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Strong feedback limit of the Goodwin circadian oscillator
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Université Libre de Bruxelles, Service de Chimie Physique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium

Thomas Erneux
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The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop.
It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants
of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks
because of its relative simplicity compared to other biophysical models involving a large number of variables
and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore
mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate
the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin
oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable
leaky integrated-and-fire model.
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I. INTRODUCTION

Strong negative autoregulation is prevalent in transcrip-
tional networks to reduce gene expression heterogeneity [1]
and metabolic costs of protein production [2], and to induce
oscillatory gene expression [3]. It has also been suggested
that negative feedback could be useful in signaling systems
to increase information transmission [4]. A negative feedback
also lies at the core of the molecular mechanism of circadian
oscillators [5]. Its main structure is captured by the Goodwin
model [6]. It is a minimal model that describes the oscillatory
negative feedback regulation of a translated protein which
indirectly inhibits its own transcription [7,8]. The Goodwin
model is able both to oscillate with a 24 hour period and to
reset its cycle with new light/dark patterns [9,10]. Modified
versions of Goodwin model equations have been successfully
used to describe the dynamics of the protein PER [11] which
is known to play a crucial role in the circadian rhythms in fruit
flies and mice [8], and for a circadian oscillating gene in the
fungus Neurospora crassa [9,10].

In Neurospora, a strong resetting appears to be required to
explain the experimental phase response curve and the short
transients of the circadian oscillations after a perturbation [12].
A modified Goodwin model producing relaxation oscillations
was shown to give results consistent with the experimental
observation on Neurospora [10]. In contrast, such a strong
resetting seems not present in higher organisms such as
Drosophila and mammals [12]. As a core oscillator, the
Goodwin model provides a means to explore a possible origin
of relaxation oscillations.

An attractive feature of the Goodwin model is that it allows
analytical studies of subtle dynamical phenomena, whereas
other detailed biophysical models of cellular oscillators usually
exhibit a large number of variables and parameters, which rule
out any mathematical treatment, and obscure the underlying
mechanisms. It is therefore not surprising that current investi-
gations of the synchronization of cellular oscillators consider
coupled Goodwin oscillator networks [13–15]. For large
networks, it is desirable to reduce the Goodwin three-variable

model to a single-variable fire-and-reset type model in order to
benefit from the same computational efficiency as the coupled
integrate-and-fire (IF) neurons used to simulate large scale
brain models [16–19]. The main objective of this paper is to
derive such IF model by using asymptotic techniques valid in
the limit of strong negative feedbacks.

The Goodwin oscillator is described mathematically by the
following three ordinary differential equations where X, Y ,
and Z denote the concentrations of mRNA, protein, and an
inhibitor, respectively [7,8]:

X′ = 1

1 + Zn
− kX, (1)

Y ′ = X − kY, (2)

Z′ = Y − kZ. (3)

Prime means differentiation with respect to time T . The sole
source of nonlinearity comes from the negative feedback term
in Eq. (1) which is the key biological mechanism raised by
Goodwin. All the degradation constants have been taken equal
to k because nearly equal constants favor the occurrence of
limit-cycle oscillations [8]. The Goodwin model then depends
on two parameters, namely, k and n.

Early theoretical work on the Goodwin family of oscillators
was extensive but essentially devoted to the existence of
periodic solutions [8,20]. Equations (1)–(3) admit a Hopf bi-
furcation at k = kH provided that n is sufficiently large (n> 8).
The oscillations typically consist of a periodic sequence of
successive (increasing and decreasing) exponentials. We wish
to capture these functions analytically by investigating the
large-n limit. In this limit, the feedback function approaches
either 0 or 1 depending on the value of Z − 1. This does
not mean that we may replace the feedback function in
Eqs. (1)–(3) by the Heaviside step function H (1 − Z). An
important aspect of the large-n limit is the existence of fast
time transition layers of size �T ∼ n−1 that are connecting
the two exponentials These layers are not present when the
Heaviside function replaces the continuous feedback function
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in Eq. (1). The Goodwin model with the Heaviside function
has already been investigated by Tyson and Othmer [21]
and by Tyson [22,23]. They derived a map relating the
successive maxima of X and showed that a stable fixed point
of the map corresponds to a limit-cycle solution of Goodwin
equations. We revisit this problem with two objectives. First,
we evaluate the numerical validity of this map by comparing
bifurcation diagrams. We show that the approximation for
the map fails near the Hopf bifurcation point, as expected
since the oscillations are no more a combination of successive
exponentials but are sinusoidal near the bifurcation point.
Second, we investigate the small-k limit of the equations for the
map and obtain analytical solutions of physical significance.
We then derive two distinct IF models where all threshold
values are determined analytically.

