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Anisotropic effective diffusion of torqued swimmers
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External torques affect the trajectories of swimming microorganisms. We calculate analytically the effective
three-dimensional diffusivity of a spherical active particle subject to both a constant external torque and thermal
noise. We find that the presence of a torque renders the effective diffusive behavior anisotropic. The analytical
results are compared with Brownian dynamics simulations and we obtain excellent agreement. For steady
swimmers an external torque always decreases the effective swimmer diffusivity whereas it may be enhanced for
time-reversible swimmers.
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I. INTRODUCTION

The mechanics of swimming microorganisms [1–4], such
as bacteria, plankton, spermatozoa, and synthetic microswim-
mers [5–7], is a very active research area [8–11]. Under-
standing small-scale locomotion enables us to gain insight
into factors affecting many processes vital to biology, from
human reproduction [12] to the marine life ecosystem [13].
Additionally, this understanding facilitates the development of
novel synthetic microswimmers for a variety of applications
ranging from diagnostics to drug delivery in the human
body [14–16]. The small size of swimming cells leads to
additional complications affecting the modeling of locomotory
behavior and hence challenges in the design of their synthetic
counterparts.

A critical complication is that microscopic swimmers
are susceptible to thermal fluctuations which cause the
microswimmers to lose their orientation due to this stochastic
forcing [4,5,9,17–19], and then to perform Brownian motion.
Classical work concerning Brownian motion includes isotropic
passive particles in the absence [20–22] and presence of
external fields [23–26]. Additionally, anisotropic passive
particles undergoing Brownian motion in the absence [27,28]
and presence of external fields [29] have been considered.
More recently, and based on the previous classical works,
the impact of thermal agitation on active particles (driven by
an assumed internal mechanism) has received attention. For
example, steadily swimming self-propelled bodies of simple
shape, one sphere [5,8], multiple spheres [9], or ellipsoids [8]
have been studied. An enhanced effective diffusive behavior
has been obtained [17,18] and a recent extension to unsteady
swimming showed that time-reversible motion could also lead
to enhanced effective diffusion [30].

Another important issue is that both natural and artificial
micro-swimmers, in addition to being affected by thermal
forces, are often subject to external torques that potentially may
affect the particle’s trajectory. This would be the case, for ex-
ample, for magnetotactic bacteria in the presence of an external
magnetic field [31–34]. It has been shown [32] that these cells
(like Aquaspirillum magnetotacticum) contain aligned cubic
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to octahedral magnetosomes (crystalline structures made of
magnetite). Due to this alignment one can consider each cell
as a single magnetic dipole, thus given there exists an angle be-
tween the cells’ magnetic moment m and an external magnetic
field H, these microorganisms will experience a torque Lm =
m × H trying to align them along the magnetic field. Apart
from magnetotactic bacteria, there exist in nature microorgan-
isms whose center of mass are displaced from its geometric
center (so-called bottom-heavy [19,35]) a distance h. If these
cells of mass m have an orientation vector e and they are
immersed in a gravitational field g then a torque Lg = mhe × g
will act on the cells tending to align them in the gravitational
field direction. Another example where the presence of a torque
proved to be a key factor, was in the motion of Listeria monocy-
togenes [36]. Here the inclusion of a torque in a deterministic
dynamical model enabled to recover all the experimentally
observed geometrical trajectories performed by Listeria.

Motivated by the latter scenarios and aware of the com-
plicated and even stochastic relation between torque and time
for those cases (see Lm and Lg), in this work we consider
the simplest case of having self-propelled particles in the pres-
ence of a constant torque and study its physical implications on
the effective diffusion of swimming particles. Past work has ad-
dressed this problem only in two dimensions. A self-propelled
particle moving in two dimensions subject to a constant and
a time-dependent external torque was studied analytically in
Ref. [37]. Similarly the two-dimensional effective diffusivity
of a spherical self-propelled particle in a shear flow and subject
to an external torque was studied in Ref. [38]. Anisotropic
active particles subject to a constant torque and where its
propulsion direction is different to its orientation, have also
been considered in Ref. [10]. Moreover, the case of a constant
external torque has already experimentally achieved [39]. In
order to artificially generate a constant torque on a swimmer,
Ebbens et al. [39] built doublets of Janus beads (allowed to
move in two dimensions) with catalytic patches positioned on
each bead at different angle. The patches reacted in peroxide
fuel and water, thus generating translation and rotation to
the doublets. Its dynamics was well described following a
Langevin approach.

