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In the current work, we investigate the evolutionary dynamics of a spatially structured population model
defined on a continuous lattice. In the model, individuals disperse at a constant rate v and competition is local and
delimited by the competition radius R. Due to dispersal, the neighborhood size (number of individuals competing
for reproduction) fluctuates over time. Here we address how these new variables affect the adaptive process.
While the fixation probabilities of beneficial mutations are roughly the same as in a panmitic population for
small fitness effects s, a dependence on v and R becomes more evident for large s. These quantities also strongly
influence fixation times, but their dependencies on s are well approximated by s−1/2, which means that the speed
of the genetic wave front is proportional to

√
s. Most important is the observation that the model exhibits a dual

behavior displaying a power-law growth for the fixation rate and speed of adaptation with the beneficial mutation
rate, as observed in other spatially structured population models, while simultaneously showing a nonsaturating
behavior for the speed of adaptation with the population size N , as in homogeneous populations.
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I. INTRODUCTION

A long-standing question in theoretical population biology
regards the role that deterministic evolutionary forces and
stochasticity play in adapting populations [1,2]. In recent
decades, we have seen a significant rise in studies of exper-
imental evolution, which provide long-term data sets under
controlled conditions [3,4]. These studies allowed for a correct
inference of the range of mutation rates and distribution
of fitness effects in real microorganism populations [5,6].
The results had significant consequences for the current
understanding of the adaptive process in natural populations
and highlighted the need for new theoretical approaches to
address this issue [8,33].

It is well established that an increase in adaptation results
from the spread of beneficial alleles through the whole
population, after these mutations have been able to over-
come genetic drift. In asexual populations, this process is
complicated by interference among selected mutations. This
so-called clonal interference slows down the rate of adaptation
since co-occurring mutations arising in different individuals
have to compete for fixation and all but one of them are
ultimately lost [7]. A second effect appears when the beneficial
mutations arise very frequently. Under these circumstances,
multiple mutations accumulate in the same lineage before the
first mutation fixes, and thus a multiple-mutant (a mutant
that carries two or more segregating beneficial mutations)
benefits from their combined effects [8]. In sexual populations,
interference still affects the fate of beneficial mutations, but
its effect on the rate of adaptation is weaker [17,18], because
mutations in different lineages can recombine into the same
individual (the Fisher-Muller hypothesis for the advantage of
sex [2,9]).
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In recent years, statistical physics modeling has been
used to uncover several emerging characteristics of evolving
populations such as symmetry breaking, pattern formation,
and self-organization [10–16]. In addition, there has been a
growing interest in investigating adaptation in spatially struc-
tured populations [19,20,22,23,39], such as microbial biofilms
[24,25]. Their dynamics depart from those of well-mixed
populations and they also seem to provide an appropriate
model of cancer progression [23]. Empirical observations
show that imposing spatial structure alters the rate of fixation
of advantageous mutations [21,26], even though theoretical
models predict that the probability of establishment (i.e., of
overcoming genetic drift) is independent of spatial structure
at least under certain conditions [27,28]. The reason is that,
in structured populations beneficial mutations spread at a
much slower pace [20,21,29], which enhances the chance
of competition among established mutations and, hence,
increases clonal interference.

In the current work, we propose a model for adaptive
evolution of a spatially structured population, but rather than
supposing an integer discrete lattice as in previous works
[20,21], here we assume a continuous lattice model. In this
approach the size of the neighborhood, which defines the spa-
tial range over which species interact through natural selection,
is a parameter. Dispersal of individuals over the lattice occurs
at a constant rate, such that the neighborhood composition
can change continuously. The proposed model advances the
current framework of the emerging field of landscape genetics
[30–32], since dispersal in the homogeneous environment,
like the one assumed here, can provide a useful guide for
comparison with works that aims to investigate the speed of
adaptation in landscapes with a complex structure.

