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Turbulencelike scaling in polymer interfaces
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The spatial structure and statistical properties of polymer interfaces grown by vapor deposition polymerization
have been studied in the context of fluid turbulence. The extended self-similarity present in the correlation
functions of the polymer interface uncovers two types of multiscaling for different spatial scales. The relative
qth-order scaling exponents and the probability distribution functions of the height gradient display intermittent
height fluctuations, which lead to spatial multiscaling analogous to the velocity fluctuations in turbulent fluid.
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I. INTRODUCTION

Multifractality has been an important concept in the
understanding of a wide class of far-from-equilibrium systems
in which invariance under simple scale transformation fails.
In particular, the idea of multifractality played a significant
role in capturing essential features of intermittency in fully
developed turbulence [1–3]. The concept of multifractality was
extended to self-affine fractals [4] and has been applied for a
specific class of real growth fronts called multi-affine surfaces.
These kinds of growing surfaces include vacuum-deposited
porous films, slow combustion of paper, two-phase fluid
flow in porous media, and rupture lines in paper [5–8]. So
far, the spatial multiscaling known to exist in a few real
growth systems has been understood in association with large
fluctuations of height gradients, which are introduced through
a power-law noise distribution [9]. Since intermittent height
fluctuations of rough interfaces were first noticed by Krug [10]
in the context of fluid turbulence more than a decade ago, a
one-dimensional limited mobility model of epitaxial growth
and a similar class of growth models have been studied
in detail [11–13]. However, this phenomenon of turbulent
interface never has been confirmed in a real growth system. In
this report, we present clear experimental evidence that vapor
deposited polymer films have spatial structure and statistical
properties which, at the interfaces, are remarkably similar to
those of the velocity fluctuations in turbulent fluids [14,15].
Moreover, surprisingly rich multiscaling behaviors revealed
by analysis based on the extended self-similarity provide
interesting insight into the interplay between the phenomena
of multiscaling and intermittency in close relation with the
anomalous kinetic roughening of the polymer interface [16].

In fully developed turbulence, the scaling behavior of
small-scale fluctuations are observed in a spatial scale r called
the inertial range, η � r � L, in which the average energy
transfer rate is the only relevant quantity; this implies that
neither the energy injection at scale L nor dissipation by
molecular viscosity below a scale of η takes place in this
range. The qth-order velocity structure functions are defined
in the inertial range as

Sq(r) = 〈[u(x + r) − u(x)]q〉 ∼ rζ ′
q , (1)

where [u(x + r) − u(x)] is the velocity difference between
two spatial locations which are a distance r apart, and the
brackets 〈· · ·〉 denote the spatial average. The exponents ζ ′

q

significantly deviate from the classical theory of Kolmogorov

(i.e., ζ ′
q = q/3) [17] due to the presence of strong bursts in

the energy dissipation, which is known as the intermittency
phenomenon. Intermittent energy transfer toward the dissipa-
tive scale in fully developed turbulence is also related to the
statistical properties of the velocity gradient. It is well known
from multifractal notions of turbulence that the probability
distribution function (PDF) of the velocity gradient is given
by stretched exponentials [15,18,19] whose forms depend
strongly on the Reynolds number [20].

For multi-affine surfaces, the fluctuations of interface height
h(x) are characterized by the qth root of the qth-order height-
difference correlation function for a fixed time as [10]

Gq(r) = 〈|h(x + r) − h(x)|q〉1/q = ξαq rζq fq(r/ξ ), (2)

where ξ is the lateral correlation length whose length scale is
determined by the deposition time t through ξ = t1/z with
the dynamic exponent z. The scaling function behaves as
fq(r/ξ ) = const when r � ξ and fq(r/ξ ) = (r/ξ )−ζq when
r � ξ . Therefore, if the separation distance r between the
measured heights is much smaller than the lateral correlation
length (i.e., r � ξ ) the correlation function is given by

Gq(r) ∼ rζq . (3)

A close similarity between the scaling properties of height
fluctuations in growth surface and those of the velocity
fluctuations in fully developed turbulence can be realized
when the role of the velocity field u(x) in fully developed
turbulence is played by the height function h(x) [10,13]. Notice
that the correlation length ξ setting the spatial scale of the
scale-invariant regime effectively functions as the Reynolds
number in turbulence.

II. EXPERIMENT

Poly(chloro-p-xylylene) (PPX-C) films were deposited on
naturally grown SiO2 layers on Si substrates (SiO2/Si sub-
strates) in a custom-built chemical vapor deposition reactor at
room temperature. Dimer molecules (dichloro-di-p-xylylene)
were sublimed at 120 ◦C and then cracked into monomers
in the pyrolysis furnace at 660 ◦C. The monomer vapor was
subsequently condensed and polymerized on naturally grown
SiO2/Si substrates at room temperature in the deposition
chamber. Spectroscopic ellipsometry was used to determine
the film thickness d. The surface morphology was measured
using atomic force microscopy (AFM) (XE-100, Park systems)
in a noncontact mode. The half-cone angle at the single-
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FIG. 1. (Color online) Topographic AFM images of PPX-C films
at various film thicknesses. For each image, a scan area of 1 × 1 μm2

was taken with a 512 × 512 pixel resolution.

crystal silicon AFM tip apex (NCHR, nanosensors) was
approximately 10 deg, and the typical tip radii were smaller
than 7 nm. Further details of the experimental methods can
be found in our recent reports [16,21]. Representative AFM
images taken at various growth stages are shown in Fig. 1.
Data analyses were performed on the two-dimensional AFM
images of a scan area of 1 × 1 μm2 taken with 512 × 512
pixels. The q-dependent correlation functions Gq(r) were
calculated by direct two-dimensional averaging of the AFM
images, which include average over all 512 × 512 data points
and all directions of r = (rx,ry) for given length r = |r|.