In this paper, we consider a self-propelled particle swim-
ming in three dimensions, free to rotate in any direction,
and subject to both a constant external torque and thermal
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fluctuations, hence this paper can be seen as a generalization
of the work in Ref. [37]. Using a change of frame, we derive the
probability distribution function for the swimmer orientation
which we then exploit to calculate the effective swimmer
diffusivity. The presence of an external torque is seen to render
the effective diffusion anisotropic, a result not seen before
since active particles under an external torque were confined
to move in a plane. Our theoretical results are applied to two
specific cases. For steady swimming we see that an external
torque always leads to a decrease of the effective diffusion
constant. In contrast, for time-reversible swimming an external
torque may enhance diffusion. Finally, our analytical results
are validated using Brownian dynamics simulations.

II. PHYSICAL MODEL

Consider a spherical particle of radius a that self-propels
(swims) in a three-dimensional fluctuating environment. This
sphere orientation is described by the most general two
rotational degrees of freedom (ϕ,θ ), where ϕ and θ are,
respectively, the azimuthal and polar angle in a spherical
coordinates system. The particle is also subject to a constant
external torque, M =Mk, where k is the unit vector along the
z direction. The dynamics of this particle is described by its
translational velocity, U(t), and angular velocity, �(t), which
in the Brownian dynamics formalism follow

RU (U − Us) = f̃, (1a)

R�� − M = g̃, (1b)

where Us(t) is the (imposed) swimming velocity, and RU =
RU I, and R� = R�I are, respectively, the viscous resistances
to translation and rotation (RU = 6πηa, R� = 8πηa3 and I
is the identity tensor). In Eq. (1) f̃ and g̃ are zero-mean Brow-
nian random force and torque whose correlations are given
by 〈f̃i(t)f̃j (t ′)〉 = 2kBT RUδij δ(t − t ′) and 〈g̃i(t )̃gj (t ′)〉 =
2kBT R�δij δ(t − t ′) according to the fluctuation-dissipation
theorem (here 〈·〉 represent ensemble averaging) [40].

From Eq. (1a), we see that the equation of motion for the
sphere position, x(t), is given by

ẋ(t) = Us(t)e(t) + f(t), (2)

where we denote by e(t) the instantaneous unit vector in the
direction of swimming with origin at the center of the sphere,
Us(t) the instantaneous magnitude of the swimming velocity
along e(t), f = R−1

U f̃ and where the dot represents a time
derivative.

III. DERIVATION OF EFFECTIVE DIFFUSION

From Eq. (2), the trajectory of the active particle is given
by

x(t) =
∫ t

0
Us(t

′)e(t ′)dt ′ +
∫ t

0
f(t ′)dt ′, (3)

hence by combining Eqs. (2) and (3) we get

x· ·
x = Us(t)

∫ t

0
Us(t

′)e(t) · e(t ′)dt ′ +
∫ t

0
e(t) · f(t ′)dt ′

+
∫ t

0
Us(t

′)f(t) · e(t ′)dt ′ +
∫ t

0
f(t) · f(t ′)dt ′. (4)

By taking ensemble average of Eq. (4), one finds that

〈x· ·
x〉 = Us(t)

∫ t

0
Us(t

′)〈e(t) · e(t ′)〉dt ′

+
∫ t

0
〈f(t) · f(t ′)〉dt ′, (5)

where we used that the random force and swimming direction
are not correlated.

