
PHYSICAL REVIEW E 87, 032403 (2013)

Formation of a crystal of Brownian particles under a uniform external force
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To keep the formation of colloidal crystal under a centrifugation in mind, we study ordering of Brownian
particles under a uniform external force. When the force is added to Brownian particles distributing uniformly
in the system, the particles drift and the density of particles near walls increases. Ordering of particles on the
walls occurs at first and ordering in bulk occurs in succession. In bulk, both the clusters with face-centered cubic
structure and those with the hexagonal close-packed structure appear. The distribution of cluster sizes changes
with the direction of external force.
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I. INTRODUCTION

A close-packed colloidal crystal with the face-centered
cubic (fcc) lattice is one of coordinates of a three-dimensional
photonic crystal. If the close-packed crystal without defects
is formed, we can use the colloidal crystal as a template for
inverse opals with perfect three-dimensional photonic band
gaps [1], which is used to produce optical integrated circuits
[2]. Now, the optical integrated circuits with a large size have
not been produced yet, but if we succeed in forming a large
size of inverse opals with perfect three-dimensional photonic
band gaps, it may be possible to produce a lot of large optical
integrated circuits from an inverse opal at a time. Thus, to use
colloidal crystals as device applications, we need to create a
large size of crystal without defects.

If our purpose is only to create a large colloidal crystal
quickly, it is better to intend to create a non-close-packed
colloid crystal [3–6]. However, the non-close-packed colloidal
crystals cannot be used as a template for inverse opals, so
we need to create large close-packed colloidal crystals for
optical integrated circuits. One of approaches to creating a
close-packed colloidal crystal with few defects is epitaxial
growth on a patterned substrate. Using a template with a
regular array of pyramidal pits, Yin and co-workers [7] tried to
form a large colloidal crystal without defects, but the colloidal
crystal they obtained was so thin that it is necessary to increase
the thickness of the crystal. Another approach to creating
a close-packed colloidal crystal is to use sedimentation by
gravitation. Davis and co-workers [8] succeeded in creating
a thick colloidal crystal, but the colloidal crystal they created
was a narrow columnar crystal. If the area of the base of a
columnar crystal can be spread, the use of gravitational force
may be a good method to form large colloidal crystal.

From simulations of hard sphere particles [9,10], it was
shown that well-ordered crystals are formed by controlling the
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sedimentation force. In experiment [8], however, controlling
the sedimentation force is difficult and the number of nuclei,
which determines the final number of columnar grains, is
hardly controlled. To solve the problems in the experiment [8],
recently, Suzuki and co-workers [11,12] used a centrifugation
method and succeeded in forming large three-dimensional
colloidal crystals controlling the size of the grain. In Ref. [12],
they used in an inverted-triangle internal-shaped container
(inverted-triangle container) and showed that the grain size
of a colloidal crystal becomes larger than that produced in a
container with a flat bottom. When a flat-bottomed container
is used, the centrifugation force is perpendicular to a wall. The
nucleation of colloidal crystal occurs in various places on the
wall and small grains are formed. However, when an inverted-
triangle container is used, the nucleation mainly occurs on the
edges or in a corner of the container and the number of nuclei
formed in an early stage decreases. In Ref. [13], the effect of
the wall during nucleation in pores was studied. It is shown that
nucleation easily occurs at a corner of the walls. In the system
[12], particles are gathered around walls by a centrifugal force
and nucleation occurs from a wall. By changing the form of the
container, the place where the nucleation of colloidal crystal
is controlled. The addition of the centrifugal force provides a
setup slightly different from a previous study [13], but the wall
there as well probably plays an important role.

In this paper, to keep the results of the experiments [11,12]
in mind, we carry out a Brownian dynamics simulation and
study how the formation of colloidal crystal is affected by
the direction of force. In Sec. II, we introduce our model.
In Sec. III, we show the results of our simulation. We
investigate some order parameters and show that the process of
crystallization depends on the direction of the external force. In
Sec. IV, we summarize our results and give brief discussions.