III. RESULTS AND DISCUSSION

In addition to the intermittency phenomenon, in regard to
the velocity structure function, it is of note that regime of scale
invariance is significantly extended over a wider spatial range
when different order structure functions |Sp(r)| and |Sq(r)|
are plotted against each other even if the power law in the
spatial scale [Eq. (1)] is not developed at a small Reynolds
number [22]. This effect, called extended self-similarity (ESS),
provides a significant improvement when it comes to finding
the relative scaling exponents (i.e., ζ ′

p/ζ ′
q). The same scheme

of ESS analysis is applied to all the qth-moment correlation
functions Gq(r), which were obtained from wide range of
film thicknesses. An example of our ESS analysis is shown in
Fig. 2, which demonstrates a behavior typical of the growth
regime where an additional power law appears in a small-r
length scale. As shown in the trace of q = 2, the self-similarity
of the height fluctuation extends for the entire spatial range
beyond the conventionally defined length scale (r � ξ ) in
which Eq. (3) is normally applicable. Notice from Fig. 3(a)
displaying gq(r) vs r that an apparent power law is limited in
the small length scale up to r ∼ 10–20 nm. It is also interesting
to notice in Fig. 2 that a clear deviation from the background
scaling behavior is apparent below Gq=1(r) ∼ 1.6, which
corresponds r ∼ 20 nm in length scale. The deviations grow
larger as the qth moment increases. Considering the strongly

FIG. 2. (Color online) Log-log (with base 10) plot of Gq (r) vs
Gq=1(r) for q = 2, 4, 7, and 9 at film thickness d = 2053 nm. Inset
displays the residual of log10(Gq=7(r)) resulting from a linear best fit
for the entire range. Gray bars indicate the range used for estimating
exponents. Lines through data are guides for the eyes.

(a)

(b)

(c)

FIG. 3. (Color online) Log-log (with base 10) plot of the scaling
function gq (r) vs r at various film thicknesses: (a) d = 13.6 nm,
(b) d = 41.0 nm, and (c) d = 2053 nm. In each main panel starting
from the bottom trace and going up, q =1, 2, 3, 5, 7, and 9. The inset
in each panel shows the relative exponents θ∗

q as a function of q. The
dotted line indicates expected exponents for self-affine fractal.
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FIG. 4. (Color online) Relative qth order scaling exponents qθq

plotted vs q. The dashed line marks a slope of 1. The inset shows
the integrand δ7P (δ) vs δ at two different separations, r = r0 (solid
squares) and r = 2r0 (open triangles).

non-Gaussian shape of the PDF of height gradient in the
relevant grown regime (see Figs. 5 and 6), we are certain that
the q-dependent deviations in the small-r scale are most likely
due to the development of multiscaling [15,18,19], which
is usually characterized by q-dependent scaling exponents.
However, it is not straightforward to determine the relative
qth-order exponents, that is, the slope of each trace in the ESS
plot. The quality of a linear regression for the entire trance
of the seventh moment is illustrated in the inset of Fig. 2 in
which the residual (i.e., the measured value – the fit value) of
log10(Gq=7(r)) vs log10(Gq=1(r)) is displayed for the whole
range. The base line indicates a slope of 0.877. Two clear trends
in the residual plot allow us to fit the data in two different
scaling regions separately, small r below Gq=1(r) = 1 and
large-r length scale above Gq=1(r) = 1.6, which correspond
to spatial scales r = 10 nm and 20 nm, respectively [23]. We
note that the examination of the scaling properties in the large-r
length scale would not be possible without the application
of ESS. The relative scaling exponents in the large-r region
θ∗
q (i.e., ζ ∗

q /ζq=1) are determined precisely from the ESS
plot, which reads as θ∗

2 = 0.987 ± 0.001, θ∗
4 = 0.962 ± 0.001,

θ∗
7 = 0.927 ± 0.001, and θ∗

9 = 0.907 ± 0.002. The second set
of relative exponents in the small-r scale θq is obtained as
θ2 = 0.95 ± 0.01, θ4 = 0.82 ± 0.01, θ7 = 0.60 ± 0.02, and
θ9 = 0.48 ± 0.02. Figure 4 summarizes the qth-order scaling
exponents qθq obtained in the small-r spatial scale using the
same scheme of ESS analysis (i.e., a type of Fig. 2) on the
correlation functions at various film thicknesses.