Anticipating on the anisotropy of the effective diffusion,
we define

x = x‖ + x⊥, e = e‖ + e⊥, f = f‖ + f⊥, (6)

where, for any vector v (=e, x or f), parallel refers to the
component along the axis where the torque is applied, v‖ =
(v · k)k, and perpendicular, v⊥ = v − v‖, refers to the other
two. Hence combining Eq. (5) with Eq. (6) we obtain

〈xβ · ẋβ〉 = Us(t)
∫ t

0
Us(t

′)〈eβ(t) · eβ(t ′)〉dt ′

+
∫ t

0
〈fβ(t) · fβ(t ′)〉dt ′. (7)

where β = ‖ or ⊥. In three dimensions, we expect a long-
time effective diffusive behavior as 〈x‖ · x‖〉 = 2D‖t and
〈x⊥ · x⊥〉 = 4D⊥t in the limit t → ∞, thus the effective
diffusion constants can be obtained as

D‖ = lim
t→∞〈x‖ · ẋ‖〉, D⊥ = 1

2 lim
t→∞〈x⊥ · ẋ⊥〉. (8)

The fluctuation-dissipation theorem expressed along both di-
rections is 〈f‖(t) · f‖(t ′)〉 = 2DBδ(t − t ′) and 〈f⊥(t) · f⊥(t ′)〉 =
4DBδ(t − t ′), where DB is the Brownian diffusion constant,
DB = kBT /RU . Plugging these results into Eq. (7) and using
the definitions in Eq. (8) we finally obtain the effective
long-time diffusion constants parallel (D‖) and perpendicular
(D⊥) to the torque direction as

D‖ = DB + lim
t→∞

∫ t

0
Us(t)Us(t

′)〈e‖(t) · e‖(t ′)〉dt ′, (9)

D⊥ = DB + 1

2
lim
t→∞

∫ t

0
Us(t)Us(t

′)〈e⊥(t) · e⊥(t ′)〉dt ′. (10)

IV. ORIENTATION PROBABILITY DISTRIBUTION
FUNCTION

In order to evaluate D‖ and D⊥ we need to determine the
correlations in swimmer orientations. From Eq. (1b), we get

�(t) = 	k + g(t), (11)

where we have defined 	 = M/R� and g = R−1
� g̃.

Equation (11) provides the physical meaning of adding an
external torque to an active particle, that is, the constant
external torque generates that the particle rotates with a
constant angular velocity. The term g(t) in Eq. (11) represents
thermal forces. Equation (11) may also be a connection
for a possible experiment. For example, Ebbens et. al [39]
made doublets of Janus particles with catalytic patches whose
chemical reaction generated a constant angular velocity.
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From vectorial mechanics [41], it can be shown that the
dynamics of e(t) satisfies ė(t) = �(t)×e(t). Thus explicitly
substituting the value of �(t) in the latter equation we get

ė(t) = [	k + g(t)]×e(t). (12)

The probability distribution function (pdf), P (θ,ϕ,t), govern-
ing the swimmer orientation, e(t), in the absence of torque fol-
lows a diffusion equation, ∂P (θ,ϕ,t)/∂t = D�∇2

θ,ϕP (θ,ϕ,t),
where ∇2

θ,ϕ is the angular diffusion operator and D� is the
rotational diffusion coefficient (D� = kBT /R�).

In the presence of an external torque, a diffusion-type equa-
tion for P (θ,ϕ,t) should be formulated and solved including
a rotational transport term. Alternatively, we introduce the
rotational transformation R(t), that is,

v(t) = R(t)v′(t), R(t) =

⎡
⎢⎣

cos 	t − sin 	t 0

sin 	t cos 	t 0

0 0 1

⎤
⎥⎦ , (13)

where v (=e or g), and the prime represents a vector in the
rotated frame. Applying this transformation to Eq. (12) gives

ė′(t) = g′(t)×e′(t). (14)

Thus in the prime coordinate system the pdf is already known
and given by a sum of spherical harmonics [42]. Using the
transformation θ ′ = θ, ϕ′ = ϕ − 	t into the pdf expressed
in the rotated frame we obtain the pdf in the laboratory
frame as

P =
∞∑
l=0

l∑
m=−l

e−D�l(l+1)t Y m∗
l (θ0,ϕ0) Ym

l (θ,ϕ) e−im	t , (15)

where Ym
l are the spherical harmonics, Ym∗

l their complex
conjugates, and θ0 and ϕ0 the angular coordinates of e(t = 0) ≡
e0. With the knowledge of the pdf, the correlation of swimmer
orientation may then be evaluated. It is defined as [42]