II. THE MODEL

In what follows, the population will be considered to consist
of N individuals randomly distributed over a continuous square
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FIG. 1. (Color online) Illustration of the model. Left panel: N individuals are distributed on a continuous lattice of size L. Henceforth, we set
L = 1, such that N corresponds to the density of individuals per unit area. The model assumes nonoverlapping generations. In each generation,
individuals die and are replaced by offspring from neighboring individuals: All individuals within the area delimited by the competition radius
R (centered around the individual to be replaced) are candidates to produce the offspring that will occupy the position of the focal individual to
be replaced. The probability of producing offspring is proportional to each individual’s fitness. During reproduction, beneficial mutations occur
at a constant rate Ub. Right panel: After the reproduction stage, individuals diffuse over the lattice by a constant distance v but in a random
direction θ ∈ (0,2π ].

lattice of size L. In this manner, each component of the position
of every individual can take any real number constrained to the
area of the lattice, i.e., x ∈ (0,L] and y ∈ (0,L]. Henceforth,
let us set L = 1, such that N also corresponds to the density of
organisms. The model assumes nonoverlapping generations,
and individuals replicate with probability proportional to their
fitness values.

More precisely, an individual that dies may be replaced by
the offspring of any individual within a region centered on its
location and delimited by the radius of competition, R. The
probability that the focal individual is replaced by the offspring
of individual i is given by

pi = ωi
∑

j∈A(R) ωj

, (1)

where ωi denotes the fitness of individual i, and the sum is
taken over all individuals within the radius R (see Fig. 1).
Individuals give rise to mutant offspring at rate Ub. Each new
mutation increases the organism’s fitness by a factor (1 + s),
where the selective effect s is from an exponential probability
distribution with mean 1/α. The local competition, as defined,
enables us to estimate the neighborhood population size as
Nb = πR2N .

In the next stage, individuals diffuse over a fixed distance
v. Nevertheless, the orientation θ of the displacement is
completely random, θ ∈ (0,2π ], and thereby the position
vector changes as �rt+1 = �rt + �v, which means that the change
of the position components becomes �x = v cos θ and �y =
v sin θ . Periodic boundary conditions are assumed.

As the initial condition, we consider that all individuals are
mutation-free and have fitness equal to one. Their positions
are randomly chosen. During simulations, we keep track of
the evolutionary history of every mutation such that at the end
we can estimate the quantities of interest, namely, the fixation
rate (Kfix), which corresponds to the number of mutations
fixed divided by the time the population has evolved, and the
mean selective effect of mutations that have been fixed in

the population (Smed). Further, we store the trajectories of the
log-fitness in order to estimate the speed of adaptation. In order
to warrant a reasonable statistical accuracy, the simulations
proceeded until at least 50 fixation events had been recorded.

III. RESULTS AND DISCUSSIONS

We first analyze how the fixation probability of beneficial
mutations, Pfix, depends on the model parameters. For these
simulations, the population initially contains N − 1 mutation-
free individuals with fitness one and a single individual
carrying a beneficial mutation with fitness 1 + s. At this point,
additional mutations do not occur and the population evolves
to one of the absorbing states: loss of the mutation by genetic
drift or its fixation, which means that all individuals share the
mutation. We determined the dependence of Pfix on s. The
results can be compared to the well-established theoretical
prediction for an unstructured population, which states that
the fixation probability Pfix is obtained through the numerical
solution of the recursive equation

Pfix = 1 − exp[−(1 + s)Pfix], (2)

which was derived by means of the branching process
formulation [1].

The left panel of Fig. 2 displays the fixation probability Pfix

versus the selective effect s for different sets of the parameter
values. The solid line is the theoretical prediction from Eq. (2).
The prediction satisfactorily fits the simulation data whenever s

has low values, regardless of the values of the other parameters.
It is noticeable, though, that there is a slight discrepancy
between prediction and simulations that becomes more evident
when s is large and the dispersal velocity v and competition
radius R are small. This result differs from what has been
found in discrete lattice models with a fixed neighborhood
(such as the von Neumann or Moore neighborhood [20]),
where one obtains a good agreement between the theory and
the simulation data over the whole range of selective effects
s. Therefore, the present results reveal that the local structure
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FIG. 2. Left panel: Fixation probability of a beneficial mutation
as a function of its selective advantage s. The population size is
N = 50 000. The different symbols denote distinct sets of parameter
values: v = 0.002 and R = 0.005 (circles), v = 0.005 and R = 0.005
(diamonds), v = 0.01 and R = 0.005 (triangles), and v = 0.005 and
R = 0.02 (triangles point leftwards). The solid line corresponds to
the branching process approximation for Pfix as given by Eq. (2).
Right panel: Time to fixation of a beneficial mutation as a function of
its selective advantage s. The set of parameters and symbols are the
same as in the left panel.

of the population is relevant for the adaptive process in the
regimes of low dispersal and limited competition radius.

