wi and wj are connected,

0 otherwise.
(36)

Each vertex, wj , has a degree, kj , that is defined as the total
number of edges that link to the vertex. This is also the sum of
each row of the adjacency matrix.

1. Case A

We assume that the waiting time on each vertex is identical
and that the probability of jumping across an edge is equal for
a given vertex. Formally, we let α(wj ) = αA for all wj ∈ W

and let λ(wj,wi) = 1
ki

. Thus, our Laplacian becomes

Li,j = αA

(
1

ki

Ai,j − δi,j

)
. (37)

Note that in this case the Laplacian is not symmetric. In
general, the steady state for a CTRW with no reactions using
this Laplacian will not be uniform on the vertex set.

2. Case B

An alternative to Case A is to let the waiting time on
each vertex change proportionally to the vertex degree. This
allows the rate of particles jumping along each edge to be
constant. Formally, we let α(wj ) = αBkj for all wj ∈ W and
let λ(wj,wi) = 1

ki
. Thus, our Laplacian can be described as

Li,j = αB(Ai,j − kj δi,j ). (38)

This is the well studied graph Laplacian [8,46]. It is important
to note that if a connected network is regular, so that kj is the
same for all wj , then the cases are equivalent up to a scale
factor.

III. PATTERN FORMATION

In continuum reaction-diffusion partial differential equa-
tions the concentration may vary on the spatial domain. This
patterning also holds on discretization of the spatial manifold
where the Laplacian operator is replaced with a discrete
Laplace Beltrami operator [58,59]. This can be considered
as a special case of pattern formation on a discrete network.
In general, variation in concentrations on each vertex may
occur on any network. This variation may arise in a number of
different ways. First if the Laplacian matrix is not symmetric
in a system without reactions, there will be a buildup of
concentrations on vertices according to their degree. This
steady state pattern will be a multiple of the eigenvector of the
Laplacian with zero eigenvalue. Second with a nonsymmetric
Laplacian matrix in systems where the reactions have a

finite nonzero steady state solution, the interplay between the
diffusion and the reactions will cause a different pattern across
the network. In this pattern, unlike the no reaction case, vertices
with the same degree may have different concentrations. We
refer to these two mechanisms as Laplacian pattern formation,
as the patterning is driven by the nonsymmetric Laplacian
matrix. Last, if the reaction terms permit a Turing instability,
whereby the spatially homogeneous steady state becomes
unstable in the presence of diffusion, then a Turing pattern may
form [31]. This instability is permitted for both a symmetric
and a nonsymmetric Laplacian matrix.

A. Laplacian pattern formation

To completely eliminate any interplay with Turing patterns,
we consider a single species model that cannot permit a Turing
instability [60]:

du
dt

= Lu + f(u), (39)

where u = (u(w1,t), . . . ,u(wJ ,t))T and f(u) =
(f (u(w1,t)), . . . , f (u(wJ ,t)))T .

If we take the trivial reaction term, f(u) = 0, the only
possible form of spatial pattern formation comes from a
nonsymmetric Laplacian. The master equation is then simply

du
dt

= Lu. (40)

It is clear that if L is nonsymmetric, there will be a nonuniform
rate of particle transport along the network that produces a
pattern of different concentrations of particles in the long term.
This concentration vector must be a multiple of the eigenvector
of the Laplacian matrix with eigenvalue zero as it is a solution
of the the vector u that satisfies the steady state of Eq. (40),
i.e.,

Lu = 0. (41)

If the reaction term f(u) �= 0 and has a finite nonzero
equilibrium solution then the pattern will no longer correspond
to an eigenvector of the Laplacian matrix.

Define the reaction steady state u∗ such that the reaction
term f(u∗) = 0. By considering the behavior of u = u∗ + �u,
where �u is some perturbation, Eq. (39) may be linearized to
become

d�u
dt

= Df(u∗)�u + Lu∗ + L�u. (42)

The steady state solutions are given by

�u = −(L + Df(u∗))−1Lu∗, (43)

provided the inverse exists, where Df(u∗) is the derivative
operator of the reaction vector field f at u∗. The perturbed
state u∗ + �u is the linear prediction of the pattern. In the
case where the reaction term is linear in u this is the exact
solution for the pattern. It should also be noted that in the case
of a symmetric Laplacian, Lu∗ = 0, as the constant vector is
always a null vector of a symmetric Laplacian. This equation
does not hold without reactions as a nonsymmetric Laplacian
is, in general, noninvertible.