〈eβ(t) · eβ(0)〉 =
∫

d2e0

∫
d2e eβ(t) · eβ(0) G(e,t ; e0,0), (16)

where β = ‖ or ⊥, and G(e,t ; e0,0) is the joint probability dis-
tribution for an orientation e0 at t = 0 and e at time t . This joint
probability may be expressed as G(e,t ; e0,0) = P (θ,ϕ,t)Peq,

where Peq = limt→∞ P (θ,ϕ,t) = 1/4π. By solving directly
Eq. (16) for both components, the orientation correlations are
finally obtained as

〈e‖(t) · e‖(0)〉 = e−2D�t

3
, (17)

〈e⊥(t) · e⊥(0)〉 = e−2D�t

[
2

3
cos 	t

]
. (18)

The difference in correlations in the two directions as seen
in Eqs. (17) and (18) is at the origin of the anisotropy in the
effective diffusion. Whereas the swimmer orientation along
the torque direction follows a Brownian exponential loss,
the orientation in the plane perpendicular to it undergoes
an exponential loss of direction modulated by a harmonic
function. If we set 	 = 0 in Eq. (17), we recover by adding to

Eqs. (17) and (18) the classical Brownian exponential decay,
〈e(t) · e(0)〉 = e−2D�t [40].

V. ANISOTROPIC DIFFUSION

A. General results

Substituting Eqs. (17) and (18) into Eqs. (9) and (10)
we finally obtain the general formula for the parallel and
perpendicular effective long time diffusivities as

D‖ = DB + 1

3
lim
t→∞

∫ t

0
Us(t)Us(t

′)e−2D�(t−t ′)dt ′, (19)

and

D⊥ = DB + 1

3
lim
t→∞

∫ t

0
[Us(t)Us(t

′)e−2D�(t−t ′)

× cos 	(t − t ′)]dt ′. (20)

We see that the presence of a torque has no influence on the
diffusion coefficient along its direction (D‖ is independent of
	). From Eqs. (19) and (20), the total effective diffusion D

can then be obtained as D = (D‖ + 2D⊥)/3.

B. Steady swimming

Let us now evaluate D‖ and D⊥ for two specific swimming
kinematics. The simplest case is that of a self-propelled particle
swimming at constant speed, Us(t) = U , along e(t). Solving
Eqs. (19) and (20) leads to

D‖ = DB + U 2

6D�

, (21)

D⊥ = DB + U 2

6D�(1 + α2/4)
, (22)

where the dimensionless parameter α = 2	τ measures the
typical ratio between the thermal time scale for loss of
orientation (τ = 1/2D�) and the rotation time scale from
the external torque (	−1). Clearly we always have the
anisotropy D⊥ < D‖. In the large-torque limit, α � 1, we
see that D⊥ → DB ; in that case, swimming excursions in
the plane perpendicular to the applied torque are inhibited
so the enhanced diffusion from swimming only acts along one
direction, that of the applied torque. Note that the total effective
diffusion constant, D, is

D = DB + U 2

6D�

[
1 + α2/12

1 + α2/4

]
, (23)

and setting α = 0 in Eq. (23) reduces to the classic formula
for the diffusivity of a self-propelled particle [17,18]. Note that
using a similar mathematical framework we can evaluate the
off-diagonal terms of the mean-square displacement dyadic,
and obtain here 〈xy〉 = 〈xz〉 = 〈yz〉 = 0.

In order to validate our theoretical results, we compare
them with Brownian dynamics simulations [43]. To do so, we
consider a spherical swimmer of radius a = 1 μm, immersed
in water at T = 300 K, and simulate two different scenarios,
with results illustrated in Fig. 1: (a) steady swimming at speed
Us(t) = U = 5 μm/s with no torque; (b) steady swimming
at same speed but under an external torque M =Mk with
	 = M/R� = 1 s−1 (equivalent to α ≈ 6). Note that the
above parameters were chosen arbitrarily. The results shown in
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FIG. 1. (Color online) Brownian dynamics simulations showing
the superposition of five realizations during 100 s of a spherical swim-
mer (radius a = 1 μm) in water at 300 K for two different scenarios:
(a) steady swimming at speed Us = 5 μm/s; (b) steady swimming
plus external torque corresponding to α ≈ 6. A comparison between
(a) and (b) visually shows that the overall diffusivity decreases for
a torqued particle, and becomes anisotropic (diffusion mainly taking
place along the z direction).