The plan of the paper is as follows. In Sec. II, we derive the
equations for the map and test its validity by determining the
bifurcation diagram. We also investigate the two fast transition
layers and discuss their effects. In Sec. III, we investigate the
small-k limit of the fixed point of the map and obtain simple
expressions for the extrema and the period of the oscillations.
This then leads to the formulation of single-variable IF type
models. Last, we discuss in Sec. IV possible extensions of our
analysis to periodically driven or coupled Goodwin oscillators.

II. STRONG NEGATIVE FEEDBACK

In this section, we analyze the limit-cycle solution of
Eqs. (1)–(3) in the limit of large values of n keeping k fixed.
For mathematical convenience, we reformulate Eqs. (1)–(3) in
terms of t = kT , x = k−2X, y = k−1Y , z = Z and find

x ′ = α

1 + zn
− x, (4)

y ′ = x − y, (5)

z′ = y − z, (6)

where prime now means differentiation with respect to time
t and α ≡ k−3. The two parameters n and α now appear
only in the first equation. A typical periodic solution for
n large is shown in Fig. 1. The figure suggests that the
extrema of x appear when z = 1 at times t = 0, s, and p.
From now on, we define t = 0, s, and p as the times where
z = 1. Because n is large, the negative feedback function
in Eq. (4) periodically changes from 0 to α depending on
the sign of z − 1. This motivates a two-part analysis of
Eqs. (4)–(6). We first determine the solution when z > 1
(0 < t < s) and then the solution when z < 1 (s < t < p).
The two solutions cannot exhibit discontinuities at time s

and p and we will later investigate the transition layer
problems.

A. Part z > 1

We start with the initial conditions x(0) = x0, y(0) = y0,

and z(0) = 1 where the value of x0 > 1 is assumed close to the
maximum of x. Because z > 1 as time increases, we neglect
the feedback function in Eqs. (4)–(6) and solve

x ′ = −x, y ′ = x − y, z′ = y − z. (7)

FIG. 1. Stable p-periodic solution of Eqs. (4)–(6) with α = 8
and n = 100. The oscillations for x are a sequence of increasing
and decreasing exponentials. The slow decrease occurs during the
time interval s and the fast increase appears during the time interval
� ≡ p − s.

The solution of Eq. (7) is

x = x0 exp(−t), (8)

y = exp(−t)(y0 + x0t), (9)

z = exp(−t)

(
1 + y0t + x0

t2

2

)
. (10)

At time t = s, we have z = 1, x = x1, and y = y1. From
Eqs. (8)–(10), we determine the conditions

x1 = x0 exp(−s), (11)

y1 = exp(−s)(y0 + x0s), (12)

1 = exp(−s)

(
1 + y0s + x0

s2

2

)
. (13)

B. Part z < 1

We next assume that z < 1 as t > s. The nonlinear function
in Eq. (4) now equals α and we solve

x ′ = α − x, y ′ = x − y, z′ = y − z (14)

with the initial conditions x(s) = x1, y(s) = y1, and z(s) = 1.
The solution of Eq. (14) is

x = (x1 − α) exp[−(t − s)] + α, (15)

y = exp[−(t − s)] [y1 − α + (x1 − α)(t − s)] + α, (16)

1 = exp[−(t − s)]

×
[

1 − α + (y1 − α)(t − s) + (x1 − α)
(t − s)2

2

]
+ α.