This type of pattern formation is very different from a
Turing pattern formation. A Turing pattern is formed by
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an instability in the dynamics whereby an otherwise stable
solution is made unstable by the presence of diffusion. It
is a bifurcation phenomena as the diffusion must reach a
critical value before the solution becomes unstable. In this
case, however, we have a pattern that will form for any amount
of diffusion; the stability of the solution does not change but
rather the solution itself is a function of the diffusion. To
examine this we introduce a scale parameter s for our Laplacian
whereby the linear predictor for the pattern becomes

�u = −(sL + Df(u∗))−1sLu∗. (44)

The new scalar parameter governs the speed of diffusion in the
system. In the limit s → 0 we have

�u = 0, (45)

which corresponds to no pattern, and each vertex taking the
equilibrium values of the reactions. In the limit s → ∞ care
has to be taken with the existence of the inverse. Taking
Eq. (44), and multiplying through by (sL + Df(u∗)), dividing
by s, and taking the limit of s → ∞, we have

lim
s→∞

(
L + Df(u∗)

s

)
�u = −Lu∗, (46)

L�u + Lu∗ = 0, (47)

Lu = 0, (48)

and so the pattern will be equivalent to the case with no
reactions. In this way it can be seen that this type of pattern
formation is the mixing of the pattern formation from the
nonsymmetric Laplacian and the reaction equilibrium.

B. Turing pattern formation

We consider a general two species reaction-diffusion
system with particle concentrations u and v. The master
equations [see Eq. (34)] can be written as

du(wj,t)

dt
=

J∑
i=1

αuLi,ju(wi,t) + f (u(wj,t),v(wj,t)) (49)

and

dv(wj,t)

dt
=

J∑
i=1

αvLi,j v(wi,t) + g(u(wj,t),v(wj,t)), (50)

where the functions f (u(wj,t),v(wj,t)) and
g(u(wj,t),v(wj,t)) incorporate the creation and destruction
probabilities, i.e.,

f (u(wj,t),v(wj,t)) = ηu(wj,t) − βu(wj,t)u(wj,t (51)

= ηu(u(wj,t),v(wj,t))

−βu(u(wj,t),v(wj,t))u(wj,t), (52)

and similarly for g(u(wj,t),v(wj,t)). Here note that the αu and
αv are factored out of the Laplacian, Li,j , so that the operator
is the same in both equations.

1. Linear stability analysis

To consider Turing instabilities, we first rewrite Eqs. (49)
and (50) in vector form

dX
dt

= �X + F(X), (53)

where

X = (u(w1,t), . . . ,u(wJ ,t), v(w1,t), . . . ,v(wJ ,t))T

= (X1, . . . ,XJ , XJ+1, . . . ,X2J )T ,

F(X) = (f (X1,XJ+1), . . . ,f (XJ ,X2J ),

g(X1,XJ+1), . . . ,g(XJ ,X2J ))T

= (F1, . . . ,FJ , FJ+1, . . . ,F2J )T ,

and � =
(

αuL 0

0 αvL

)
.

Linearizing about the steady state X∗ with F(X∗) = 0 and
X = X∗ + �X. We then substitute this into Eq. (53) to get

d�X
dt

= (
� + DF(X∗)

)
�X + �X, (54)

where

DF(X∗)i,j = dFi

dXj

∣∣∣∣
X∗

. (55)

We now apply the affine transform �Y = �X +
(� + DF(X∗))−1 �X∗ to Eq. (54), yielding

d�Y
dt

= (
� + DF(X∗)

)
�Y, (56)

which gives solutions of the form

�Y =
J∑

j=1

eμj tPj (t)νj , (57)

where μj is the j th eigenvalue of (� + DF(X∗)), with
corresponding eigenvector νj and Pj is a polynomial in t for
repeated eigenvalues. The long time behavior of �Y is then
approximated by

�Y ∼ eμ∗tP ∗(t)ν∗, (58)

where μ∗ corresponds to the eigenvalue with the largest real
component.

In the linear stability analysis the concentrations of the two
species evolve as

X ∼ eμ∗tP (t)ν∗ + X∗ − (� + DF(X∗))−1�X∗, (59)

where (� + DF(X∗))−1�X∗ = 0 if the Laplacian is symmet-
ric.

