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Linear response theory for two neural populations applied to gamma oscillation generation
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Linear response theory (LRT) can be used to compute spectral properties of single and populations of stochastic
leaky integrate-and-fire neurons. The effects of inputs, both external and from delayed feedback, can be modeled
within that theory when the neural function is sufficiently linearized by noise. It has been used to explain
experiments where gamma oscillations are induced by spatially correlated stochastic inputs to a network with
delayed inhibitory feedback. Here we expand this theory to include two distinct population types. We first show
how to deal with homogeneous networks where both types of neurons have identical intrinsic properties. We
further tackle the asymmetric case, where noise or bias differ. We also analyze the case where the membrane time
constants differ, based on experimental evidence, which requires delicate alterations of the theory. We directly
apply the theory to networks of ON and OFF cells in the electrosensory system, which together provide global
delayed negative feedback to all cells; however, ON and OFF cells receive external inputs of opposite polarities.
Theoretical results are in excellent agreement with numerical simulations of the two population network. In
contrast to the case of a single ON cell population with feedback, the more realistic presence of both cell types
can significantly reduce the propensity of the delayed feedback network to oscillate for spatially correlated
inputs. Our results are further linked to recent predictions from deterministic neural field theory. Among other
findings, our work suggests that the observed gamma oscillations could be explained only if the ON and OFF
cell feedback pathways are anatomically segregated. Thus our two population LRT can make specific predictions
about network topography in specific systems.
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I. INTRODUCTION

Collective oscillations are common in neural assemblies
[1,2]. Mechanisms by which neurons are able to fire rhythmi-
cally in more or less synchronized patterns have been explored
at the cellular and network levels [3]. A general question is how
interactions, both recurrent and with external inputs, determine
the properties of coherent oscillations. A well-known type
of neural rhythm is gamma oscillations, which occur in
the frequency band 30–90 Hz; their exact functions remain
elusive [4]. The nonlinear character of nerve cells and the
noisy environments in which they evolve often complicate the
analysis of population dynamics. However, intrinsic noise may
linearize the single-neuron behavior with respect to external
inputs and allow useful approximations [5]. Here, such an
approach—backed by numerical simulations—will be taken
to study gamma oscillations in neural nets involved in the
electrosense of weakly electric fish.

Weakly electric fish—and other creatures as well—must
be able to ascertain the nature of a given stimulus, be it a
prey, a predator, a conspecific, or a pattern in their habitat, so
that their behavioral response is appropriate. Stimuli differ by
their physical properties and dimensions and, as a corollary,
by the topology and timing of the signals they send to
the electrosensory lateral lobe line (ELL), the first-order
processing center of electrosensory stimuli (see [6] for a
review). The pyramidal cells of the ELL receive inputs
from cutaneous electroreceptors, which sense the amplitude
of the electric field surrounding their body. Thus, a prey
will excite a small area of their body (local stimulus),
whereas a signal from a conspecific will stimulate a large
proportion of the electroreceptors (global signal). A global

signal may be either spatially correlated (e.g., communication
signals from conspecifics), uncorrelated (e.g., large irregular
rocks), or anything in between. We assume that a spa-
tially correlated global signal stimulates concurrently all the
electroreceptors.

A first step in the sensory discrimination process may be
achieved through shifts of the dominant oscillation frequency
of the sensory network. By dominant oscillation frequency, we
have in mind the frequency at which the power spectrum of the
cells’ spike train reaches a local maximum. It is established
that the ELL pyramidal cells will enter an oscillatory state
when submitted to globally extended random signals [7–9].
These oscillations are in the gamma range with a dominant
frequency ≈50 Hz and seem to involve a synchronous activity
of the cells [7]. Less clear is the effect of a local or a spatially
uncorrelated global stimulus, both seemingly eliciting weak
low-frequency oscillations (≈15–20 Hz), with the spikes being
largely uncorrelated [7–9].

The ELL cells are subdivided into two classes depending
on their response to excitatory inputs: ON cells (or E cells)
increase their firing rate, whereas OFF cells (I cells) decrease
their firing rate with respect to their baseline activities. Almost
every OFF cell is adjacent to an ON cell [10] and both share
a common receptive field center. The network studied in this
paper may be viewed as a one-dimensional layer of ON and
OFF cell pairs receiving inputs from the skin. The ELL’s
pyramidal cells are mainly connected through a feedback loop,
not by direct synaptic connections [11]. Delayed feedback is a
potent mechanism by which network activity may oscillate. In
the case of ELL pyramidal cells, a delayed inhibitory feedback
is responsible for the onset of oscillations [7].
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Networks of leaky integrate-and-fire (LIF) neurons of the
ON type—connected via delayed inhibitory feedback and
receiving external Gaussian noise—were used to model the
ELL circuitry [7,9,12,13]. The neural population responsible
for the feedback signal together with the excitatory ON cells,
form an excitatory-inhibitory network. These networks are
fertile breeding grounds for gamma oscillations [4]. Using
linear response theory (LRT), Refs. [9,12] and particularly
[13], have explained that gamma oscillations arise in the ELL
due to the interplay between a correlated input and the delayed
feedback. However, OFF cells were completely ignored in
these works. Henceforth, this type of network, where OFF
cells are absent, will be called ON-only networks. On the
other hand, neural field studies of ON and OFF cell (ON/OFF)
networks [14,15] showed that the latter are less likely to
exhibit rhythmic activity compared to ON-only networks
under constant, spatially localized inputs.

In this paper, we derive a LRT for the ON/OFF network
and use it to analyze the impact of the OFF cells on the
network oscillations. In the symmetric case, for which the
properties of the ON and OFF cells are identical except for
the way they receive inputs, we find that the OFF cells impede
the oscillations found in the ON-only network. This extends
some conclusions of [14,15] to stochastic stimuli. We then try
to break that symmetry based on physiological knowledge,
to see if we can recover the gamma oscillations. It appears
that oscillations can be brought back, but not at an intensity
comparable to that of either the ON-only network [13] or the
experimental results of [9]. This suggests that the ON and OFF
cells belong to segregated pathways, i.e., ON (OFF) cells are
connected dominantly through feedback to ON (OFF) cells.

The paper is structured as follows: First, we present
the model in detail. Then, we use the LRT to write the
perturbed spike trains in terms of the unperturbed activity
plus a small quantity. This allows us to obtain approximate
analytical expressions for the spectral quantities. For this, we
based ourselves heavily on [13]. The analytical results must
then be adapted to Gaussian white noise inputs of unlimited
bandwidth, which will be the external stimuli used for most
of this paper to allow comparison with [13]. We then present
the results of numerical simulations together with the LRT
for the various cases mentioned in the preceding paragraph. For
the symmetric case, we compare the behavior of the ON-only
and the ON/OFF networks. The symmetry between the ON
and OFF cells is first broken by changing the bias and the
intensity of the internal noise of OFF cells. Also we change
the time scale over which the OFF cells evolve with respect to
the ON cells, together with an increase of the OFF cells’ bias.
Beyond the context of electric fish, our results illustrate how
LRT can be applied to nonhomogeneous neural nets.

II. MODEL

We consider a network of 2N LIF neurons distributed
into N ON/OFF pairs, as illustrated in Fig. 1. The relevant
dynamical variables are the subthreshold membrane potentials
and the quantities of interest are the spike trains for each
neuron. The LIF scheme prescribes that a spike occurs
whenever a given threshold VT is reached by a membrane
potential V . After a refractory time, the membrane potential

FIG. 1. Schema of the network. Both ON and OFF cells receive
external stimuli. Whenever the firing threshold is reached, a spike is
fired. A remote kernel sums the spike trains and feeds them back to
the network with a delay in an all-to-all fashion.

is reset to a potential VR . The dynamics of the subthreshold
potentials are of the form

CmV̇ = −gL(V − EL) + noise,

with Cm the membrane capacitance, gL the leak conductance,
and EL the reversal potential. In what follows, we will
use nondimensionalized versions of the equation above [13].
Namely, we define the bias current μ and the potential v:

μ ≡ EL − VR

VT − VR

, v ≡ V − VR

VT − VR

. (1)

With this rescaling, the threshold becomes vT = 1, the reset
vR = 0, and time is measured in units of the membrane
constant Cm/gL, which is supposed to be the same for ON
and OFF cells for now. The refractory time will be denoted by
τR .