II. MODEL

The system we use is a cuboid whose size is given by
Lx × Ly × Lz. In the y direction, we use a periodic boundary
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condition. We consider hard flat walls in the x and z directions.
We assume that the particles act as hard sphere particles for
the walls, so that perfectly elastic collision between walls and
the particles occurs at the walls. We use N sphere colloidal
particles whose mass is m. In general, the motion of the ith
particle is given by

m
d2r i

dt2
= Fi − ζ

dr i

dt
+ FB

i , (1)

where r i is the position of the ith particle, Fi is the sum
of an external force and the force from other particles,
and ζ is the frictional coefficient. FB

i is the random force
satisfying 〈FB

i (t)〉 = 0 and 〈F B
ix(t)F B

ix(t ′)〉 = 〈F B
iy(t)F B

iy(t ′)〉 =
〈F B

iz(t)F B
iz(t ′)〉 = 2ζkBT δ(t − t ′), where T is temperature and

kB is the Boltzmann constant. The force Fi is given by

Fi = Fexteext +
∑
i �=j

Fij , (2)

where the first term is the external force by centrifugation
and the second term is the force from other particles. Fext and
eext represent the strength and the direction of the external
force, respectively. By using the interaction potential U (rij ),
the force from the j th particle is given by Fij = −∇U (rij ),
where rij = |r ij | = |r i − rj | is the distance between the two
particles. For simplicity, we take account of a short- range
interaction and use the Weeks-Chandler-Anderson potential
[14] as U (rij ). Namely, U (rij ) is expressed as

U (rij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6 + 1
4

]
, (r � rin),

0, (r � rin),
(3)

where σ represents the diameter of particles and rin = 21/6σ .
We assume that the viscosity is high. The acceleration rate

is so slow that the left-hand-side term in Eq. (1) is neglected.
The velocity is approximately given by

dr i

dt
= 1

ζ

(
Fi + FB

i

)
. (4)

In our simulation, we use σ , ζσ 2/ε, and ε/σ as the units
of length, time, and force, respectively. The normalized
difference equation of Eq. (4) is expressed as [15]

r̃ i(t̃ + �t̃) = r̃ i(t̃) + F̃i�t̃ + �r̃B
i , (5)

where r̃ i = r i/σ t̃ = tε/ζσ 2, and F̃i = Fiσ/ε. The scaled
displacement of the ith particle by the random force,
�r̃B

i , satisfies 〈�r̃B
i (t)〉 = 0 and 〈�xB

i (t)�xB
i (t ′)〉 =

〈�yB
i (t)�yB

i (t ′)〉 = 〈�zB
i (t)�zB

i (t ′)〉 = 2R̃B�t̃, where R̃B =
kBT/ε.

III. RESULTS OF SIMULATION

Initially, we put particles at random and relax the position of
particles without an external force for sufficiently long time.
Then, we add an external force and move particles. In all
simulations, the displacement by random force, R̃B is 0.1, the
time step �t̃ = 4.0 × 10−4, and the strength of the force F̃ext =
1.0. Since the drift velocity is Fext/ζ and the self-diffusion
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FIG. 1. (Color online) Snapshot of particles with various times.
Number of particles N is 6912, and system size is Lx/σ = Ly/σ =
Lz/σ = 23. External force is given by (0,0,1). Times are (a) t̃ = 0.4,
(b) t̃ = 6.0, (c) t̃ = 12.0, and (d) t̃ = 80.0.

coefficient D = kBT/ζ , the Peclet number Pe is given by

Pe = Fextσ

kBT
= F̃ext

R̃B
= 10.0, (6)

which is much larger than the value used in some previous
studies [16–19].