Fig. 1 reproduce the superposition of five realizations for both
cases during 100 s. When comparing Fig. 1(a) to Fig. 1(b)
we see that the presence of an external torque leads to a
diffusive motion taking place mainly along the z direction,
confirming our theoretical prediction of increased anisotropy
with an increase of the external torque. The overall diffusion
constant is also observed to go down, in agreement with
our analytical results. In Fig. 2 we display the mean square
displacement along the torque direction, 〈x‖ · x‖〉, and in the
plane perpendicular to it, 〈x⊥ · x⊥〉. The simulations confirm

x · x

x⊥ · x⊥

t

FIG. 2. (Color online) Brownian dynamics simulations for 500
realizations during a period of 200 s (circles) showing the mean square
displacement along the torque direction, 〈x‖ · x‖〉, and perpendicular
to it, 〈x⊥ · x⊥〉, for steady swimming with same parameters as in Fig. 1
and with α ≈ 6. The theoretical results are shown as straight lines.
This figure clearly shows the generated anisotropy.

the anisotropy, D⊥ < D‖, and agree quantitatively with the
theoretical predictions from Eqs. (21) and (22) shown as
straight lines in Fig. 2.

C. Reciprocal swimming

The next case of interest is an active particle displaying
a time-reversible (so-called reciprocal [44]) motion of the
form Us(t) = U cos ωt. Its effective diffusion constants in both
directions and averaged over a period are then

D‖ = DB + U2

12D�

1

1 + γ 2
, (24)

D⊥ = DB + U2

12D�

[
2

4 + (α − 2γ )2
+ 2

4 + (α + 2γ )2

]
,

(25)

where the dimensionless parameter γ = ωτ quantifies the ratio
between the thermal time scale and the time scale of the
periodic swimming. Here again, Eqs. (24) and (25) confirm the
anisotropic diffusion induced by the external torque. Isotropy
is recovered by setting α = 0, in which case the results agree
with Ref. [30]. The total effective diffusion constant, D, is in
this case

D = DB + U2

36D�

[
4

4 + (α − 2γ )2
+ 1

(1 + γ 2)

+ 4

4 + (α + 2γ )2

]
· (26)

Can the presence of a torque ever enhance diffusion?
When γ < 1/

√
3, the maximum of the bracket term [. . .] in

Eq. (26) occurs at α = 0 (no torque); in this case, the presence
of any finite torque always decreases the effective diffusion
constant. In contrast, when γ > 1/

√
3, the maximum of the

bracket term is obtained at α = 2
√

2γ
√

1 + γ 2 − (1 + γ 2),
which corresponds to a finite torque; in this case, a range of
torques exists (from α = 0 up to α = 2

√
3γ 2 − 1) leading to

an enhancement of the diffusion constant compared to the
no-torque case. Physically, this enhancement comes from the
rotation from the applied torque which allows the trajectory
to deviate from the reciprocal small-amplitude motion and
increase its effective swimming amplitude in the x⊥ direction.
This enhancement can be visually observed by using Brownian
dynamics simulations. Once more, we consider a spherical
swimmer (radius a = 1 μm, in water at T = 300 K) and
simulate: (a) reciprocal swimming, Us(t) = U cos ωt , with
U = 5 μm/s, ω = 1 rad/s (equivalent to γ ≈ 3) [Fig. 3(a)];
(b) reciprocal swimming with the same parameters but under
an external torque M =Mk with α ≈ 6 [Fig. 3(b)]. The results
shown in Fig. 3 reproduce the superposition of five realizations
for each case during 100 s. The comparison of Figs. 3(a) and
3(b) visually shows that for a reciprocal motion, diffusion
is enhanced by the presence of the external torque hence in
agreement with our theoretical predictions.