In the absence of any inputs and feedback, the subthreshold
spontaneous activities of the ON and OFF neurons are given
by

v̇ON
i (t) = −vON

i (t) + μ + ξON
i (t),

(2)
v̇OFF

i (t) = −vOFF
i (t) + μ + ξOFF

i (t) + V0,

where ξON
i (t) and ξOFF

i (t) are internal noises, and V0 is the
offset of the OFF neurons’ activity with respect to the ON
neurons [14]. It accounts for the difference in baseline activities
of ON and OFF cells. According to Krahe et al. [16], this
difference is small for baseline rates measured in vivo, without
external stimulation and with the feedback intact but not
causing oscillations. The internal noises are white, zero mean,
and Gaussian with intensity D, i.e.,〈

ξk
i (t)

〉 = 0 and
〈
ξk
i (t)ξ l

j (t ′)
〉 = 2Dδij δklδ(t − t ′),

for i,j = 1, . . . ,N and k,l = ON,OFF. Note that the intrinsic
noise intensities for ON and OFF cells are identical for the
moment, but they will be different in Sec. V B. The brackets
〈· · ·〉 will always denote ensemble averages.

Sensory pathways to the OFF neurons comprise an in-
terneuron population [11]. It has the approximate effect of
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inverting any input coming from the electrosensory afferents.
Here, we consider a stochastic input of the form

Ii(t) = m + ζi(t)

with

ζi(t) ≡ √
cηc(t) + √

1 − cηi(t),

where ηc is the correlated external noise since it is the same
for all neurons, ηi is the uncorrelated external noise, and m =
〈Ii(t)〉 is the mean stochastic input; all external noises obey the
same statistics. For weakly electric fish the stimuli are zero-
mean amplitude modulations of their own electric discharge,
so we set m = 0. It is assumed that these modulations are
linearly coded by neural populations innervating the ELL cells
[17]. All noise processes are uncorrelated with each other, i.e.,
〈ηcηi〉 = 〈ηiηj 〉 = 0 for all i,j (i �= j ) at all times. Note that
ηi is the same for each cell in an ON/OFF pair. The correlation
parameter c ∈ [0,1] determines the “weight” of each of the
external noise components: The input is fully correlated (fully
uncorrelated) if c = 1 ( c = 0). The prefactors

√
c and

√
1 − c

are chosen so that the total input power does not depend on c.
ON and OFF pyramidal cells of the ELL also receive feed-

back signals from a distant neural population. For simplicity,
the signal processing performed by these neurons is a mere
average of all the spike trains received from the network, taking
into account the axonal propagation time and the filtering due
to synaptic transport. The feedback is inhibitory and diffuse,
i.e., each cell of the network receives at time t the following
feedback input:

f (t) = G

2N

∫ ∞

τD

dτ

τS

(
τ − τD

τS

)
exp

(
−τ − τD

τS

)

×
N∑

i=1

[
yON

i (t − τ ) + yOFF
i (t − τ )

]
, (3)

where G < 0 is the feedback strength [rendering f (t) a
negative quantity], τS is the decay time, and τD is the delay.
The spike trains yON

i (t) and yOFF
i (t) are given by

yε
i (t) =

∑
tk

δ(t − tk), (4)

where the tk’s are the spike times of neuron i (i = 1, . . . ,N)
of class ε (ε = ON,OFF). Thus, the feedback is G times
the convolution of a delayed α function [	(·) = Heaviside
function]

α(τ ) = 1

τS

(
τ − τD

τS

)
exp

(
−τ − τD

τS

)
	 (τ − τD)

with the population average of the spike trains. The full model
is then

v̇ON
i = −vON

i + μ + ξON
i + ζi + f,

v̇OFF
i = −vOFF

i + μ + V0 + ξOFF
i − ζi + f, (5)

v(t−k ) = vT ⇒ tspike = tk and v(t+k + τR) = vR,

where we have included the LIF scheme requirements and
omitted the dependence of all functions on time for clarity.
Note the minus sign in front of ζi for the OFF cell equation. A
feedforward version (G = 0) of this model with ON cells only
has been studied in [18,19], with particular emphasis on the

enhancement of pairwise correlations of neurons following an
increase of their firing rates.

In this paper, we will mainly be concerned with single-
neuron power spectra, cross spectra, and population spectra.
The ON and OFF subnetworks are assumed to be separately
homogeneous. Therefore, the power spectra are the same for
all neurons of the same type and the cross spectra are identical
for each neuron pair of the same type. The power spectrum of
any neuron is given by

S(ω) = lim
T →∞

〈|ỹ(ω)|2〉
T

, (6)

with ỹ(ω) = ∫ T

0 dt y(t)eiωt (we have dropped the ON and OFF
superscripts for clarity). The cross spectrum of two neurons is
given by

Scross = lim
T →∞

〈ỹ∗
i (ω)ỹj (ω)〉

T
, (7)

where both neurons belong to the same class. The average
population activity for either the ON or the OFF subnetwork
is

Y ON(OFF)(t) = 1

N

N∑
i=1

y
ON(OFF)
i (t),

and the population spectra are just the power spectra of these
mean activities. Using the homogeneity of the network, the
population spectra of either ON or OFF cells can be expressed
in terms of Scross and S [13], namely,

Spop(ω) = Scross(ω) + S(ω) − Scross(ω)

N
. (8)

III. LINEAR RESPONSE THEORY

Approximate results for the spectral quantities can be
obtained using LRT. We write the time evolution of the
subthreshold membrane potentials as

v̇ON
i = −vON

i + μ + 〈f 〉 + ξON
i +ζi + (f − 〈f 〉),

v̇OFF
i = −vOFF

i + μ + V0 + 〈f 〉 + ξOFF
i −ζi + (f − 〈f 〉).

The underlined terms ±ζi + (f − 〈f 〉) are taken as pertur-
bations of the system. The average value of the feedback is
〈f 〉 = G(rON + rOFF)/2, with rON(OFF) = 〈yON(OFF)

i 〉 being the
time-independent mean firing rate of an ON (OFF) neuron [13].
It means that the unperturbed cells have effective biases given
by

μON = μ + G(rON + rOFF)/2,
(9)

μOFF = μ + V0 + G(rON + rOFF)/2.

The unperturbed system comprises four relevant parameters,
namely, the internal noise intensity D, the effective bias
currents μON and μOFF, and the refractory period τR . For
μON < vT and μOFF < vT , the neurons are in a noise-activated
regime [20]. In this case, which will be considered in this
paper (except otherwise mentioned), the neurons do not fire at
vanishing noise (rON = rOFF = 0) so that the resting potentials
are v̄ON = μ and v̄OFF = μ + V0. Therefore, increasing (de-
creasing) V0 will favor (hinder) the OFF cells’ firing once the
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noise is set back to a nonzero value. Given the importance of
noise in this regime for the neuron firing, it is worth mentioning
that the system actually exhibits coherence resonance for some
sets of values of the parameters [20]. The cases μON > vT and
μOFF > vT are called deterministic firing regimes because the
neurons fire in the absence of noise.

A. Unperturbed network

The deviation of the feedback from its mean (f − 〈f 〉)
and the input ζi are taken as perturbations of the unperturbed
system. When the variances of both these quantities are small,
one may assume that the firing rates of the unperturbed system
are good approximations to those of the perturbed system [13].
Concretely, this implies that the rates appearing in Eq. (9) may
be replaced by the rates obtained from the treatment to follow.
A “free” LIF neuron (in open loop and without external input)
has a firing rate given by [20]

ν(μ,D) =
(
τR + √

π

∫ (μ−vR)/
√

2D

(μ−vT )/
√

2D

dx ex2
erfc(x)

)−1

. (10)

To get the firing rates of the unperturbed cells, we must replace
μ in the above equation by the effective biases of Eq. (9). It
results that the rates rON and rOFF must be determined self-
consistently from the coupled equations:

rON = ν [μ + G(rON + rOFF)/2,D] ,
(11)

rOFF = ν [μ + V0 + G(rOFF + rOFF] /2,D).