Figure 1 shows the time evolution of crystallization with
external force (0,0,1) and (1,0,1)/

√
2, respectively. The

particles are initially put in the system at random [Figs. 1(a)].
Then, we add the uniform external force. Since the force is in
the z direction, the particles start gathering to the upper side
[Fig. 1(b)]. The density of particles at the upper wall increases
and ordering of particles on the wall occurs at first. Then,
the width of the ordered region increases [Figs. 1(c)–1(d)].
Figure 2 shows snapshots of crystallization of particles with
a tilting force (1,0,1)/

√
2. In a very early stage [Fig. 2(a)],

the distribution of particles is the same as that in Fig. 1(a).
Since the external force is tilted, particles start moving to
the edge between two walls x = Lx and z = Lz [Fig. 2(b)].
With increasing time, the density of particles around the edge
becomes high and ordering on the two walls starts around the
edge [Fig. 2(c)]. In the last stage [Fig. 2(d)], all the particles
gather obliquely upward. With a small wall, a square lattice
is sometimes preferred [9,20], but our system is not so small.
Since particles are pressed to walls by the external force and
the pressure from other particles, the density of particles on
walls tends to become high and the triangle lattice is expected
to be formed on the wall.

At a glance, we cannot judge which is more ordered,
Fig. 1(d) or Fig. 2(d). To estimate ordering of particles on
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FIG. 2. (Color online) Snapshot of particles with various times.
Number of particles N is 6912, and system size is Lx/σ = Ly/σ =
Lz/σ = 23. External force is given by (1,0,1)/

√
2. Times are

(a) t̃ = 0.4, (b) t̃ = 6.0, (c) t̃ = 12.0, and (d) t̃ = 80.0.

walls quantitatively, we calculate a sixfold orientation order
variable. The orientation order around the kth particle, ψk , is
defined as [21]

ψk = 1

nk

∣∣∣∣∣
nk∑

m=1

e6iθkm

∣∣∣∣∣ , (7)

where nk is the number of neighboring particles of the kth
particle. When the distance between a particle and a wall is
smaller than rin/2, we regard the particle as attaching on the
wall. In calculating Eq. (7), we take account of the particles
attaching on the wall. If |ρkm| = |(xkm,ykm)|, where xkm and
ykm are the x and y components of the distance between the
mth particle and the kth particle, is smaller than 1.2rin, we
treat the mth particle as a neighboring particle [22–24]. θkm

is the angle between ρkm and the edge between the walls
x = Lz and x = Lx . Figure 3 shows snapshots of the top wall
in Fig. 1. We regard the particles with ψk > 0.9 as ordered
particles and color them in Fig. 3. If the ordered particles line
parallel to the edge between the walls x = Lx and z = Lz (the
edge given by x = Lx in Fig. 3), we color them in red (dark
gray). With increasing the angle of the line of particles from
the edge between the walls x = Lx and z = Lz. We gradually
change the color. The color becomes yellow (light gray) when
the angle is 30◦. Owing to the sixfold orientation order, the
color returns to red when the angle is 60◦. The particles with
ψk < 0.9 are regarded as disordered ones and we color them
white. Green (dark) particles are the particles which do not
attach to the walls.

The upper wall, which is given by z = Lz, is filled with
a lot of particles at a time in an early stage [Fig. 3(b)]. The

0

L y

y

x L x 0

L y

y

x L x

0

L y

y

x L x 0

L y

y

x L x

(a) (b)

(c) (d)

FIG. 3. (Color online) Snapshot of particles on the z = Lz wall.
Particles with local sixfold orientational symmetry are colored. Red
(dark gray) particles line parallel to the y axis. With increasing the
rotating angle, the color gradually changes. When the rotating angle
is 30◦, the particles are colored yellow. Times of (a)–(d) are same as
those in Figs. 1(a)–1(d).

ordered particles with the rotating angle 0◦ appear around
two sides x = 0 and x = Lx , and small islands of the ordered
particles with the rotating angle 30◦ appear at the center of
the top wall. In Fig. 3(c), ordering of particles along the two
sides proceeds, and the area of ordered islands appearing at the
center of the wall increases. In the final stage [Fig. 3(d)], thick
layers of red ordered particles are formed on the two sides and
large islands of yellow ordered particles appear at the center
of the upper wall. In addition to the region with the sixfold
orientational symmetry, some white particles seem to produce
a square lattice structure.