(17)
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Finally, we reenter the region z > 1 at time t = p. At this
time, we have z = 1, x = x2, and y = y2. Using
Eqs. (15)–(17), we find that x2, y2, and � ≡ p − s satisfy
the conditions

x2 = (x1 − α) exp(−�) + α, (18)

y2 = exp(−�) [y1 − α + (x1 − α)�] + α, (19)

1 = exp(−�)

[
1 − α + (y1 − α)� + (x1 − α)

�2

2

]
+ α.

(20)

In summary, we determined equations for a map relating
(x2,y2) and (x0,y0) defined as two successive maxima of x.
The computation of (x2,y2) requires finding x1, y1, s, and
�. Specifically, we start with (x0,y0) arbitrary and determine
s from Eq. (13). We then evaluate (x1,y1) using Eqs. (11)
and (12). With (x1,y1), we determine � from (20) and then
(x2,y2) using Eqs. (18) and (19). We repeat this process until
we approach a stable fixed point. The maximum and minimum
of x are provided by x0 and x1, respectively.The period p is
obtained by adding s and � = p − s. The numerical bifurca-
tion diagram obtained by solving numerically Eqs. (4)–(6) is
compared to the numerical solution obtained by determining
the fixed point of Eqs. (11)–(13) and Eqs. (18)–(20) (see
Fig. 2). As α − 1 → 0+, we note that the approximation
provided by the map becomes singular (p → ∞). Specifically,
an analysis of this limit, detailed in Appendix A, indicates
that

s =
√

6(α − 1) and � = − ln(α − 1) → ∞
as α − 1 → 0+. (21)

C. Transition layers

We analyze the transition layer near t = s in detail and then
summarize the main result for the layer near t = p. In order
to analyze the solution near t = s, we introduce the inner
variables [24]

x = x1 + n−1u, y = y1 + n−1v,
(22)

z = 1 + n−1w, and τ = n(t − s),

where x1 and y1 are defined by (11) and (12), and s is the
solution of Eq. (13). We note that

zn = (1 + n−1w)n = exp(w) + O(n−1) (23)

and rewrite Eqs. (4)–(6) in terms of u, v, w, and τ . We find

u′ = α

1 + exp(w) + O(n−1)
− x1 + O(n−1), (24)

v′ = x1 − y1 + O(n−1), (25)

w′ = y1 − 1 + O(n−1), (26)

where prime now means differentiation with respect to τ. The
leading order equations as n → ∞ with v(0) = w(0) = 0 can
be solved analytically. We obtain

v = (x1 − y1)τ, w = (y1 − 1)τ, (27)

u = −x1τ + ατ − α

y1 − 1
ln{1 + exp[(y1 − 1)τ ]}. (28)

FIG. 2. (Color online) Bifurcation diagram of the steady and peri-
odic solutions (n = 100). (a) The extrema of x obtained numerically
from Eqs. (4)–(6) are shown as a function of α (black lines). They
emerge from a Hopf bifurcation point located at αH ∼ 1. The two
lines indicated by arrows (red) are the extrema obtained by deter-
mining the stable fixed point of Eqs. (11)–(13) and Eqs. (18)–(20).
(b) Period p of the oscillations and time s of the minimum of x.
As α → 1, p → ∞ meaning that the asymptotic approximation
provided by the map (indicated by an arrow, red) fails near the Hopf
bifurcation point. The dot at α = 1 is the period of the oscillations
at the Hopf bifurcation point given by p = 2π/

√
3. The period

obtained numerically from Eqs. (4)–(6) exhibits a transition layer
near α = 1 before matching the approximation provided by the map.
For s, the approximation provided by the map totally agrees with the
numerically obtained value. Numerical simulations of Eqs. (4)–(6)
have been realized using XPP-AUTO [25].