In the continuum case the real components of the eigen-
values (i.e., stability) of the homogeneous steady state can be
plotted against spatial frequency to obtain a dispersion relation
showing the range of spatial frequencies that will grow with
time. In an analogous manner for the network case, we plot
the stability of the reaction-diffusion system as a function of
a scale parameter s equivalent to scaling the waiting time for
both species on the network:

dX
dt

= s�X + F(X). (60)
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When s is zero there is no coupling between vertices and
each vertex will be in equilibrium according to the reaction
equations. We identify two critical values of s greater than
zero from our linear stability analysis. First the Laplacian type
pattern arising from the coupling of reactions to diffusion may
change to a Turing pattern at a critical value of s. As s is
further increased the Turing pattern, if it occurs, will persist
until the second critical value when the pattern reverts back to
a Laplacian type pattern.

IV. EXAMPLES OF PATTERN FORMATION

To illustrate the properties of both the Laplacian and
the Turing patterns on networks the master equations with
exponential waiting times were solved numerically. For the
Laplacian patterns, Eq. (34) was solved with logistic reaction
kinetics using the Case A Laplacian operator. The Turing
patterns were examined by solving Eqs. (49) and (50) with
Gierer-Meinhardt reaction kinetics and both the Case A and the
Case B Laplacian operators. In both cases the equations were
solved on random networks generated by the Barabási-Albert
algorithm [3], and the Watts-Strogatz algorithm [52].

The first reaction kinetics that we consider is the logistic
equation [61],

f (u(x,t)) = ru(x,t)(1 − u(x,t)), (61)

where r is a constant. This governs the growth rate of a
single species. In the following examples we take r = 1. When
applied to a network, this simple example could be considered
a model for animal populations in a set of connected habitats,
where the population is constrained by natural limits. The
reaction-diffusion master equation in this case is found by
substituting Eq. (61) into Eq. (39),

du(wj,t)

dt
=

J∑
i=1

Li,ju(wi,t) + u(wi,t)(1 − u(wi,t)). (62)

Here L is the Case A Laplacian with α = 1, i.e., Li,j = Ai,j

ki
−

δi,j .
The second model we consider has Gierer-Meinhardt

reaction kinetics [32]. This is a two species model that permits
Turing instabilities. The reaction terms in the model are

f (u(x,t),v(x,t)) = cρ
u(x,t)2

v(x,t)
− μ u(x,t) + ρ0ρ (63)

and

g(u(x,t),v(x,t)) = cdρ u(x,t)2 − ν v(x,t). (64)

The Gierer-Meinhardt reaction kinetics are only valid for
u(x,t) and v(x,t) > 0 for all x and t . Furthermore, we assume
that all vertices have equal volume so that the number of
particles and the concentration are interchangeable.

We can apply this model to a network setting by substituting
Eqs. (63) and (64) in Eqs. (49) and (50):

du(wj,t)

dt
= cρ

u(wj,t)2

v(wj,t)
− μ u(wj,t) + ρ0ρ

+αu

J∑
i=1

Li,ju(wi,t), (65)

dv(wj,t)

dt
= cdρ u(wj,t)

2 − ν v(wj,t) + αv

J∑
i=1

Li,j v(wi,t).

(66)

In the following we use

ρ0 = 1, ρ = 1, ν = 7
32 , μ = 5

256 ,

c = 1, and cd = 5
128 . (67)

For the Case A Laplacian we use

αu = 1 and αv = 1
256 . (68)

To place the Case B Laplacian, i.e., Li,j = Ai,j − kiδi,j , on a
comparable footing to Case A we rescale the parameters αu

and αv to ensure that the mean waiting time across the network
is comparable in both cases. Explicitly,

αu = J∑J
j=1 kj

and αv =
(

1

256

)
J∑J

j=1 kj

. (69)

A. Barabási-Albert network

The Barabási-Albert (BA) network is a random network
with a power law distribution of vertex degrees [3]. The
network is iteratively generated by adding a vertex at each
step that connects to k existing vertices where the probability
of attachment is proportional to the degree of the existing
vertices.