Analytical expressions for the unperturbed power spectra
(S(0)

ON and S
(0)
OFF) and the susceptibilities [A(ω,μON,D) and

A(ω,μOFF,D)] are known [13,21]:

S(0)
ε = 2πr2

ε δ(ω) + rε

∣∣Diω

(
με−vT√

D

)∣∣2 − e2
ε

∣∣Diω

(
με−vR√

D

)∣∣2∣∣Diω

(
με−vT√

D

)− e
ε eiωτRDiω

(
με−vR√

D

)∣∣2 ,

(12)

A(ω,με,D) =
(

iωrε√
D(iω − 1)

)

×
[
Diω−1

(
με−vT√

D

)− e
εDiω−1
(

με−vR√
D

)
Diω

(
με−vT√

D

)− e
ε eiωτRDiω

(
με−vR√

D

)
]

,

(13)

with 
ε = [v2
R − v2

T + 2με(vT − vR)]/4D and ε ∈ {ON,OFF}.
The functions erfc(x) and Da(x) are the complementary error
function and the parabolic cylinder functions, respectively.

B. Response to the perturbation

A LRT is possible if both the amplitude of the external
stimulus and the variance of the feedback are not too
large. Then, provided that the internal noise is large, the
following ansatz can be made for the perturbed spike trains
[12,13,22–24]:

yε
i (t) = y

(0)
ε,i (t) + [A(με,D) � (εζi + f − 〈f 〉)] (t). (14)

Here and in the following, ε as a subscript or superscript will
stand for ON or OFF; as a multiplicative constant, it stands
for + in an expression for an ON variable or − for an OFF

variable. The � denotes the convolution operation and the y
(0)
ε,i ’s

are the unperturbed spike trains. Taking the Fourier transform
on each side, we get for ω �= 0 [25],

ỹε
i (ω) = ỹ

(0)
ε,i (ω) + A(ω,με,D)

×
[
εζ̃i(ω) + F (ω)

2N

(
N∑

k=1

ỹON
k (ω) +

N∑
k=1

ỹOFF
k (ω)

)]

(15)

with

F (ω) = Gα(ω) = G
eiωτD

(1 − iωτS)2
(16)

as the Fourier transform of the delayed α function times the
feedback strength G.

C. Calculation of spectral quantities

To compute the relevant spectral quantities, we first form
the subsidiary sums:

Ỹ (0)
ε = 1

N

N∑
i=1

ỹ
(0)
ε,i , Ỹε = 1

N

N∑
i=1

ỹε
i , ζ̃ = 1

N

N∑
i=1

ζ̃i . (17)

Summing Eq. (15) over i from 1 to N and dividing by N , we
get, writing A(ω,με,D) ≡ Aε ,

Ỹε = Ỹ (0)
ε + εAεζ̃ + AεF

2
(ỸON + ỸOFF).

These two equations (one for each value of ε) can be used
to get an expression for the sum ỸON + ỸOFF intervening in
Eq. (15). We now have workable expressions for the Fourier
transform of the spike trains:

ỹε
i = ỹ

(0)
ε,i + Aε

[
εζ̃i + γ

(
Ỹ

(0)
ON + Ỹ

(0)
OFF

)+ γ (AON − AOFF)ζ̃
]

(18)

with

γ = F/2

1 − (AON+AOFF)
2 F

. (19)

From Eq. (18), it is seen that the perturbed spike train is made
of the response of the single neuron to both its external input
and to the network’s overall activity processed by the feedback
kernel.

The following properties are essential to the computation
of the spectral quantities:

(1) Unperturbed spike trains are uncorrelated with the
external stimuli:

lim
T →∞

〈
ỹ

(0)∗
ε,i η̃j

〉
T

= lim
T →∞

〈
ỹ

(0)∗
ε,i η̃c

〉
T

= 0, ∀i,j.

(2) Unperturbed spike trains are uncorrelated among each
other (ω �= 0):

lim
T →∞

〈
ỹ

(0)∗
ε,i ỹ

(0)
ε,j

〉
T

= S(0)
ε δij , lim

T →∞

〈
ỹ

(0)∗
ε,i ỹ

(0)
−ε,j

〉
T

= 0, ∀i,j,

where we have written −ε to signify that if ε = ON, −ε =
OFF and conversely.
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(3) The external stimuli satisfy

lim
T →∞

〈η̃∗
i η̃j 〉
T

= Sstδij , lim
T →∞

〈|η̃c|2〉
T

= Sst,

lim
T →∞

〈η̃∗
i η̃c〉
T

= 0, ∀i,j,

with Sst the statistics of the noise inputs, which will be
described in Sec. IV.

After algebraic manipulations, the single-neuron power
spectra read (Re(·) = real part of ·)

Sε = S(0)
ε

[
1 + 2

N
Re (γAε) + |γAε |2

N

]
+ S

(0)
−ε

|γAε |2
N

+ |Aε |2Sst

{
1 +

[
1

N
(1 − c) + c

]

× [2 Re[γ (Aε − A−ε)] + |γ (Aε − A−ε)|2]

}
, (20)

where we have used the facts that ε(AON − AOFF) = Aε −
A−ε and |AON − AOFF|2 = |Aε − A−ε |2. Again ω �= 0, and
S(0)

ε stands for the second term only of Eq. (12). In the large
N limit, the only terms remaining are the power spectrum
of the response of a single neuron to the total external noise
(S(0)

ε + |Aε |2Sst) and the term

c|Aε |2Sst[2 Re [γ (Aε − A−ε)] + |γ (Aε − A−ε)|2], (21)

which represents the effect of the network response to
the correlated noise. The contribution from the identically
distributed uncorrelated noises filtered by the feedback kernel
vanishes in this limit. Still in this limit, c = 0 causes the
feedback to have the sole effect of shifting the bias current,
i.e., only the static part of the feedback matters.

If the offset V0 = 0, μON = μOFF. Hence AON = AOFF and
S

(0)
ON = S

(0)
OFF, and the correlation parameter c has no effect on

the spectrum, even at finite N . We thus see that within the
limits of applicability of the LRT, introducing the OFF cells
into the system cancels the effect of the spatial correlation of
the external input.

The cross spectrum of two ON or two OFF neurons, noted
Sε

cross, is

Sε
cross = S(0)

ε

[
2

N
Re (γAε) + |γAε |2

N

]
+ S

(0)
−ε

|γAε |2
N

+ |Aε |2Sst

{
c +

[
1

N
(1 − c) + c

]

× [2 Re[γ (Aε − A−ε)] + |γ (Aε − A−ε)|2]

}
= Sε − S(0)

ε − (1 − c)|Aε |2Sst. (22)

The cross spectrum is thus given by the difference between
the perturbed power spectrum, on the one hand, and the
unperturbed spectrum of the neuron plus the transmitted
uncorrelated noise, on the other hand. It means that the
feedback term has the same effect on both the single-neuron
power spectrum and the cross spectrum, just like for the
ON-only network [13]. For a fully correlated input (c = 1),
Sε

cross is a measure of the difference between the perturbed and
the unperturbed single-neuron spectra.

IV. THEORY FOR GAUSSIAN WHITE NOISE STIMULI
OF UNLIMITED BANDWIDTH

Until now, the statistics of the external noises have been left
unspecified. For the LRT to be valid, both the variance of these
noises and the feedback strength must be small compared to the
internal noise. Following [13], we will paradoxically consider
Gaussian white noise stimuli of unlimited bandwidth for both
the uncorrelated and the correlated noises:

〈ηc(t)ηc(t ′)〉 = 〈ηi(t)ηi(t
′)〉 = 2DEδ(t − t ′). (23)

The variance is infinite for white noise and thus does not meet
the above requirements. Lindner and co-workers [13] circum-
vent this difficulty by making the following ansatz: Whenever
S(0)

ε (ω,D) + 2DE|Aε(ω,D)|2 appears in the expressions for
the spectral measures, one may replace it approximately by

S(0)
ε (ω,Q) ≡ S

(0)
ε,Q, (24)

with Q = D + DE the total noise intensity perceived by the
neurons. It is also understood that the susceptibilities Aε(ω,D)
must be replaced by Aε(ω,Q) ≡ Aε,Q, and γ (ω,D) becomes

γQ = F/2

1 − AON,Q+AOFF,Q

2 F
. (25)

The firing rates also need to be evaluated at noise intensity
Q: r (0)

ε (με,D) → r (0)
ε (με,Q). The informal argument behind

these substitutions is that a neuron should not make the
difference between the statistics of external and internal noises
if they are the same. See Lindner et al. [13] for more details.
Doing so, we get for the single neuron power spectra,

Sε,Q(ω)

= S
(0)
ε,Q

(
1 + 2

N
Re(γQAε,Q) + 1

N
|γQAε,Q|2

)

+ S
(0)
−ε,Q

1

N
|γQAε,Q|2 + 2DE|Aε,Q|2

(
1

N
(1 − c) + c

)
×{2 Re[γQ(Aε,Q − A−ε,Q)] + |γQ(Aε,Q − A−ε,Q)|2}
− 2DE |Aε,Q|2

[
2

N
Re(γQAε,Q)

+ 1

N
|γQAε,Q|2 + 1

N
|γQA−ε,Q|2

]
. (26)

Cross spectra of neurons within a given subpopulation are
readily computed by making the appropriate substitutions in
Eq. (22):

Sε
cross,Q = Sε,Q − S

(0)
ε,Q + 2cDE |Aε,Q|2, (27)

and likewise for the population spectra Sε
pop.