Spatial population structure was introduced to the study of
fixation by Maruyama [27]. Maruyama found that the fixation
probability remains the same as in a panmitic population under
the assumption of conservative migration. Conservative mi-
gration means that migration does not change local population
sizes. Particularly, when the competition radius R and the
dispersal parameter v are small, the conservative migration
assumption is easily violated. Under these circumstances,
individuals will frequently become isolated or interact with
only a few other individuals over extended periods of time. On
the other hand, when R is large, the number of individuals
within the area delimited by R is also large, such that
adjacent areas are continuously exchanging individuals, and
stochasticity due to fluctuations in local population size is less
intense.

It is well established that the fixation probability depends
on the effective population size, Ne, which in turn is inversely
proportional to the variance in offspring number. The de-
pendence of Pfix on Ne is explicit in Kimura’s formulation
[41]. According to Kimura, the fixation probability is Pfix =
1−exp(−2Nes/N)

1−exp(−2Nes) [41,42], which for small s becomes Pfix ≈ 2s Ne

N
.

Because our results slightly deviate from the expectation of a
homogeneous population, we may conclude that the effective
population size Ne may be smaller than the census size
N . Whenever the neighborhood size (number of individuals
which compete locally) varies, it introduces an additional
source of variation, which augments the variance in offspring
number and consequently reduces the effective population
size. This variance is expected to be larger for small R and v.
Following Kimura, it is easy to see that for Ne sufficiently large,
the discrepancy between the theoretical prediction and the
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FIG. 3. Fixation rate Kfix versus (population size x mutation
rate) N × Ub. The parameter values are population size N = 50 000,
mean selective effect 1/α = 0.05, dispersal parameter v = 0.005, and
competition radius R = 0.0025 (circles), v = 0.005 and R = 0.005
(diamonds), v = 0.005 and R = 0.02 (triangles), and v = 0.01 and
R = 0.005 (triangles left).

simulation grows with s in the range of simulated s according
to �Pfix = exp(−2s) − exp(−2sNe/N ).

Figure 2 (right panel) also shows the mean time to fixation
versus s for the same set of parameters. As expected, the time
to fixation reduces considerably as the dispersal parameter v

grows. A similar role is played by the competition radius.
For R = 0.02 and small s, the times to fixation are very
close to those expected for an unstructured population whose
dependence on s is given by Tfix = (2/s) ln N [40]. However,
the decline of the fixation time with increasing s is proportional
to s−1/2 and not to s−1 as in well-mixed populations. This
result, which is independent of v and R, is consistent with
previous results for spatially extended populations [22]. The
local adaptation rule, as implemented, produces traveling
waves at an average speed c ∼ √

s, which implies Tfix ∼ s−1/2

[22,36,37] (see Fig. 4).
Henceforth, we concentrate on the adaptation dynamics if

mutations are allowed to occur at a constant rate. Figure 3
shows the fixation rate Kfix versus the population-wide
mutation rate N × Ub for distinct sets of parameter values.
Keeping the dispersal parameter v constant, we observe that
Kfix increases with the competition radius R. Larger R also
means a larger neighborhood population size Nb, which speeds
up the spread of the mutation through the lattice, reducing the
mean time to fixation. Smaller fixation time, in turn, reduces
the likelihood of competition among established mutations
(those that have overcome genetic drift), thus attenuating the
strength of clonal interference [33]. From the same plot, we see
that the fixation rate grows as one augments v (for essentially
the same reasons). Most interestingly, at intermediate and
large mutation rates, the increase of Kfix with Ub is well
approximated by a power-law like Kfix ∼ U

1/3
b regardless of

the set of parameters. Thus, the power-law behavior seems to
be related more to the dimensionality of the lattice than the
details of the interactions among individuals [23].
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FIG. 4. (Color online) Snapshots of the distribution of individuals’ fitness across the lattice at three points in time: t = 100 (left panel),
t = 160 (middle panel), and t = 300 (right panel). The parameter values are population size N = 10 000, mutation rate Ub = 1 × 10−4,
mean selective effect 1/α = 0.05, competition radius R = 0.01, and dispersal parameter v = 0.005. Individuals’ fitness are color-coded (are
represented in grayscale for the print version) according to the scale displayed in the bars along the right side of each panel.