Note that y1 < 1. The two limits of u as τ → ±∞ are
u → (−x1 + α)τ as τ → ∞ and u → −x1τ as τ → −∞.

We have verified that they are correctly matching the solutions
described in the two previous subsections. The approxima-
tion (28) is shown in Fig. 3 and is in full agreement with the
numerical solution. The figure shows that the minimum occurs
before τ = 0 where z = 1.

The transition layer solution near the maximum of the oscil-
lations can be constructed in a similar way. The transition layer
solution for u ≡ n(x − x0) as a function of τ ≡ n(t − p) is
given by (28) with y0 replacing y1. We note that the maximum
of the oscillations appears before τ = 0 where z = 1.

III. INTEGRATE-AND-FIRE MODELS

A simple description of the response of an excitable
cell to a stimulus is provided by the integrate-and-fire (IF)
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FIG. 3. (Color online) Transition layer near the minimum of x for
α = 8. The fixed point of the map is x0 = 4.33, x1 = 0.13,y0 = 1.70,

y1 = 0.50, and s = 3.52. The approximation provided by (28) (red)
is totally matching the solution of Goodwin equations (black, α = 8
and n = 100). The two dotted straight lines are the limits u = −x1τ

as τ → −∞ and u = (α − x1)τ as τ → ∞.

model [19]. In this model, the membrane potential v(t) exhibits
an exponential increase until the threshold v = vth is reached.
The membrane potential “fires” and is immediately reset to
zero. The equation describing the evolution of v(t) is

dv

dt
= − 1

τ
v + c (29)

and v(t+) = 0 if v(t) = vth, the threshold. The observation
that Goodwin limit-cycle oscillations for n large can be built
from exponential functions suggests that Goodwin equations
could be replaced by linear equations similar to the IF model.

In Appendix B, we analyze the equations of the map in
the limit α → ∞. The asymptotic solution for α large is best
described in parametric form (with s as the parameter). Recall
that the maxima (minima) of x and y are x0 and y0 (x1 and y1),
respectively. Moreover, s is the time of the exponential
decrease of x while � = p − s is the time of the exponential
increase of x. In the large-s limit, we find the relations

x0 = 2s−2 exp(s), x1 = 2s−2, (30)

y0 = 3 − 2s−1, y1 = 2s−1, (31)

� = α−1/2
√

6(1 − 2s−1), (32)

while α(s) is given by

α = 2

3(1 − 2s−1)
[s−2 exp(s)]2. (33)

By changing continuously s from a fixed value (s > 2), we
may determine the extrema and the period. Figure 4 compares
the period p = s + � obtained by using our analytical solution
to the period obtained from the equations of the map.

Of physical interest are the leading approximations of the
extrema of x and period p in terms of α. From (30)–(33), we

FIG. 4. (Color online) Period of the oscillations for α large. The
solution obtained from the fixed point of the map (black line) is
compared to its asymptotic approximation p = s + � using (32)
and (33) (3 < s < 6, red line indicated by an arrow).

find that

x0 �
√

6α, x1 � 0, and p � 1

2
ln

(
3α

2

)
+

√
6

α
.

(34)
A change of parameter α will affect the maximum x0 which
scales as

√
α but not as much the period p which scales

like ln(α). We may now propose two different IF models that
describe Goodwin spiking oscillations for α large (or k small).

A. One exponential

Neglecting the fast exponential increase, Goodwin oscil-
lations approach a sequence of sawtooth oscillations which
satisfy the equation

x ′ = −x (35)

with the condition

x(t+) = x0 if x(t) = x1. (36)

According to our analysis this event appears at each
multiple value of s. The values of s, x0, and x1 as a function
of α are defined by (30) and (33).