Numerical integrations of Eq. (5) for a particular set of
parameters were done using a simple Euler scheme with 
t =
5 × 10−4 and between 100 and 200 realizations. The Gaussian
white noise used in the simulations is intrinsically bandlimited
to the Nyquist frequency, which is 2 × 105 Hz for a membrane
time constant of 5 ms.
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V. RESULTS

A. Symmetric case

Above, we noted that for V0 = 0, the ON and OFF suscep-
tibilities and unperturbed spectra are equal. In this symmetric
case, Eq. (20) becomes (replacing γ by its expression and
rearranging)

Sε = S(0)
ε + |Aε |2Sst + S(0)

ε

2N

2 Re(AεF ) − |AεF |2
|1 − AεF |2 . (28)

We compare the above equation with ε = ON to the LRT
power spectrum for the ON-only network [[13], Eq. (22)] that
we reproduce here for convenience:

S = S0 + |A|2Sst + c|A|2Sst
2 Re(AF ) − |AF |2

|1 − AF |2

+ 1

N
[S0 + (1 − c)|A|2Sst]

2Re(AF ) − |AF |2
|1 − AF |2 .

Here, N is the total number of neurons, whereas N in Eq. (28)
is the number of cells of a given type. For c = 0 and large N ,
both expressions are similar if our N is chosen to be equal to
half the number of cells in the ON-only network. Figure 2(a)
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FIG. 2. (Color online) Impact of OFF cells on gamma oscilla-
tions. Power spectra of ON cells for both the ON-only network
(N = 100) and the ON/OFF network (NON = NOFF = 50) are dis-
played for uncorrelated [c = 0, plot (a)] and correlated [c = 1, plot
(b)] inputs. The inset in plot (a) shows the difference between the LRT
curves for the ON-only and the ON/OFF networks for 1 < ω < 2.
Parameters are μ = 0.8, D = 0.12, DE = 0.08, V0 = 0, τD = 1,
τS = 0.5, τR = 0.1, and G = −1.2; these are the same values as in
Fig. 2 of [13] (note the labeling error on that figure). The triangles and
squares are from numerical simulations; LRT, linear response theory.

illustrates this fact: The LRT curves are superposed except for
a small interval near ω = 1.5, where the LRT for the ON-only
network is very slightly higher (see inset). On this same plot
the corresponding small bump in the numerical curve for the
ON/OFF network is difficult to see.

For the case c = 1, a drastic contrast is seen between the
network types, as depicted in Fig. 2(b). As in [13], the ON-only
network undergoes strong gamma oscillations, embodied in
the strong peak at ω = 1.5. However, they are nearly absent
for the ON/OFF network. Note that for a membrane time
constant of 5 ms, the frequency of the peak corresponds
to 48 Hz (for comparison, [9] uses 6 ms and [7], 10 ms).
The agreement between the LRT and the numerical results is
excellent, although there are minor quantitative discrepancies
at low frequency (especially in the case c = 1).

At this point, it is also worth noting that adding more
neurons yields weaker oscillations in both the ON-only [13]
and the ON/OFF network (not shown), although they survive
for the ON-only network for N → ∞. So, had we chosen
a different number of neurons of each type (e.g., setting
NON = NOFF = 100), the conclusion regarding the weakening
of oscillations would have been qualitatively the same.

Perhaps a better way to ascertain the occurrence (or not)
of network oscillations is to consider population spectra, as is
done in Fig. 3(a). For a correlated input, one can see a high peak
at ω = 1.5 for the ON-only spectrum and a significantly lower
peak at about the same frequency for the ON/OFF network.
The correlated input triggers high correlations between the
spike trains for the ON-only network; for the ON/OFF
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FIG. 3. (Color online) Impact of OFF cells on population activity.
(a) Comparison of ON population spectra for the ON-only and
ON/OFF networks. Parameters are the same as in Fig. 2. The only
LRT curve displayed is for the ON/OFF network with c = 1 (see
text for explanation). Inset: LRT for higher internal noise. (b) and (c)
Raster plots for ON neurons in the ON/OFF network with c = 1 (b)
and c = 0 (c).
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FIG. 4. (Color online) Time course of the feedback due to ON
(green dashed curve) and OFF (blue dot-dashed curve) cells and of
the total feedback (solid red curve) during one realization. Observe
that the peaks and troughs of the blue (dot-dashed) and green (dashed)
traces are roughly in antiphase.

network, the correlations between ON cells are impeded by
the OFF cells, which respond in an opposite way to the
external Gaussian noise. In the case c = 0 the power is small
at each frequency (lowest curves). The slight bump around
ω = 1.5 does not represent significant collective oscillations
since the power is everywhere small. The vanishing of network
oscillations is confirmed by looking at the raster plots in
Figs. 3(b) and 3(c): No stripes of quasisynchronous spikes
are seen in the case c = 0.

For a large number of neurons, in both the ON/OFF and
ON-only cases, the population spectrum is approximately
equal to the cross spectrum [see Eq. (8)]. Since the cross
spectrum is inherently a two-neuron quantity, and given that
its evaluation through the LRT implies the use of single-
neuron quantities only, the LRT usually fails to reproduce the
population spectra (see again [13] for a thorough discussion).
An example is provided in Fig. 3(a) (compare the red squares
with the black curve). A better fit is obtained for higher internal
noise intensities, as exemplified in the inset. This is due to
a decrease of the correlations and to the linearization effect
of a high internal noise, so that a LRT will represent more
adequately the behavior of the system.

The reason behind the vanishing of network oscillations in
the symmetric case is that the ON and OFF cells are totally
opposite in their spectral response: When, say, an ON cell has
just received the sufficient input to cross the threshold, the
probability that the OFF cell in the same pair will fire should
be low. This is perhaps best envisioned in Fig. 4, where we
have plotted the feedback from the ON and the OFF cells
for a single trial, together with the total feedback from the
kernel. The feedback due to the ON (OFF) cells is a low-pass
filtered version of the time-varying ON (OFF) firing rate.
The oscillations of these feedbacks are roughly in antiphase
and produce a reduced modulation of the network’s activity.
To put it into the language of [7], the waves of inhibition
coming from the feedback kernel are reduced in amplitude
due to the antagonistic response of the two classes of cells
to external inputs. We further add that, from the dynamical
systems perspective, it has been shown that the inclusion
of OFF-type responses in continuous neural networks shifts
the threshold for oscillatory instabilities under deterministic

stimulation [14]. We conclude that we observe here the same
phenomenon in a fully noisy and spiking framework.

In the following sections, we try to get back the strong
gamma oscillations seen for the ON-only network under global
stimulation by introducing asymmetries between the ON and
the OFF cells. First, we will set the offset V0 > 0 with a reduced
intrinsic noise for the OFF cells. Then, we will consider
unequal membrane time constants, again with V0 > 0. The
latter case requires a more delicate analytical treatment. Note
that the parameters G = −1.2, τD = 1, τS = 0.5, and τR = 0.1
will stay fixed to these values for the remainder of this paper
to allow comparison with results from the symmetric case
and the ON-only network. However, we would expect our
conclusions to be more generally valid. From [13], we know
that gamma oscillations are present over a certain part of
parameter space for the ON-only network. Suppose that there
is a gamma peak in the ON-only case for a given set of
parameters (with c = 1). Then, provided that these parameter
values are such that the LRT remains a valid approximation,
Eq. (20) stipulates that gamma-band oscillations should be
greatly reduced for the corresponding ON/OFF network in the
symmetric case. Moreover, the symmetry breakings discussed
below have precise effects on ON and OFF cells. Although we
did not explore the full extent of parameter space in search of
counterexamples, we suspect these effects—on the grounds of
the LRT—to be generic rather than mere artifacts of the given
choice of parameter values.