Ordering on walls is changed by the direction of the
external force. Figure 4 shows the time evolution on the
wall x = Lx where the external force is perpendicular to
the normal direction of the wall. In the initial stage [Fig. 4(a)],
although the density of particles attached on the wall x = Lx

is slightly smaller than that on the wall z = Lz, the distribution
of particles is similar to that on z = Lz. However, the process
of ordering on x = Lx is different from that on z = Lz. In
an early stage [Fig. 4(b)], the number of particles attached
on the wall starts increasing from the upper side, and ordered
particles appear in the region with high density. In the ordered
regions, the rotating angle from the edge at z = Lz is 0◦.
The width of the ordered region increases and thin layers are
formed. [Fig. 4(c)]. The width of the layer gradually increases
with time. Small ordered regions with the rotating angle 30◦
are temporally formed during ordering, but the regions do
not grow and vanish. In the final stage [Fig. 4(d)], almost all
of the particles are ordered with rotating angle 0◦. Although
ordering on the wall z = Lz seems to be better than that on the
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FIG. 4. (Color online) Snapshots of particles on the x = Lx wall.
Particles with local sixfold orientational symmetry are colored. The
meaning of the colors of the particles is the same as that in Fig. 3.
Times of (a)–(d) are the same as those in Figs. 1(a)–1(d).

wall x = Lx in an early stage [Figs. 3(b) and 4(b)], particles
on the wall x = Lx are ordered better than those on the wall
z = Lz in the late stage [Figs. 3(d) and 4(d)].

We also see the process of ordering of particles with a tilted
angle. Figure 5 shows the snapshots of particles attaching to
the top wall. In a very early stage [Fig. 5(a)], particles attach
to the wall randomly. Some particles are accidentally ordered,
but almost all of particles are disordered. With increasing time,
the density of particles increases, and ordering on the wall
starts around the edge x = Lx and at the center of the wall
[Fig. 5(b)]. Around x = Lx , the particles align parallel to the
side and form triangle lattices, but at the center of the wall, the
triangle lattice is rotated about 30◦ from x = Lx . The number
of ordered particles increases with time [Fig. 5(c)], and in the
last stage, almost all of the wall is occupied by the two types
of ordered domains.

Figure 6 shows the snapshots of particles attaching on the
wall x = Lx . Since the x component of the external force is
as large as the z component, the wall is equivalent to the wall
z = Lz. However, ordering is different from that on z = Lz:
The top wall z = Lz is covered with two types of ordered
domains, but the side wall x = Lx is covered with a single
domain of red particles. In Fig. 5(d), the line of disordered
particles is formed between the two types of domains. The
system size is not so large in our simulation; once the a linear
dislocation, which is as large as the system size, is formed, the
dislocation is stable. If we wait for a long time, the dislocation
probably vanishes. Then, reconstruction may occur and whole
of the wall is covered by red particles.

To estimate ordering of the whole of a wall, we introduce
〈ψ̄〉, which is the average of ψk over the whole surface and
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FIG. 5. (Color online) Snapshot of particles on the z = Lz wall
with the force (1,0,1)/

√
2. Particles with local sixfold orientational

symmetry are colored. The meaning of the colors is same as that in
Fig. 1.

many runs. Figure 7 shows the time evolutions of 〈ψ̄〉 averaged
over 40 runs. The system size and the number of particles
are larger than those in Fig. 1: The system is about Lx =
Ly = Lz = 41 and the number of particles is N = 13500. We
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FIG. 6. (Color online) Snapshot of particles on the x = Lx wall
with the force (1,0,1)/