Finally to make our comparison quantitative we plot in
Fig. 4 the mean-square displacement of 500 realizations during
a period of 200 s (circles) together with our theoretical results
(shown as straight lines) for the same all four scenarios
and with the same parameters described in Figs. 1 and 3.
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FIG. 3. (Color online) Brownian dynamics simulations showing
the superposition of five realizations during 100 s of a spherical
swimmer (radius a, 1 μm) in water at 300 K for two scenarios:
(a) pure reciprocal swimming with amplitude U = 5 μm/s and
frequency ω = 1 rad/s, corresponding to γ ≈ 3; (b) reciprocal
swimming plus external torque corresponding to α ≈ 6. The figure
visually shows that the inclusion of an external torque for the
reciprocal swimming case may enhance its effective diffusivity.

Figure 4 shows basically two time regimes, that is, t � 10 s
where the Brownian simulations show that the particle has
been just released from the origin, hence its mean-square
displacement is small, and t > 10 s where the theoretical and
numerical results start to converge, here the linear behavior
of the mean-square displacement with time for all scenarios
can be observed. We can also see an oscillatory behavior
for t � 10 s (short time scales) in the case of reciprocal
swimming, which is due to the fact that its mean-square
displacement contains harmonic functions multiplied by an
exponentially time decaying term namely, exp(−t/τ ). For

10
−1

10
0

10
1

10
2

10
310

−1

10
0

10
1

10
2

10
3

10
4

10
5

x
·x

t

steady swimming

steady swimming + torque

reciprocal swimming + torque
reciprocal swimming 

FIG. 4. (Color online) Brownian dynamics simulations for 500
realizations during a period of 200 s (circles) showing a quantitative
comparison among the total effective diffusion for the four scenarios
and same parameters described in Figs. 1 and 3. The theoretical results
are shown as straight lines.

longer time scales, this decaying term tends to zero, thus
disappearing the oscillatory behavior.

Figure 4 also shows an excellent quantitative agreement
between the computational results and our analytical results.
Additionally, one can easily see from this figure that an external
torque may enhance the total effective diffusion of an active
particle performing reciprocal motion (compared to the no-
torque case). As predicted by theory, this enhancement occurs
as long as γ > 1/

√
3. Note that in this plot γ ≈ 3, thus in

agreement with the theoretical results. On the other hand, we
observe that an external torque decreases the total effective
diffusivity for steady swimming as it is also predicted by our
developed theory.

VI. CONCLUDING REMARKS

In this paper we characterized theoretically the effective
three-dimensional diffusivity of a spherical active particle,
free to rotate in any direction, and subject to both a constant
external torque and thermal agitation. Thus this paper spatially
generalized the work in Ref. [37]. By means of a rotational
transformation to the equation governing the dynamics of the
swimmer orientation, we obtained analytically the swimmer
orientation probability distribution function. This allowed us
to find by hand the swimmer orientation correlations, hence
an analytical prediction, Eqs. (19) and (20), for the effective
diffusivity was derived. These general equations revealed
that the presence of an external torque leads in general to
an anisotropic diffusive motion, and they were applied for
two types of swimming (steady and reciprocal swimming).
For steady swimmers the external torque always decreases
the effective swimmer diffusivity whereas for time-reversible
swimmers it may actually be enhanced. To validate our
theoretical results we also performed Brownian dynamics
simulations that showed excellent agreement between theory
and numerical experiments. We conclude mentioning that
the inclusion in our model of a simple constant external
torque, generated two important physical effects namely,
anisotropy and reduction or enhancement (depending on the
type of motion) on the swimmer diffusion. These effects
surely should be taken into account or even exploited when
designing novel microswimming devices. As it has already
been shown, the reciprocal motion performed by some bacteria
in nature and thought to be useless [44], has a reason, that
is, the enhancement of the bacteria diffusivity [30], now
we have also shown that another possible reason may be
that the combination of reciprocal motion with an external
torque (a very typical scenario in the microworld) may
also enhance the swimmers diffusivity, thus another possible
strategy for active particles to sample more space at low
energetic cost.
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