B. Asymmetry between ON and OFF cells:
Offset and OFF cells’ intrinsic noise

As stated in Sec. II, physiological experiments have shown
that the spontaneous—without external stimulation and with
intact feedback—firing rates of ON and OFF cells are
approximately the same on average [16]. Also, on average, ON
cells have higher spike thresholds (VT ) than OFF cells [26]. For
comparable resting and reset potentials for both classes of cells,
it would mean, because of Eq. (1), that the ON bias current is
smaller than that of OFF cells. To account for the larger bias of
OFF cells, we try in the present section to increase the offset
V0 of OFF cells. As shown in Appendix A, the ON (OFF) rate
is a monotonically decreasing (increasing) function of V0. For
the rates of ON and OFF cells to stay equal, another parameter
must be changed concomitantly with V0. One possibility is
to reduce the internal noise intensity of OFF cells, which
will be denoted by DOFF. This implies that the OFF cells are
now more deterministic than the ON cells and will fire more
reliably.

Figures 5(a) and 5(b) show power spectra for different
values of the offset when c = 1. In Fig. 5(a), we also display
the corresponding power spectrum for the ON-only network,
showing an obvious gamma peak. The ON cells’ power spectra
are nearly identical for all values of V0. The inset of Fig. 5(a)
shows that there exists a minute difference between the LRT
curves around the vanished gamma peak. On the contrary,
for OFF cells, a salient contrast appears between the spectra
when the offset increases. Going from V0 = 0 to V0 = 0.3,
the OFF cells progressively transfer power from low to high
frequency. This is in line with what should happen to a LIF
neuron becoming more deterministic. From renewal theory,
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FIG. 5. (Color online) ON (a) and OFF (b) power spectra for
different values of V0, with the ON internal noise intensity DON =
0.36 and c = 1. The OFF cells’ internal noise intensity DOFF is
decreased so that the rates remain the same within an absolute error of
order 10−3. The values of DOFF for V0 = 0,0.1,0.3 are, respectively,
DOFF = 0.36,0.27,0.125. All other parameters are as in Fig. 2. On plot
(a), we also show the power spectrum for the corresponding ON-only
network (solid red curve with a distinguishable peak). The inset shows
the difference between the LRT curves around ω = 1.5 (solid black,
V0 = 0; dashed red, V0 = 0.1; and dotted blue, V0 = 0.3). Other LRT
curves are black and fit the numerical results. Note that the effective
bias currents stay well below vT for all curves.

we know that the coefficient of variation (CV ) is given by [20]

CV =
√

limω→0 SOFF(ω)

limω→∞ SOFF(ω)
. (29)

From inspection of Fig. 5(b), we see that the CV decreases for
increasing offsets, meaning that greater regularity is achieved
by the OFF cells. But this analysis is applicable only if the
perturbed spike train does not depart too much from a renewal
process. The unperturbed spike train is clearly a renewal
process [20], but the perturbed one should not be, because of
the feedback. From Eq. (22) with c = 1, SOFF

cross = SOFF − S
(0)
OFF

and, from Eq. (8), SOFF
pop ≈ SOFF

cross. Hence, in the large N limit
we have

SOFF ≈ S
(0)
OFF + SOFF

pop . (30)

Therefore, the extent to which the perturbed spike train departs
from a renewal process—with the proviso that Eq. (22) comes
from the LRT—is dictated by the values of SOFF

pop [see Fig. 6(b)].
The maximum value of the ratio SOFF

pop /SOFF is about 0.35
for V0 = 0.3. We are thus tempted to analyze the results of
Fig. 5(b) in the following way: Upon an increase of the offset,
the OFF cells become intrinsically more regular due to the
larger effective bias, and this allows for the feedback-induced
oscillations to gain in power, in comparison to the power of
the unperturbed spike train.

The recovery of gamma oscillations for the OFF cells is
really a network effect induced by the common action of the
feedback and the correlated input. This is clear from Figs. 6(b)
and 6(d). The correlations between gamma-frequency Fourier
components increase with V0, with a maximum around
ω = 1.5 [Fig. 6(b)]. The cells also tend to synchronize, as
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FIG. 6. (Color online) Population spectra for ON (a) and OFF
cells (b) corresponding to Fig. 5 for the ON/OFF network. (c) and
(d) are raster plots for ON and OFF cells, respectively. The spectral
correlations (SOFF

cross ≈ SOFF
pop ) are enhanced for increasing offsets for the

OFF cells (b), but not for the ON cells (a). The raster plots of panel
(d) show the enhanced synchronization of OFF cells with increasing
V0.

revealed by the appearance of well-defined stripes in Fig. 6(d)
for V0 = 0.3.

The ON cells’ behavior is more enigmatic. Both the single-
neuron and the population spectra do not seem to change, as
per the numerical results of Figs. 5(a) and 6(a). In the inset
to Fig. 5(a), however, the LRT curves show a small decrease
of power with increasing V0 around the gamma frequency, to
the advantage of the lower frequencies. Also, in Fig. 6(c), one
may notice a hint of attempted synchronization for V0 = 0.3.
Comparing Figs. 6(c) and 6(d) for V0 = 0.3, we see that
whenever the OFF cells are firing, the ON cells are not. When
the OFF cells have just received the sufficient push to cross
the firing threshold, ON cells receive an opposite external
drive which will cause their firing to be less likely. Given that
the OFF cells strongly oscillate collectively, the ON cells are
bound to their activity. However, the latter do not show gamma
oscillations per se because they lack a gamma peak in the power
spectrum. This is different than the experimental situation
where both the ON and OFF cells show gamma oscillations [7].
The slight increase in oscillatory strength for the ON/OFF
network is compatible with the neural field prediction that an
increase in V0 can enhance the propensity of the deterministic
ON/OFF system to exhibit oscillations [[15], Fig. 4(c)],
although in that case the rates are not constrained to be equal.
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C. Asymmetry between ON and OFF cells:
Unequal membrane time constants

Studies of mutual information and coherence between spike
trains and Gaussian noise have shown that OFF cells are low
pass under local stimulus for all maps constituting the ELL
[16,26,27]. This means that OFF cells tend to respond more to
the low-frequency components of the stimulus. The ON cells
are more heterogenous across the maps and can be low pass,
broadband, and even high pass [26]. Thus, on average, the
OFF cells are more low pass than the ON cells. One way to
account for this is to reconsider the assumption that we have
made hitherto, i.e., that the membrane time constants of ON
and OFF neurons are equal. Slower membrane dynamics are
likely to promote the low-frequency components of the input.
Mathematically, this implies that we consider the following
dynamics for the unperturbed OFF membrane potentials:

τratiov̇
OFF
i (t) = −vOFF

i (t) + μOFF + ξOFF
i (t), (31)

with τratio ≡ τOFF/τON the ratio of the membrane time con-
stants. The internal noises are equal as before. Analytical
formulas for the rates and spectra of the unperturbed system
are given for LIF equations of the form v̇ = −v + μ + ξ (t).
The above equation is evidently not of this form. To get rid of
the τratio prefactor, we define t̂ = t/τratio. The consequence is
to rescale (1) the noise intensity, D → D̂ = D/τratio; (2) the
various time constants of the model,

τ̂R = τR

τratio
, τ̂D = τD

τratio
, τ̂S = τS

τratio
;

and (3) the feedback strength, Ĝ = G/τratio.
Evidently, the use of these new constants demands corre-

sponding modifications of the spectral quantities. The steps
leading to the LRT in the presence of unequal membrane time
constants are given in Appendix B. We get for the unperturbed
power spectrum [see Eq. (B7)]

S
(0)
OFF

= rOFF

∣∣Diτratioω

(
μOFF−vT√

D/τratio

)∣∣2 − e2τratio
OFF
∣∣Diτratioω

(
μOFF−vR√

D/τratio

)∣∣2∣∣Diτratioω

(
μOFF−vT√

D/τratio

)− eτratio
OFFeiωτRDiτratioω

(
μOFF−vR√

D/τratio

)∣∣2
and for the susceptibility [cf. Eq. (B8)]

AOFF

=
(

iτratioωrOFF√
D/τratio(iτratioω − 1)

)

×
[
Diτratioω−1

(
μOFF−vT√

D/τratio

)− eτratio
OFFDiτratioω−1
(

μOFF−vR√
D/τratio

)
Diτratioω

(
μOFF−vT√

D/τratio

)− eτratio
OFFeiωτRDiτratioω

(
μOFF−vR√

D/τratio

)
]
.