B. Two exponentials

A more accurate IF model can be proposed if we take into
account the fast exponential increase. Each time x(t) = x1, we
integrate

x ′ = −x + α, (37)

and when x(t) = x0 > x1, we integrate

x ′ = −x. (38)

The oscillations described by the two IF models are shown in
Fig. 5. Although both reduced models exhibit slightly higher
maxima compared to the oscillations of the original Goodwin
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FIG. 5. Goodwin oscillations and its two approximations. The
values of the parameters are n = 75 and α = 28 (implying x0 = 9.81
and s = 4.67). (a) Periodic solution of Goodwin equations (4)–(6).
(b) One-exponential approximation using Eqs. (35) and (36). (c) Two-
exponential approximation that includes the fast exponential increase
using sequentially Eqs. (37) and (38).

equations, the period p of the oscillations is quantitatively
captured by the second IF model.

IV. DISCUSSION

The Goodwin model constitutes a prototypical oscillator
based on a negative feedback loop. It was used as a minimal
model for circadian oscillations [9,10]. Other core models
for circadian clocks are variants of the Goodwin model
[11,13–24,26,27]. The Goodwin model was also used to model
the ultradian Hes1 oscillations controlling the somitogenesis
[28].

Thus, understanding the dynamical properties of such a
generic model is of high interest in deciphering the design
principles of biological oscillators [29]. Early theoretical
works on the Goodwin model were devoted to prove the
existence of limit cycle oscillations [20,30]. Subsequent works
have proposed variants and extensions of the Goodwin model
in search of processes favoring the oscillations. Those include
nonlinear reaction rates [31], time delay through multiple
reaction steps [21], feedback inhibition [32], and explicit
gene-protein binding/unbinding dynamics [33].

In the present work, we have derived an analytical solution
for the Goodwin model in the limit of strong feedback (n
large). The solution for the limit cycle is expressed as a
combination of exponential functions and resembles relaxation

oscillations. The limit case where the inhibition is treated as
a step function was already considered by Tyson [22] and
further commented on by Painter and Bliss [34]. Compared to
these earlier works, we have analyzed the numerical validity
of all approximations in terms of bifurcation diagrams for the
extrema and the period of the oscillations. Mathematically,
we examined specific limits of the control parameter and
we also discussed the role of fast transition layers. Ruoff
et al. [10,35] have artificially obtained similar relaxation-like
oscillations by replacing the Hill inhibitory function with a
“resetting function” that abruptly changes from 0 (inhibition)
to 1 (no inhibition) when the variable z passes through
threshold values. Interestingly, we do not need to assume such
an artificial resetting function or additional positive feedback
loops (which generate different time scales in the system) to
get relaxation-like oscillations.

Although a high Hill exponent cannot be justified by simple
cooperative regulatory processes, our results suggest that the
nature and steepness of the negative feedback regulation may
play an important role in the shape of the oscillations and, pre-
sumably, in its entrainment and phase shifting performances.
The abruptness of the resetting of the oscillations appears to
differ from one organism to another. In Neurospora, a strong
resetting seems to be required to explain the experimental
phase response curve whereas in Drosophila, the resetting
seems more soft [12]. This can be of importance for a proper
adaptation of the organisms. Our results suggest that, besides
other interconnected feedback loops [36], the strength of
feedback regulation is a critical way to control the oscillator
features.

The success of our analysis in deriving simple expressions
for the limit-cycle oscillations motivates the study of other
problems of interest in the circadian oscillator community. We
wish to investigate the case of coupled Goodwin oscillators and
verify that the strong feedback limit indeed leads to coupled
IF oscillators. Another problem is the strong feedback limit
of a periodically driven Goodwin oscillator. The derivation
of reduced models will obviously depend on how we couple
Goodwin oscillators or on how the modulation is introduced
in Goodwin equations.
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APPENDIX A: THE LIMIT α − 1 → 0+

With x2 = x0 and y2 = y0 in Eqs. (18) and (19), Eqs. (11)–
(13) and (18)–(20) for the fixed point of the map are given
by

x1 = x0 exp(−s), (A1)

y1 = exp(−s)(y0 + x0s), (A2)

1 = exp(−s)

(
1 + y0s + x0

s2

2

)
, (A3)

x0 = (x1 − α) exp(−�) + α, (A4)
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y0 = exp(−�) [y1 − α + (x1 − α)�] + α, (A5)

1 = exp(−�)

[
1 − α + (y1 − α)� + (x1 − α)

�2

2

]
+ α.