Spatially structured population models are particularly
interesting due to the wave-like spread of mutations. The
situation is increasingly complex when mutation rates are high
enough to enable the coexistence of established mutations,
each one undergoing an expansion of its own. When the
corresponding adaptive waves collide, a struggle for survival
and dominance ensues, which entails the annihilation of
“losing” mutations. This process turns clonal interference
even more intense, bringing about a cost of adaptation for
spatially structured populations when compared to well-mixed
populations with the same characteristics [20,26,35]. Figure 4
shows snapshots of the spatial distribution of individuals’
fitness over the entire lattice at three different times. In
generation t = 100, one can observe the rise of several
distinct beneficial mutations (coded by lighter colors) with
increased fitness in comparison to the genetic background. At
a subsequent time (t = 160), these mutants rise in frequency
and disseminate as adaptive waves. Near the left border of the
lattice, one observes the collision and interference of waves
of different adaptive effects. At t = 300 one still observes the
interfering waves, but it is pretty clear that there is a dominant
mutant type. Interference among adaptive waves effectively
reduces the speed of their propagation, which does not depend
on the selective effect of the mutant but rather on the fitness
difference in the direction of the wave at the wave front. This
means that an adaptive wave moves fastest on the wild-type
genetic background.

Figure 5 shows the speed of adaptation, which is defined
as V = limt→∞ ln ω̄

t
[34], against the beneficial mutation

rate Ub. V is directly proportional to the fixation rate Kfix

but also depends on the selective effects of the mutations
that go to fixation. Nevertheless, the pattern is qualitatively
similar to that shown in Fig. 3, and once again a power-law
regime V ∼ U

1/3
b emerges. The onset of the power-law regime

is associated with that of the clonal interference regime.
Clonal interference takes place when established mutations
can coexist and compete for fixation. The onset of the regime
can be found by determining the mutation rate at which the
expected number of established mutations exceeds 1 during the
time to fixation. Because the expected number of established
mutations Nestablished is estimated as Nestablished = NUbTfix2s

for small s, and since Tfix ∼ s−1/2, Nestablished ∼ 2s1/2NUb.
A characteristic value of fitness effects is s = 1/α, and the
onset of the clonal interference regime can be determined by

the condition 2( 1
α

)1/2NUb ∼ 1. For the same set of parameter
values considered in Fig. 5, the onset of the clonal interference
regime may occur around Ub ≈ 4 × 10−5, which fits the
simulation results very well.

The right panel of Fig. 5 shows that the log-fitness
increases linearly with time, with a negligible period of initial
transitory dynamics. Indeed, the slope of the line corresponds
to the speed of adaptation. Figure 6 shows that the speed of
adaptation (which has the same units as the mutation rate, i.e.,
generation−1) increases monotonically with the TR = v/R. In
the plot, we fixed the competition radius R and then varied
the dispersal velocity v. An interesting feature is that a fixed
R entails lower and upper bounds on the speed of adaptation,
these limits being higher as larger competition radius R are
considered. These results, together with those displayed in
Fig. 2, suggest that v and R have different effects on the
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FIG. 5. Left panel: Speed of adaptation, V = limt→∞ ln ω̄

t
, versus

mutation rate Ub. The parameter values and representation are the
same as described in the legend of Fig. 3. Right panel: Log-fitness,
log(ω̄), over time for three distinct values of mutation rate Ub. The
parameter values are population size N = 50 000, mean selective
effect 1/α = 0.05, dispersal parameter v = 0.005, and competition
radius R = 0.005. The mutation rates are: Ub = 2 × 10−6 (solid line),
Ub = 2 × 10−5 (dashed-line), Ub = 1 × 10−4 (dot-dashed line). The
lines are averages over 50 independent simulations.