(32)

In Sec. B 2 of Appendix B, we prove that rOFF decreases
when τratio is increased at fixed V0. Therefore, to fulfill the
constraint of equal ON and OFF rates, V0 must be increased
concurrently with τratio. For τratio = 1 and V0 = 0, rON = rOFF.
Now, we have to suppose that as we increase τratio, we also
increase V0 so that the rates stay the same (numerically, they
will remain the same within statistical error). This means
that μOFF = μ + V0 + GrON increases with τratio, whereas
μON remains the same. Also, D̂ diminishes with increasing

τratio. Hence, the unperturbed activity of the OFF cells tends
more and more towards the deterministic firing regime as
τratio is increased from 1, with the possibility of bifurcating
to the deterministic regime at μOFF = 1. Finally, given the
presence of τratioω instead of ω as a subscript of the parabolic
cylinder functions, the unperturbed spectrum will also have
the tendency to be compressed toward the ω = 0 axis for large
τratio. But this compression is not trivial due to the presence
of the exponential term exp(iωτR) in the expression above.
Something similar is expected for the susceptibility.

We now want to study the effect of τratio on the coherence of
OFF cells. In the Introduction, we stated that local and spatially
uncorrelated global stimuli seem to have similar impacts on
ELL neurons. Hence, we here use a global stimulus with c = 0.
Exceptionally, the external Gaussian noise is bandlimited to
0–120 Hz. The coherence is given by [28]

C(ω) =
∣∣Sηiyi

(ω)
∣∣2

SOFF(ω)Sst(ω)
, (33)

where Sηiyi
(ω) is the cross spectrum between the spatially

uncorrelated noise and the spike train given by Eq. (20). Using
the LRT to express the various quantities in Eq. (33), we get
in the limit N → ∞,

C(ω) = |AOFF(ω)|2Sst(ω)

S
(0)
OFF(ω) + |AOFF(ω)|2Sst(ω)

. (34)

Figure 7 shows the effect of τratio on the coherence as a function
of ω for two special cases: In Fig. 7(a), the bias μ is high and D

is low, and conversely for Fig. 7(b). In both cases, it is obvious
that the OFF cells become more low pass as τratio is increased.
For τratio = 1, AON = AOFF and S

(0)
ON = S

(0)
OFF, therefore the red

curves of Fig. 7 also represent the coherence of the ON cells.
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FIG. 7. (Color online) Coherence of OFF cells—computed using
Eq. (34)—for different τratio with spatially uncorrelated input (c = 0)
and in the limit N → ∞. V0 has been adjusted so that rON = rOFF

within an absolute error of order 10−3. Arrow indicates the direction
of increasing τratio; τratio starts at 1 (solid red curves) and stops at
1.8 (double-dotted black curves) with increments of 0.2. Values for
μ and D are (a) μ = 0.8, D = 0.2 and (b) μ = 0.5, D = 0.58. For
(a), the effective biases range from 0.43 to 0.95, and for (b) from
0.08 to 0.83 for increasing τratio. Other parameter values are τD = 1,
τS = 0.5, τR = 0.1, and G = −1.2. Frequency range used for the
figure corresponds to 0–120 Hz for τON = 5 ms. Note the different
scales used.
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FIG. 8. (Color online) Single-neuron spectra and population
spectra for ON (top) and OFF cells (bottom) for τratio = 1,1.5,2 and
c = 1. Other parameters are as in Fig. 2. V0 has been adjusted so that
rON ≈ rOFF. The effective OFF biases are μOFF = 0.48,0.79,1.001
for, respectively, τratio = 1,1.5,2; the corresponding values for V0

are 0,0.305,0.52. In panel (a), the LRT curve with the highest
bump corresponds to τratio = 2 and the one with the smallest peak
to τratio = 1. Inset to panel (a): zoom on the peaks of the LRT curves
(solid red, τratio = 1; dotted blue, τratio = 1.5; dashed green, τratio = 2).
We also display the numerical results for τratio = 2 for comparison.

With the ratio different from 1, AON and AOFF [given by
Eq. (32)] become different and the feedback may again induce
oscillations, provided that the stimulus is spatially correlated
[see Eq. (20)]. Figure 8 shows how the single-neuron and
population spectra are modified following an increase of τratio

(the external stimulus is again the Gaussian white noise of
unlimited bandwidth). The first thing one may notice is that the
ON cells’ power spectrum and population spectrum are only
slightly modified. The bump at ω ≈ 1.5 in the power spectrum
[Fig. 8(a)] grows slightly with τratio, but reaches nowhere near
the one of the ON-only network in Fig. 2(a). In contrast, there
is an appreciable effect on the OFF cells’ spectral quantities.
For τratio = 1, we have the symmetric case showing a small
spectral peak at ω = 1.5 [Fig. 8(c), red curve]; with τratio = 2,
μOFF = 1.001, and the system has just stepped into the deter-
ministic regime, causing the peak around ω = 3. The firing
is then dominated by the unperturbed activity of single OFF
neurons, and the feedback-induced bump is no longer visible.
Remarkably, for τratio = 1.5, for which μOFF < 1, we do not
see any recovery of the gamma peak. Obviously, this means
that the difference between the ON and OFF susceptibilities is
not large enough to permit gamma oscillations.
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FIG. 9. Raster plots of the activity of ON [(a)–(c)] and OFF
[(d)–(f)] cells corresponding to Fig. 8. Notice on the right column
[plots (d)–(f)] how the OFF cells’ spikings desynchronize with
increasing τratio.

Figure 8(d) shows that spectral correlations between OFF
neurons are impeded when τratio is increased. On the other
hand, the spectral correlations between ON neurons stay about
the same for all values of the ratio [Fig. 8(b)]. This is even
more obvious from the raster plots of Fig. 9. Increasing τratio

uncorrelates the firing of OFF cells and we progressively lose
the striped pattern of τratio = 1 [compare Figs. 9(d) and 9(f)].
The OFF cells still oscillate, but in a more independent
manner. From Sec. V B, we know that OFF neurons with
higher bias and lower internal noise tend to synchronize more
in the presence of spatially correlated noise. In the present
case, however, their more deterministic behavior is triggered
in part by the slower dynamics for τratio > 1 (the other part
being due to V0 > 0). This not only affects the intensity of
both the internal and external noises—D and DE become
D/τratio and DE/τratio, respectively—but also the feedback
strength perceived by OFF neurons. With a lower strength
G/τratio, the feedback is less able to modulate the collective
activity of OFF cells. Our results thus indicate that the loss of
feedback here dominates over the increased synchrony.

VI. SUMMARY AND CONCLUSION

In this paper, we have derived a LRT for networks con-
taining two classes of neurons, and for which the interactions
are predominantly through an all-to-all feedback loop. We ob-
tained expressions for the power spectrum of these cells when
submitted to external noise. The primary motivation for this
work was the processing done by the ELL of weakly electric
fish, in particular, its ability to generate gamma oscillations
under spatially correlated stimuli. The ELL contains ON and
OFF cells which respond in opposite ways to inputs. We have
studied the impact of the OFF cells on the network’s oscillatory
behavior under stochastic inputs. The model assumed that both
the ON and OFF cells send their spike trains to a remote kernel
which sums all the incoming spike trains and feeds them back
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with a delay to all the cells of the network. When only ON
cells are taken into account (ON-only network), this diffuse
inhibitory feedback is sufficient to trigger network oscillations
when the global input is spatially correlated [13]. We have
shown analytically and numerically that including the OFF
cells (ON/OFF network) hinders the onset of oscillations for a
spatially correlated stimulus.

Neural field theory already showed that gamma oscillations
are less prevalent in an ON/OFF network compared to ON-only
networks. In that theory, a certain parameter can be computed,
R [[14], Eq. (5)], which acts as a global gain parameter that
depends on the spatial extent of a spatially homogeneous input.
When R exceeds a critical value, oscillations occur. However,
this is applicable in the context of deterministic inputs. In the
LRT presented here, it is possible to deal with stochastic inputs,
and both the feedback strength G and the correlation parameter
c explicitly determine the occurrence of an oscillatory state
[cf. the expression for the power spectrum Eq. (20)].