For completeness, we first consider a purely diffusive
process governed by the Case A Laplacian on BA networks. In

FIG. 1. (Color online) Case A Laplacian diffusion on a BA network with k = 3. A characteristic pattern of a network with 50 vertices (left)
and the distribution of concentrations on a 50 (middle) and a 500 (right) vertex network. The vertical lines demark regions of different vertex
degree.
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FIG. 2. (Color online) Case A Laplacian with logistic reaction kinetics on a BA network with k = 3. Concentration (left) and difference
of linear predictor and concentration (right). The pale horizontal line is the reaction steady state value and the data is ordered according to
concentration within each segment of constant vertex degree. The vertical lines demark regions of different vertex degree.

this case, the concentration on each vertex is proportional to its
degree, resulting in the shape of the concentrations to be similar
to a power law shape as shown in Fig. 1. This distribution,
which corresponds to the eigenvector of the Laplacian with a
zero eigenvalue, is monotonic with increasing vertex degree.

With the addition of the logistic reaction term, concentra-
tions across the network change. The overall power law shape
is still present; however, the pattern is no longer monotonic
with respect to vertex degree. The linear predictor of the pattern
across the network, Eq. (43), is a good approximation near the
reaction steady state; see Fig. 2. The mean of the concentration
across the network is reduced from the reaction equilibrium
value.

When the reactions are governed by the Gierer-Meinhardt
model, Turing instabilities can arise, producing patterns dif-
ferent to the Laplacian patterns. We first consider the patterns
when the Case A Laplacian is used; a representative example is
shown in Fig. 3. The exact pattern is determined by the initial

conditions of the system. This multistability is in contrast to the
Laplacian patterns that have no initial condition dependence.
In all observed Turing patterns the concentrations for both
types of particles are split on vertices with low degree. There
is also an increasing concentration as a function of vertex
degree as seen in the previous BA patterns, especially for the
concentration of u particles.

When considering the Case B Laplacian, as shown in Fig. 4,
the patterns shown are clearly very different to those in Fig. 3.
There is a splitting of concentration across all vertex degree
segments and the lower level shows practically no increase in
concentration as a function of vertex degree. Moreover, the
concentrations achieved are higher and lower for u and v,
respectively, when compared to Case A. Unlike for the Case A
model, the patterns exhibited by u and v have similar profiles.

It is interesting to note the change in mean concentration for
the two Turing patterns. For the Case A pattern we have both
the the mean of u and v greater then the reaction steady state

FIG. 3. (Color online) Case A Laplacian Gierer-Meinhardt reaction diffusion on a BA network with k = 3. The characteristic pattern of u

(top) and v (bottom) on 50 (left) vertex network and the corresponding distribution of concentrations on a network with 50 vertices (middle)
and 500 (right) vertices. The horizontal line gives the reaction steady state.
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FIG. 4. (Color online) Case B Laplacian Gierer-Meinhardt reaction diffusion on a BA network with k = 3. The characteristic pattern of u

(top) and v (bottom) on 50 (left) vertex network and the corresponding distribution of concentrations on a network with 50 vertices (middle)
and 500 (right) vertices. The horizontal line gives the reaction steady state.

value with no diffusion. For Case B, the opposite is true and
the mean values are less then the reaction steady state values.

The dispersion relations for Cases A and B are plotted in
Fig. 5. This figure shows that the Turing instability occurs
over a larger range of the scale parameter s in Case B than in
Case A.

B. Watts-Strogatz network

The Watts-Strogatz (WS) network is a random network
characterized by the small world property of having a low
graph diameter; the length of the longest path between any
two vertices that does not involve loops or back tracking [52].
The network is generated by creating a ring lattice where
each vertex is connected to k adjacent vertices. Then each
subsequent edge may be reconnected with some probability p

to some other vertex chosen uniformly from all vertices.
Once again we first consider a purely diffusive process

governed by the Case A Laplacian. The concentration on each
vertex is proportional to the degree of the vertex as shown in
Fig. 6.

The same network with logistic reaction kinetics is shown in
Fig. 7. Similarly to the BA network, each segment of vertices
with identical degree shows a gentle slope in concentration
with tapered boundaries. However, the underlying concentra-
tion distribution is similar to that of the previous case. We
see that the linear predictor is a good approximation when the
concentration is near the reaction steady state value.

We consider the Gierer-Meinhardt reaction kinetics with
both Case A and Case B Laplacian operators as shown in
Figs. 8 and 9, respectively. In both cases, the distribution of
concentrations is bimodal for each vertex degree.

The example using the Case B Laplacian exhibits patterns
very similar to those using the Case A. Similarly to the BA
network, the highest concentrations in the second example are
always increasing in contrast to the first example. Unlike the
patterns on the BA network, the concentrations for both cases
are at comparable quantities.

Dispersion relations for the Case A and Case B models
are shown in Fig. 10. Unlike in the BA network, both
Laplacian operators permit dispersion relations with almost
indistinguishable profiles.