(A6)

Equations (A1)–(A6) are six transcendental equations for the
six unknowns x0, x1, y0, y1, s, and � and we are interested
in finding their limits as α − 1 → 0+.To this end, we first
eliminate x1 and y1: From Eqs. (A4) and (A5), we extract x1

and y1 as

x1 = α + (x0 − α) exp(�), (A7)

y1 = α + (y0 − α) exp(�) − �(x0 − α) exp(�). (A8)

Inserting then (A7) and (A8) into Eqs. (A1), (A2), and (A6),
our problem reduces to the following four equations for x0,y0,

s, and �:

α + (x0 − α) exp(�) = x0 exp(−s), (A9)

[α + (y0 − α) exp(�) − �(x0 − α) exp(�)]

= exp(−s)(y0 + x0s), (A10)

[1 − exp(−s)] = exp(−s)

(
y0s + x0

s2

2

)
, (A11)

(1 − α)[1 − exp(−�)] = �

[
y0 − α − �

2
(x0 − α)

]
. (A12)

A simple expression for x0 can be found from Eq. (A9) and is
given by

x0 = α[1 − exp(�)]

exp(−s) − exp(−�)
= α

1 + 1−exp(−s)
exp(�)−1

. (A13)

The last expression in Eq. (A13) will be useful when
we investigate the double limit s → 0 and � → ∞. From
Eq. (A11), we next determine y0 in terms of s and x0. We find

y0 = exp(s) − 1 − x0
s2

2

s
. (A14)

Using (A13) and (A14), we may eliminate x0 and y0 in
the remaining equations (A10) and (A12). Our problem then
consists of two equations for s and �.

We are now ready to explore the limit α − 1 → 0+.

Numerically, we note that s → 0 and � → ∞ in this limit. We
anticipate our final results by assuming the following scalings
for s and exp(−�):

s ∼ (α − 1)1/2 and exp(−�) ∼ α − 1

�2s
. (A15)

Starting with Eqs. (A13) and (A14), we first note that

x0 � α − αs exp(−�), (A16)

y0 � 1 + s2

6
, (A17)

where we have kept the leading term and its first correction.
The correction terms are needed because the expressions
x0 − α and y0 − α = y0 − 1 − (α − 1) appear in both
Eqs. (A10) and (A12).

Substituting (A16) and (A17) into Eq. (A10), we obtain

α +
(

1 + s2

6
− α

)
exp(�) + �s = 1 − s2

3
+ · · ·, (A18)

or equivalently,(
1 + s2

6
− α

)
exp(�) + �s = 1 − α − s2

3
. (A19)

Multiplying both sides by exp(−�) we find(
1 + s2

6
− α

)
+ �s exp(−�) = exp(−�)

(
1 − α − s2

3

)
.

(A20)

The term in parentheses on the left-hand side of Eq. (A20)
is proportional to 1 − α since s ∼ (α − 1)1/2. The second
term on the left-hand side is proportional to (α − 1)/�
after we eliminate exp(−�) using (A15). Similarly, we note
that the expression on the right-hand side is proportional to
(α − 1)3/2/�2 We conclude that the first and second terms on
the left-hand side represent the leading contribution and its
first correction, respectively. Neglecting the right-hand side,
we have [

1 − α + s2

6

]
= −�s exp(−�). (A21)

We next substitute (A16) and (A17) into Eq. (A12) and
obtain

(1 − α) = �

(
1 + s2

6
− α + �

2
s exp(−�)

)
, (A22)

where we have neglected terms proportional to (α − 1)
exp(−�) and �(α − 1)3/2. We divide Eq. (A22) by � and
find [

1 − α + s2

6

]
= (1 − α)

�
− �

2
s exp(−�). (A23)

The left-hand side is proportional to α − 1. The two terms on
the right-hand side are both proportional to (α − 1)/� which
is smaller in size than the left-hand side. The leading solution
for both Eqs. (A21) and (A23) is given by the same left-hand
side and we determine s as

s =
√

6(α − 1). (A24)

By subtracting Eqs. (A21) and (A23), we obtain

−�

2
s exp(−�) + (α − 1)

�
= 0, (A25)

or after using (A24), the implicit solution

α − 1 = 3
2�4 exp(−2�), (A26)

which implies that � = − 1
2 ln(α − 1) → ∞ as α − 1 → 0+.