√
2. Particles with local sixfold orientational

symmetry are colored. The meaning of the colors is same as that in
Fig. 1.
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FIG. 7. (Color online) Time evolution of 〈ψ̄〉. Open circles, solid
circles, open squares, solid squares, open triangles, solid triangles,
open inverted triangles, and solid inverted triangles show the time
evolutions of 〈ψ̄〉 on z = Lz with the force (0,0,1), x = Lx with the
force (0,0,1), z = Lz with the force (1,0,

√
2)/

√
3, x = Lx with the

force (1,0,
√

2)/
√

3, z = Lz with the force (1,0,
√

3)/2, x = Lx with
the force (1,0,

√
3)/2, z = Lz with the force (1,0,1)/

√
2, and x = Lx

with the force (1,0,1)/
√

2, respectively.

use four types of the external forces, (0,0,1), (1,0,
√

2)/
√

3,
(1,0,

√
3)/2, and (1,0,1)/

√
2, and estimate 〈ψ̄〉 on z = Lz and

x = Lx .
In each case, on both walls 〈ψ̄〉 increases with time in the

initial stage and finally saturates. When the external force is
(0,0,1), the x component of the external force is 0. Ordering
on z = Lz occurs faster than that on x = Lx , but the saturated
value of 〈ψ̄〉 on z = Lz is smaller than that on x = Lx . When
the external force is tilted, the x component of the external
force is present. When the direction of the external force is
(1,0,1)/

√
2, the z component of the external force is as large

as the x component. The data of the two walls overlap each
other, so we cannot distinguish them in Fig. 7. With other
angles, the z component of the external force is larger than the
x component, so ordering on z = Lz occurs faster than that on
x = Lx in the initial stage, which is similar to ordering with the
force (0,0,1). However, the saturated value of 〈ψ̄〉 on z = Lz

is as large as that on x = Lx , which is different from the case
with the force (0,0,1). The saturated values of 〈ψ̄〉 with the
tilted forces are larger than those with the force (0,0,1). From
the results, the saturated value of 〈ψ̄〉 seems to be independent
of the tilting angle.

Since ordering probably occurs on walls at first, ordering
in bulk is affected by that on walls. To estimate the order in
bulk, we calculate orientation order parameters Ql(i), Q̄l(i),
and wl(i) [25,26], which represent the local orientation order
around the ith particle. Ql(i) is defined as

Ql(i) =
√√√√ 4π

(2l + 1)

l∑
m=−l

|ql,m(i)|2, (8)

where

ql,m(i) = 1

nn

nn∑
j=1

Ym
l (θij ,φij ). (9)

The angles θij and φij represent the polar angle and the
azimuthal angle of r ij , respectively. Ym

l (θij ,φij ) is the spherical
harmonics and nn is the number of neighboring particles. In the
calculation of ψk in order to investigate the order of particles
attaching on walls, we regarded the particles within 1.2rin

as the neighboring particles, but we use a tighter condition
in order to investigate ordering in bulk: The cutoff length is
1.1rin. The parameter wl(i) is defined as

wl(i) =
∑

m1+m2+m3=0

(
l l l
m1 m2 m3

)
ql,m1 (i)ql,m2 (i)ql,m3 (i)( ∑l

m=−l |ql,m(i)|2)3/2 ,

(10)

where the integers m1, m2, and m3 run from −l to l and
satisfy the condition m1 + m2 + m3 = 0, and the term in the
parentheses is the Wigner 3-j symbol.

The parameters Ql(i) and wl(i) hold the information of
the structure of the first shell around the ith particle. To take
account of the second-order shell and to increase the accuracy
of the distinction of the difference in structure around the ith
particle, Q̄l(i) is introduced. The definition of Q̄l(i) is given
by

Q̄l(i) =
√√√√ 4π

(2l + 1)

l∑
m=−l

|q̄l,m(i)|2, (11)

where

q̄l,m(i) = 1

ñn

ñn∑
j=0

ql,m(j ). (12)

In Eq. (12), the sum from j = 0 to ñn runs over all neighbors
of the ith particle plus the particle itself.