032711-4



ADAPTIVE EVOLUTION ON A CONTINUOUS LATTICE MODEL PHYSICAL REVIEW E 87, 032711 (2013)

0.1 1 10
v/R 

0

0.001

0.002

0.003

0.004

V

FIG. 6. Speed of adaptation, V = limt→∞ ln ω̄

t
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v/R, where v is the dispersal parameter and R is the competition
radius. The parameter values are population size N = 50 000,
mean selective effect 1/α = 0.05, mutation rate Ub = 1 × 10−4, and
competition radius R = 0.005 (circles) and R = 0.01 (diamonds).
Data points are averages over 50 independent simulations.

adaptive evolution, with R developing a more prominent role
in the homogeneization of the system.

In Fig. 7 we plot the mean selective effect of those mutations
that get fixed, smed. For small values of v and R, the spread
of beneficial mutations across the lattice is quite slow, and
consequently clonal interference becomes intense. This leads
to an increase in smed, because only the best competitors
survive in their struggle for fixation. For the same reasons,
smed increases with the mutation rate Ub. This pattern holds
up to around Ub = 10−4. Beyond this point, the converse
happens, that is smed decreases with Ub and increases with R

and v, i.e., there exists a crossover behavior. Indeed, this point
indicates the onset of the multiple mutation regime, where a
lower fixation rate implies a greater chance of small effect
mutations to hitchhike with those of large effect in their route
to fixation.

Because the influx of beneficial mutations per generation is
given by N × Ub, another way to enhance adaptation (but also
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FIG. 7. Mean selective effect smed of fixed mutations. The
parameters are the same as described in the legend of Fig. 3.
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clonal interference), for a fixed mutation rate Ub, is to enlarge
the population size N . For intermediate to large population
sizes, V increases logarithmically with N (Fig. 8), which
contrasts with the power-law-like dependence on Ub (Fig. 7).
Previous studies of spatially extended populations in discrete
lattices [19,22] showed that the speed of adaptation saturates
when the population size attains a characteristic scale Lc, a fact
not observed in the continuous model presented in the paper.
In the former, the neighborhood size is constant regardless
of the linear size L, and as the system size is augmented,
longer times to fixation ensue, and hence enhancing the
expected number of established mutations that can coexist.
Additionally, larger system sizes mean larger regions of
contact between spreading waves, also enhancing the clonal
interference strength. On the other hand, in the continuous
model an increased N corresponds to a larger density of
individuals but not that the systems extends over larger areas.
As such, the effective neighborhood size augments and so each
individual has a larger number of local interactions, which has
a homogenizing effect. In this way, it is expected that the
continuous population model behaves similarly to well-mixed
populations, where a logarithmic growth of the speed of adap-
tation V with the population size N (also denoting density) is
observed [10,34].

IV. CONCLUSIONS

In summary, we have proposed a continuous lattice model
to investigate the adaptive evolution of a spatially structured
population. In contrast to standard discrete lattice models with
a well-defined fixed neighborhood, here the neighborhood
size (number of individuals that compete locally) varies over
time.

Our simulation results show that these new assumptions do
not alter significantly the fixation probabilities of beneficial
mutations with small fitness effects s. Furthermore, in the
range of parameter values we explored, the mean time required
for the fixation of a beneficial mutation is proportional to s−1/2,
implying that the speed of the genetic wave front is c ∼ √

s.
Our model is, thus, consistent with the weak-noise [36] rather
than the strong-noise regime c ∼ s [38].
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We obtained that both the fixation rate and the speed
of adaptation display a power-law dependence on mutation
rate Ub (i.e., proportional to U

1/3
b ), at least for intermediate

and large Ub, and irrespective of the other parameter values.
Similar results have been previously found in a discrete lattice
model [22]. When studying the mean selective effect of fixed
mutations (smed) as a function of Ub, we observe a crossover
point delimiting the clonal interference and multiple mutation
regimes.

Finally, an interesting feature of the model is that the speed
of adaptation grows logarithmically with the population size,
consistent with previous derivations for well-mixed popula-
tions [10,34]. This result contrasts with the one previously
reported for spatially extended populations in discrete lattices,
in which the speed of adaptation saturates and reaches an upper
bound with increasing population sizes [19,22]. Therefore, we

may conclude that the present spatial model on a continuous
lattice exhibits a dual character and shows aspects of both
spatially structured populations and well-mixed populations,
which can be tuned by varying the competition radius and
dispersion velocity.
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