Having concluded that bringing the OFF cells into the
picture has a negative effect on network oscillations, we then
tried to break the symmetry of the ON and OFF cells to
see if we can recover the gamma oscillations obtained with
an ON-only network [9,13]. In doing so, we had to ensure
that the rates of ON and OFF cells are approximately equal
to satisfy physiological constraints. The symmetry breakings
were also done on the grounds of physiological considerations.
First, we increased the bias of OFF cells (through an increase
of the offset V0). This was motivated by their lower spike
threshold compared to ON cells. To keep the rates equal,
we also decreased the internal noise intensity of OFF cells.
The OFF cells were then more deterministic and their spectral
cross correlations (as seen on the population spectra) increased
with V0. Such a regularity enhanced the feedback-induced
gamma oscillations of the OFF cells [see Figs. 5(b) and 6(b)].
However, the recovered gamma oscillations were far from
reaching the same level as that of either the corresponding
ON-only network [13] or the experimental results of [9].

Second, we increased the OFF membrane time constant
with respect to the ON’s. The goal was to mimic the low-pass
properties of OFF cells. If the OFF cells are more low
pass compared to the ON cells, then it may make room
for the latter to oscillate. Again, the constraint of equal
firing rates had to be satisfied, and it was achieved by
increasing the bias of OFF cells. The cross spectra of ON
cells were not modified [Fig. 8(b)] but, contrary to the first
asymmetric case, the spectral cross correlations of OFF cells
were impeded [Fig. 8(d)]. This was interpreted as a reduction
of the synchronization of the OFF cells [and confirmed by
the corresponding raster plots, Figs. 9(d)–9(f)]. The power
spectra of ON cells showed a slight increase of the height of
the feedback-induced peak [Fig. 8(a)]; for the OFF cells, this
peak disappears when τratio departs from 1 [Fig. 8(c)]. Another
peak appears for the OFF cells at higher frequency, which is
a direct consequence of the more regular spiking due to the
higher effective bias.

Interestingly, both symmetry breakings yielded more regu-
larity in the OFF neurons’ firing, but with drastically different
results on the collective behavior of the network. On the one
hand, the higher bias and the lower intrinsic noise allowed for
less random OFF cells’ spikings, which consequently helped to

synchronize the OFF cells (and to a lesser extent, the ON cells).
On the other hand, a slower dynamics for OFF cells, together
with a higher bias, strives to reduce the synchronization.
Since these symmetry breakings have opposite effects on the
feedback-induced gamma oscillations, it seems unlikely that
combining them in any way may allow for oscillations as
strong as in the ON-only network [13] or the experimental
results [9].

Note that, as in [13], we completely ignored the activity of
the neurons responsible for the diffuse inhibitory feedback.
According to [29], however, this should not invalidate the
analysis found in both [13] and in the present paper. Indeed,
they show that the dynamics of LIF neurons constituting the
feedback kernel have only a marginal effect on the response
of the network.

Another point is that both the ON and the OFF cells
show gamma oscillations experimentally [7]. Hence, one may
wonder why we tried to invoke these oscillations by actually
privileging one class of cells with respect to the other. The first
reason is that the frequency range for gamma oscillations is
large (usually 30–90 Hz). So, it is not excluded that ON and
OFF cells show gamma oscillations of different frequencies.
Also, as stated in the previous paragraph, even though a com-
bination of the two attempts may not allow one to recover the
full strength of gamma oscillations, it may at least bring back
some symmetry between the power spectra of ON and OFF
cells. Finally, we also believe that the mathematical apparatus
derived here may be used in studies of other feedback-driven
systems such as the thalamocortical circuit (see, for instance,
[30]) or of correlations in recurrent networks [31].

In the end, the simplest hypothesis that preserves the
feedback-induced gamma oscillations is that the ON and
OFF cells are segregated, i.e., ON cells would be connected
(through feedback) only to ON cells and the same for OFF
cells. This would be the easiest way to recover the gamma
oscillations, but we lack the necessary physiological evidence
for such connectivity. Alternatively, future work may require
more detailed anatomical and physiological analysis of the
ELL feedback circuitry to elucidate the origin of gamma
oscillations.
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APPENDIX A: PROOF THAT THE ON (OFF) RATE
IS A MONOTONICALLY DECREASING

(INCREASING) FUNCTION OF V0

Using Eq. (9), we write

drON

dV0
= drON

dμON

dμON

dV0
= drON

dμON

G

2

(
drON

dV0
+ drOFF

dV0

)
,

drOFF

dV0
= drOFF

dμOFF

[
1 + G

2

(
drON

dV0
+ drOFF

dV0

)]
. (A1)
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Adding the two equations above, isolating drON
dV0

+ drOFF
dV0

and
replacing in Eq. (A1) yields

drON

dV0
= drON

dμON

G

2

⎡
⎣ drOFF

dμOFF

1 − G
2

(
drON
dμON

+ drOFF
dμOFF

)
⎤
⎦ ,

drOFF

dV0
= drOFF

dμOFF

⎡
⎣1 + G

2

drOFF
dμOFF

1 − G
2

(
drON
dμON

+ drOFF
dμOFF

)
⎤
⎦ .

As proven in Sec. B 2 of Appendix B, drON
dμON

and drOFF
dμOFF

are

always positive. Since G < 0, it is easy to see that drON
dV0

< 0.

For drOFF
dV0

, the term in brackets will be positive for

2 + |G|
(

drON

dμON
+ drOFF

dμOFF

)
> |G| drOFF

dμOFF
,

which is true for all V0, hence drOFF
dV0

> 0.

APPENDIX B: EFFECT OF UNEQUAL MEMBRANE
TIME CONSTANTS ON THE LRT

In this appendix, we detail how the dynamics of OFF cells
is affected by an increase of their membrane time constant
with respect to that of the ON cells. We also delineate
its consequences on the analytical results for the rate, the
unperturbed spectrum, the susceptibility, and the LRT.

1. Transformation of the OFF cells’ dynamics

The unperturbed dynamics of the subthreshold OFF voltage
is

τratiov̇
OFF
i (t) = −vOFF

i (t) + μOFF + ξOFF
i (t).

Defining t̂ = t/τratio leads to

dv̂OFF
i

dt̂
(t̂) = −v̂OFF

i (t̂) + μOFF + ξ̂OFF
i (t̂), (B1)

where we have defined

ξ̂OFF
i (t̂) ≡ ξOFF

i (τratio t̂) and v̂OFF
i (t̂) ≡ vOFF

i (τratio t̂).

The processes ξ̂OFF
i (t̂) obey〈

ξ̂OFF
i (t̂)ξ̂OFF

i (t̂ ′)
〉 = 2D̂δ(t̂ − t̂ ′),

with the rescaled noise intensity D̂ = D/τratio. Note the
important fact that μOFF = μ + V0 + G(rON + rOFF)/2 is in-
variant with respect to the transformation t → t/τratio. This is
readily seen by considering the transformation of the feedback
function f (t). Putting t = τratio t̂ in Eq. (3) gives

f̂ (t̂) ≡ f (τratio t̂) = G

2N

∫ ∞

τD

dτ

τS

(
τ − τD

τS

)
exp

(
−τ − τD

τS

)

×
N∑

i=1

[
yON

i (τratio t̂ − τ ) + yOFF
i (τratio t̂ − τ )

]
.

From the definition of the spike trains, Eq. (4), we have

y(τratio t̂) =
∑

ti

δ(τratio t̂ − ti)

= 1

τratio

∑
t̂i

δ(t̂ − t̂i) ≡ 1

τratio
ŷ(t̂). (B2)

Here, the t̂i’s are the spike times in units of the OFF membrane
time constant and ŷ(t̂) ≡ ∑

t̂i
δ(t̂ − t̂i) is the corresponding

spike train. We replace this in the expression for the feedback
and change variable to τ → τ/τratio to give

f̂ (t̂) = G

2N

∫ ∞

τD/τratio

dτ

τS

(
ττratio − τD

τS

)
exp

(
−ττratio − τD

τS

)

×
N∑

i=1

[
ŷON

i (t̂ − τ ) + ŷOFF
i (t̂ − τ )

]
.

We define τD = τ̂Dτratio, τS = τ̂Sτratio, and G = Ĝτratio. Doing
so, the feedback keeps the same form as before:

f̂ (t̂) = Ĝ

2N

∫ ∞

τ̂D

dτ

τ̂S

(
τ − τ̂D

τ̂S

)
exp

(
−τ − τ̂D

τ̂S

)

×
N∑

i=1

[
ŷON

i (t̂ − τ ) + ŷOFF
i (t̂ − τ )

]
.