Figure 8 shows the distributions of the hcp structure and
the fcc structure on parameters plane, where we use the data in
Fig. 2(d). We regard the structure of particles with w4 > 0.01
and Q4 < 0.15 as the hcp structure and that with w4 < −0.02
and Q4 > 0.15 as the fcc structure. In calculating order
parameters, we neglected the particles which do not have 12
nearest neighbors. Thus, particles with the bcc structure and
almost all of the disordered particles are excluded, which is
consistent with the distribution of points in the Q4-Q6 plane.
The distribution of two structures in the Q4-Q6 plane also do
not contradict the expected form [26–29].

In Fig. 9, we use the data in Fig. 1 and show the positions
of particles with 12 nearest neighbors in bulk. Particles with
the local hcp structure are colored yellow (light gray), those
with the local fcc structure are colored cyan (dark gray), and
the others are colored white. In a very early stage [Fig. 9(a)],
the particles with 12 neighbors appear near z = Lz uniformly.
They form small domains of the fcc structure and the hcp
structure. With increasing time [Fig. 9(b)], the number of
the particles increases along side walls. Then, the thickness
of domains increases. In Fig. 9(c), the thickness of domains
increases from both the side walls and the top wall. In the final
stage [Fig. 9(d)], we can find that the layerlike domains with
the hcp structure and the fcc structure, which are parallel to
the size wall x = Lx , appear.
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(a)

(b)

(c)

FIG. 8. (Color online) Distribution of hcp structure and fcc
structure in (a) the Q6-Q4 plane, (b) the Q̄6-Q̄4 plane, and
(c) the w4-Q4 plane. Red open squares, blue open circles, and
green open triangles represent the particles with hcp structure, fcc
structure, and disordered structure, respectively. We use the data in
Fig. 2(d).

Figure 10 shows snapshots of the local structure with the
force (1,0,1)/

√
2. When the direction of the force is tilted,

ordering of particles occurs from the side line between x = Lx

and z = Lz. In an early stage (Fig. 10), the particles with 12
neighbors appear along the two walls. Thin two-dimensional
domains with the hcp structure mainly appear near the side
wall x = Lx and those with the fcc structure mainly appear
near the top wall z = Lz. In Fig. 10(b), the two-dimensional
layers spread. While the side wall x = Lx is mainly filled with
the domain with the hcp structure, the two types of domains are
formed on the top wall z = Lz. Then, the thickness of ordered
particles increases. In Figs. 10(c) and 10(d), the thickness
seems to increase from the side wall.

We also study how the distribution of cluster size changes
with the direction of the external force. Figure 11 shows the

x y
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L z
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FIG. 9. (Color online) Snapshots of positions of particles with
the local hcp structure and the local fcc structure. We use the
data in Fig. 1. The structures around yellow (light gray) particles,
cyan (dark gray) particles, and white particles are hcp, fcc, and the
other, respectively. Time is (a) t̃ = 12, (b) t̃ = 24, (c) t̃ = 40, and
(d) t̃ = 80.

dependence of the number of clusters Nnc on the cluster size
nc. The system size and the number of particles are the same
as those in Fig. 7, and we check the distributions in the final
stage with averaging over 40 runs. The average numbers of the
ordered particles with the fcc structure and the hcp structure
are 2647 and 4398, respectively. The number of particles with
the hcp structure is larger than that with the fcc structure.
When the direction of the external force is perpendicular to
z = Lz [Figs. 11(a) and 11(b)], a lot of small clusters are
formed and large clusters do not appear. Figures 11(c) and
11(d) show the distribution of the cluster size with the external
force (1,0,

√
2)/

√
3. The increase of numbers of the ordered

particles is small: The average numbers of the ordered particles
with the fcc structure and the hcp structure are 3278 and 4631,
respectively. The difference of the numbers of particles in two
structures decreases and large clusters, which do not appear
with the external force perpendicular to the top wall z = Lz,
are formed with a tilted external force. Decrease in the number
of very small clusters (nc < 100) is small, but the number
of middle size clusters (100 < nc < 1000) decreases and the
number of large size clusters increases.