APPENDIX B: THE LIMIT α → ∞
We consider Eqs. (A9)–(A12) for the four unknowns x0,y0,

s, and �. We need to compare exp(−s) small to quantities
that are proportional to rational powers of α. To this end, we
introduce a new parameter r = r(α) defined by

r ≡ s2x0 exp(−s). (B1)
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This definition is motivated by the structure of Eq. (A11).
Assuming

y0 = O(1), x0 = O(α1/2), and s = O( ln(α)),
(B2)

Eq. (A11) reduces to

1 = exp(−s)x0
s2

2
(B3)

and implies that

r = 2, (B4)

in first approximation. We next analyze the remaining equa-
tions assuming the scalings (B2) and

� = O(α−1/2). (B5)

We start with Eq. (A9). After simplifying one α, we find

x0 + (x0 − α)� + (x0 − α)
�2

2
+ · · · = 2s−2. (B6)

The leading order problem is O(α1/2) and gives x0 = α�.

However, we shall need the next correction term for the
analysis of Eq. (A10). Two successive iterations of Eq. (B6)
lead to the expression

x0 = α� − α�2

2
. (B7)

We consider Eq. (A10). We first expand exp(�), simplify
one α, one α�, and obtain

−α�2

2
+ · · · + y0(1 + · · · ) − �x0(1 + · · · )

+�α(� + · · · ) = 2

(
1

s
+ · · ·

)
, (B8)

where the dots refer to higher order corrections terms in either
� or s−1. We eliminate x0 by introducing (B7) into (B8) and
simplify one α�2. We then obtain an expression for y0 given
by

y0 = α

2
�2 + 2

s
. (B9)

Finally, we expand exp(�) in Eq. (A12) and use (B7), and
(B9):

(1 − α)[1 − (1 − � + �2/2 − �3/6 + · · · )]

= �

[
α

2
�2 + 2

s
− α − �

2

(
α� − α�2

2
− α

)]
,

(B10)
(� + · · · ) − α(� − �2/2 + �3/6 + · · · )

= �

[
α

2
�2 + 2

s
− α − �

2

(
α� − α�2

2
− α

)]
.

Simplifying α�2/2 in the square brackets, and then simplify-
ing one α� and one α�2/2 on both the left- and right-hand
sides, Eq. (B10) reduces to

(� + · · · ) − α(�3/6 + · · · ) = �

[
2

s
− �

2

(
− α�2

2

)]
.

(B11)

The dominant contribution in Eq. (B11) is O(α−1/2) and leads
to an expression for � given by

� =
√

6

α

(
1 − 2

s

)
. (B12)

Using (A1) and (A2), we find that x1 and y1 are small like

x1 = 2s−2 and y1 = 2s−1. (B13)

The large-α limit is best described in parametric form
using large s as a parameter. The time � is given by (B12).
Inserting (B12) into Eqs. (B7) and (B9), we determine x0 and
y0 as

x0 = α1/2

√
6

(
1 − 2

s

)
− 3

(
1 − 2

s

)
, (B14)

y0 = 3 − 4

s
. (B15)

Equation (B1) with (B4) provides another expression for x0

given by

x0 = 2

s2
exp(s). (B16)

Inserting (B16) into (B14) then leads to the following expres-
sion for α = α(s):

α = 2

3
(
1 − 2

s

) [
1

s2
exp(s)

]2

. (B17)

Finally, the period of the oscillations is given by p = s + �.
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