The static part of the feedback is given by

〈f̂ 〉 = Ĝ
2 (r̂ON + r̂OFF) = G

2 (rON + rOFF),

where we have transformed the rates measured in units of
the ON membrane time constant (u.ON.m.t.c.) to the ones
measured in units of the OFF time constant (u.OFF.m.t.c.),
i.e., r̂ = τratior . Therefore, it appears that the static part of
the feedback is invariant with respect to the transformation
t → t/τratio, and this is the case for the effective bias μOFF as
well.

2. Transformation of the analytical results

When τratio > 1, the formula for the rate of a LIF neuron,
Eq. (10), must be replaced by

g(μ,τratio)

=
(

τR + τratio
√

π

∫ μ/
√

2D/τratio

(μ−1)/
√

2D/τratio

exp(z2)erfc(z)dz

)−1

.

(B3)

This equation is obtained by replacing D → D̂ and τR →
τ̂R = τR/τratio in Eq. (10), and by using the conversion between
rates measured in different units. Note that for Gaussian
white noise stimuli of unlimited bandwidth, we would use
Q = D + DE as the noise intensity. We now want to prove
that rOFF decreases with τratio, i.e., that drOFF

dτratio
< 0. In what

follows we keep V0 fixed. The rates are obtained by solving the
following coupled equations in a self-consistent way [compare
with Eq. (11)]:

rON = ν[μON(τratio)] and rOFF = g[μOFF(τratio),τratio]

with ν given by Eq. (10) and g given by Eq. (B3) above.
Note that both rates are expressed in u.ON.m.t.c. and that only

032703-12



LINEAR RESPONSE THEORY FOR TWO NEURAL . . . PHYSICAL REVIEW E 87, 032703 (2013)

g(μOFF,τratio) explicitly depends on τratio. The derivatives of
the rates with respect to τratio are

drON

dτratio
= drON

dμON

dμON

dτratio
= G

2

drON

dμON

(
drON

dτratio
+ drOFF

dτratio

)
,

drOFF

dτratio
= G

2

drOFF

dμOFF

(
drON

dτratio
+ drOFF

dτratio

)
+ ∂rOFF

∂τratio
.

Adding them together and isolating ( drON
dτratio

+ drOFF
dτratio

) yields

(
drON

dτratio
+ drOFF

dτratio

)
=

∂rOFF
∂τratio

1 − G
2

(
drON
dμON

+ drOFF
dμOFF

) .
Hence,

drOFF

dτratio
= ∂rOFF

∂τratio

[
drOFF
dμOFF

1 − G
2

(
drON
dμON

+ drOFF
dμOFF

) + 1

]
. (B4)

Let us define

μOFF√
2D/τratio

≡ b,
μOFF − 1√

2D/τratio
≡ a

with b = a +
√

τratio
2D

> a. On the one hand, we have

∂rOFF

∂τratio
= −r2

OFF

√
π

{∫ b

a

exp(z2)erfc(z)dz

+ b

2
exp(b2)erfc(b) − a

2
exp(a)2erfc(a)

}
,

which is smaller than zero because the function h(x) =
x exp(x2)erfc(x) is strictly increasing and the first term
between the accolades is positive. On the other hand,

drON

dμON
=
√

π

2D
r2

ON

[
exp

(
a2

τratio

)
erfc

(
a√
τratio

)

− exp

(
b2

τratio

)
erfc

(
b√
τratio

)]

and

drOFF

dμOFF
=
√

τ 3
ratioπ

2D
r2

OFF[exp(a2)erfc(a) − exp(b2)erfc(b)]

are always positive since exp(x2)erfc(x) is monotonically
decreasing. Therefore, the term in square brackets in Eq. (B4)
is always positive and rOFF decreases with τratio.

The unperturbed power spectrum for OFF neurons in
u.OFF.m.t.c., Ŝ(0)(ω̂,μOFF,D̂) ≡ Ŝ

(0)
OFF(ω̂), is obtained from

Eq. (12)—without the term proportional to δ(ω)—by replacing
the parameters and variables by their hatted counterparts. Note
in this respect that 
̂OFF and ω̂ are linked to the corresponding
quantities in u.ON.m.t.c. by


̂OFF = τratio
OFF and ω̂ = τratioω. (B5)

It is useful for graphing and computation purposes to have the
OFF power spectrum in u.ON.m.t.c.. One can show that this
is obtained from the spectrum in u.OFF.m.t.c. by replacing
ω̂ = τratioω and dividing by τratio:

SOFF(ω) = 1

τratio
ŜOFF(τratioω).

The intuitive rationale behind the prefactor 1/τratio is that the
power spectrum is measured in Hz when the second is the unit
of time. Therefore, changing the way we count time changes
the scaling factor of the power spectrum too. Using the same
intuitive argumentation, we have for the OFF susceptibility

AOFF(ω) = 1

τratio
ÂOFF(τratioω). (B6)

This follows at once from the facts that DE has dimension
[time] when the voltage is dimensionless and time is measured
in seconds, and that 2DE |A|2, the first order response to noise,
must have dimension [time]−1.

Gathering all these results leads to the unperturbed power
spectrum of the OFF cells in u.ON.m.t.c.:

S
(0)
OFF = rOFF

∣∣Diτratioω

(
μOFF−vT√

D̂

)∣∣2−e2τratio
OFF
∣∣Diτratioω

(
μOFF−vR√

D̂

)∣∣2∣∣Diτratioω

(
μOFF−vT√

D̂

)−eτratio
OFFeiωτRDiτratioω

(
μOFF−vR√

D̂

)∣∣2,
(B7)

and to the OFF susceptibility (in u.ON.m.t.c.)

AOFF = τratio

(
iωrOFF√

D̂(iτratioω − 1)

)

×
Diτratioω−1

(
μOFF−vT√

D̂

)− eτratio
OFFDiτratioω−1
(

μOFF−vR√
D̂

)
Diτratioω

(
μOFF−vT√

D̂

)− eτratio
OFFeiωτRDiτratioω

(
μOFF−vR√

D̂

) .
(B8)

3. Transformation of the LRT

The perturbed time evolution for the OFF cells is now given
by

dv̂OFF
i

dt̂
(t̂) = −v̂OFF

i (t̂) + μOFF + ξ̂OFF
i (t̂) + f̂ (t̂)

−〈f̂ (t̂)〉 − ζ̂i(t̂).

This equation produces spike trains ŷOFF
i (t̂) in u.OFF.m.t.c.

The LRT equation for the OFF cells corresponding to Eq. (15)
is (ε = −1 and the tilde denotes the Fourier transform)

˜̂y
OFF
i (ω̂) = ˜̂y

(0)
OFF,i(ω̂) + Â(ω̂,μOFF,D̂)

×
[
− ˜̂ζ i(ω̂) + F̂ (ω̂)

2N

(
N∑

k=1

˜̂y
ON
k (ω̂)+

N∑
k=1

˜̂y
OFF
k (ω̂)

)]
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with

F̂ (ω̂) = Ĝ
eiω̂τ̂D

(1 − iω̂τ̂S)2
= G

τratio

eiωτD

(1 − iωτS)2

= 1

τratio
F (ω)

and

˜̂y
OFF
i (ω̂) ≡

∫ T/τratio

0
ŷOFF

i (t̂)eiω̂t̂ d t̂

= 1

τratio

∫ T

0
ŷOFF

i (t/τratio)eiωt dt = ỹOFF
i (ω),

because of Eq. (B2). For ˜̂ζ i(ω̂) = √
c ˜̂ηc(ω̂) + √

1 − c ˜̂ηi(ω̂),
we have

˜̂ζ i(ω̂) =
∫ T/τratio

0
ζ̂i(t̂)e

iω̂t̂ d t̂

= 1

τratio

∫ T

0
ζ̂i(t/τratio)eiωt dt = 1

τratio

∫ T

0
ζi(t)e

iωt dt,

so that
˜̂ζ i(ω̂) = ζ̃i(ω)/τratio. (B9)

In the end, Eqs. (18) remain unchanged except for the
replacement of the AOFF of Eq. (13) by the one given by
Eq. (B8). The accuracy of this transformed LRT can be seen
in Figs. 8(a) and 8(c).
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