IV. SUMMARY

In this paper, to keep the formation of colloidal crystals
under the centrifugation force in mind, we studied the
formation of a crystal of Brownian particles under a uniform
external force. When the external force is added in the system,
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FIG. 10. (Color online) Snapshot of positions of particles with
hcp structure and fcc structure. We use the data in Fig. 2. The mean
of color of particles is same as that in Fig. 9 Times in (a)–(d) are the
same as those in Figs. 9(a)–9(d).

the density of particles near walls increases and crystallization
occurs. When the uniform external force is perpendicular to
a wall, the whole wall becomes occupied by particles. The
reconstruction in the wall is difficult because there is no
extra space for particles to move for reconstruction. On the
other hand, if the external force is tilted, the density first

(a) (b)

(c) (d)

FIG. 11. (Color online) Dependence of number Nnc of clusters
whose size is nc. The external force is (0,0,1) in (a) and (b) and
(1,0,

√
2)/

√
3 in (c) and (d). Panels (a) and (c) show the dependence

of fcc clusters, and (b) and (d) show that of hcp clusters. The data are
averaged over 40 runs.

increases around an edge. The density around an edge in the
other side is low, so that the particles, which attach to the
wall, can move easily and the reconstruction occurs. Thus,
with the tilted force, ordering of particles on walls is better
than that with perpendicular force. From our simulation, we
investigated 〈ψ̄〉 with a few tilting angles. We cannot judge
whether 〈ψ̄〉 with the perpendicular force is singular or not.
There may be a threshold of the tilting angle which induces
the increase of 〈ψ̄〉, so we need to investigate 〈ψ̄〉 with various
angles.

Ordering in bulk is related to that on a wall because
crystallization starts on walls. Ordering in bulk with tilted
force is better than that with perpendicular force: The number
of ordered particles increases and the size of the domain
enlarges with tilted force. In our simulation, the system
size is small and the potential between particles is probably
less complicated than that between colloidal particles in
experiment, so that we cannot compare our results with the
experiments quantitatively. However, our result that grain size
increases by tilted external force qualitatively agrees with
experiments [11,12].

In experiment [30], although the random hexagonal close-
packed (rhcp) structure is formed under microgravity, the
fcc structure and the rhcp structure are mixed under normal
gravity, which shows that the gravity seems to enhance the
formation of fcc structure. To create a good template for
inverse opals [1], it is necessary to produce large domains with
the fcc structure. However, in our simulation, the domains
with the local fcc structure and the local hcp structure are
mixed, which is probably because the external force and the
density of particles are larger than the value used in previous
studies [16–19]. In the experiment [12], silica particles of
110 nm were used. The acceleration of the centrifugal force
was 22 m/s2 and temperature was 30 ◦C. Since the density
of silica is 2.65 g/cm3, the Peclet number is estimated to be
1.07 × 10−3, which is much smaller than the Peclet number in
our simulation. Since the initial density of particles or the drift
velocity caused by the external force is large in our simulation,
crystal grows before it relaxes to a suitable state, and the small
domains of the hcp structure and the fcc structure appear. If we
carry out simulation with a low density of particles and a small
external force, crystal with large domains of fcc structure may
be formed.

Recently, Mori and co-workers [10] carried out Monte
Carlo simulation with hard sphere particles and showed that
defects in polycrystal vanished by controlling the strength of
gravitational force. Even in our model, we may be able to
enlarge the size of domain with the local fcc structure by
controlling the strength of gravitational force after forming a
polycrystal. Thus, we also try to study how the ordering in
bulk changes with the strength of the uniform force.
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