FIG. 5. (Color online) Dispersion relation for Case A (left) and Case B (right) Laplacian Gierer-Meinhardt reaction diffusion on a 500
vertex BA network with k = 3.
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FIG. 6. (Color online) Case A Laplacian diffusion on a WS network with k = 3 and p = 0.1. A characteristic pattern of a network with
50 vertices (left) and the distribution of concentrations on a 50 (middle) and a 500 (right) vertex network. The vertical lines demark regions of
different vertex degree.

FIG. 7. (Color online) Case A Laplacian with logistic reaction kinetics on a WS network with k = 3 and p = 0.1. Concentration (left)
and difference of linear predictor and concentration (right). The pale horizontal line is the reaction steady state value and the data is
ordered according to concentration within each segment of constant vertex degree. The vertical lines demark regions of different vertex
degree.

FIG. 8. (Color online) Case A Laplacian Gierer-Meinhardt reaction diffusion on a WS network with k = 3 and p = 0.1. The characteristic
pattern of u (top) and v (bottom) on 50 (left) vertex network and the corresponding distribution of concentrations on a network with 50 vertices
(middle) and 500 (right) vertices. The horizontal line gives the reaction steady state.
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FIG. 9. (Color online) Case B Laplacian Gierer-Meinhardt reaction diffusion on a WS network with k = 3 and p = 0.1. The characteristic
pattern of u (top) and v (bottom) on 50 (left) vertex network and the corresponding distribution of concentrations on a network with 50 vertices
(middle) and 500 (right) vertices. The horizontal line gives the reaction steady state.

V. SUMMARY AND DISCUSSION

In this paper we have derived the generalized master
equation for reaction diffusion processes on networks based
on the CTRW as the underlying stochastic process. We
assumed that the vertices of the network can be occupied
by many particles with the reactions occurring among the
particles on the same vertex. The reactions were assumed to
be governed by the same reaction kinetics on each vertex.
The CTRW models particles jumping between vertices and
reaction kinetics were incorporated into this as birth and
death processes. We used the CTRW framework to derive a
family of Laplacian operators that govern the diffusion on the
network. These operators are dependent on the waiting time
probability density at each vertex and the jumping probability
density between vertices. In the case of nonexponential
waiting time densities these operators convolve the reaction
and transport processes. However, in the case of exponential

waiting times the operators are purely transport operators.
The complication of power law waiting time densities with
reactions on networks is an important problem for future
work.

In general, it is to be expected that the CTRW network
reaction-diffusion model can lead to unequal concentrations
of particles across the vertices. We investigated this pattern
formation in the concentrations of particles. We considered
the jumping probability to be equal across any edge from a
given vertex and we considered the waiting time densities to
be exponential, for two choices of the rate parameter: Case A,
where the rate parameter was taken to be proportional to the
vertex degree, and Case B, where the rate parameter was taken
to be the same for all edges.

We identified three distinct pattern formation mechanisms
in our CTRW network reaction-diffusion models. In the case
of symmetric network Laplacian operators pattern formation
followed a Turing mechanism whereby the steady state of the

FIG. 10. (Color online) Dispersion relation for Case A (left) and Case B (right) Laplacian Gierer-Meinhardt reaction diffusion on a 500
vertex WS network with k = 3 and p = 0.1.
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reaction dynamics, homogeneous across the vertices, became
destabilized by the jumps resulting in a nonhomogeneous
pattern across the vertices. The Turing mechanism can also
result in pattern formation when the network Laplacian is
nonsymmetric but other pattern formation mechanisms can
occur in this case too. Second, the use of the nonsymmetric
Laplacian may, by itself, lead to a buildup in concentrations on
vertices according to their degree. Third, if the nonsymmetric
Laplacian is coupled with reactions that have a finite nonzero
steady state, then the interplay between the two can result in a
different pattern across the network. The different signatures of
these patterns may prove useful in elucidating the underlying
transport processes in networks when this is not known at
the outset.

The family of Laplacians we have derived should be
used when the underlying process may be represented by a
CTRW. This embodies a large class of diffusive processes on
networks. By considering the underlying stochastic process,
the ad hoc choices of transport operators are constrained,
resulting in a physically consistent model of diffusion on
networks. Our models of reaction-diffusion on networks are
capable of reproducing a wide range of observed dynamics, as
exemplified by our pattern formation examples.
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