Some of the interesting results obtained from the ESS analy-
sis include an indication that the q-dependent scaling behavior
appears to subsist in the large-r spatial scale and the scaling
behavior exhibits interesting progressions in close relation
with the known growth regimes of polymer films [16]. In Fig. 3,
we show the scaling function gq(r) ≡ [Gq(r)/Gq(r0)∗]1/ζ ∗

q

vs r at various film thicknesses. The value Gq(r0)∗ is an

average height gradient at r0 = 1.95 nm in the absence of
(or neglecting) the multiscaling in the small-r scaling region.
The exponents ζ ∗

q are obtained from the relation ζ ∗
q = θ∗

q ζq=1,
once ζq=1 is directly measured from the correlation function
Gq=1(r). As previously noted by Kundagrami et al. [13], the
property of ESS ensures the presence of a q-independent scal-
ing function, i.e., fq(r/ξ ) ∼ f (r/ξ )ζ

∗
q . Thus, the implication

of ESS in association with Eq. (2) suggests that the plot
of the scaling function gq(r) vs r for various qth moments
would collapse into a single curve depending on the integrity
of estimate of the scaling exponents θ∗

q in the large-r scale.
Displayed in Fig. 3 is a representative scaling function for
the large-r spatial scale in three different growth stages of
polymer films [16]: in panel (a) we show scaling function
in initial growth regime before the substrate is fully covered
(d �14 nm), panel (b) is obtained for a valley-filling regime
(14 nm < d � 150 nm), and panel (c) exhibits a behavior
typical of the continuous growth regime (d >150 nm). The
inset of each panel displays the q-dependent scaling exponents
θ∗
q which are determined from the ESS analysis and used to

construct the scaling functions. The presence of ESS in the
large-r scale as well as the integrity of the related scaling
exponents determined from the type of Fig. 2 are manifested
nicely by the collapse of the q-dependent scaling functions
gq(r) into a single curve. The standard fitting error involved
in the estimate of θ∗

q is generally not bigger than the size of
symbols in the inset. Note that in the large-r scaling regime,
the presence of a single scaling function with q-dependent
(or q-independent) scaling exponents θ∗

q is clear evidence for
multiscaling (or self-affine scaling) behavior.

In the regime (a), a nearly perfect data collapse with the
q-dependent exponents θ∗

q is observed for the entire spatial
scale. Data suggest that the multi-affine (or multifractal)
interface persists up to r ∼ ξ , which is similar to what had
been found in the epitaxial growth models with limited surface
mobility [10,13]. In regime (b), as indicated by the deviations
from the data collapse, multiscaling behavior develops in
the small-r length scale, while a characteristic of self-affine
interfaces appears in the large-r scale as indicated by the
exponents θ∗

q , which remain nearly the same for the different
qth moments. In the continuous growth regime (c), the
property of multi-affine interfaces emerges again in large-r
scales in addition to the small-r multiscaling. Two distinctive
spatial multiscalings which are turned on and off depending
on the growth stage of polymer film must be responsible
for the anomalous kinetic roughening observed previously in
the polymer interface [16]. The dependence of θ∗

q is almost
identical in both growth regimes (a) and (c), which suggests
that the anomalous super-roughening process, known to occur
in both growth regimes [16], is closely related with the large-r
scale multiscaling. The observation may provide an additional
constraint for previous conjecture on the condition for the
super-rough interface [24].

Uncertainty associated with the measurements of high
moments of the height gradient increases as tails of a PDF
extend to larger amplitude [14]. In the inset of Fig. 4, we
show the integrand in the definition of the seventh moment
at the separation length r0 and 2r0 at d = 2053 nm. At the
seventh moment, the integrand has decreased at the largest
height gradient (δ) to a level at which its moment can be
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FIG. 5. (Color online) Natural log-linear plot of the PDF of height
gradient lnP (δ) vs δ for film thicknesses, d = 0 (bare substrate), 41,
95, 256, 659, and 2053 nm, from left to right. Inset shows the stretched
exponential parameter m plotted vs log10(d).

estimated within reasonable accuracy [25]. Relative q-order
scaling exponents qθq up to seventh order for various film
thickness are displayed as open symbols in Fig. 4. The solid
squares representing qθ∗

q for a film at d = 41 nm provide a
reference curve for a self-affine fractal. Intermittent height
fluctuations manifest themselves by clear deviations from
the linear self-affine slope. We note that the behavior of
q-dependent relative exponents can be grouped into two
regimes, i.e., the valley-filling regime and the continuous
growth regime, roughly separated by a film thickness d ∼
100 nm. The fairy universal behavior of qθq in each growth
stage of the polymer film, which is in stark contrast with the
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FIG. 6. (Color online) PDF of height gradient for various sep-
aration lengths at film thickness d = 2053 nm. Lines through data
points are obtained from a stretched exponential fit. Inset displays the
stretching parameter m as a function of log10(r).

previous report regarding the vacuum deposited CaF2 films [5],
can be understood consistently in relation with the role of the
Reynolds numbers played in the scaling exponents of fluid
turbulence. The discrepancies in the scaling exponents from
different films at the same growth stage grow larger as the qth
moments increase, which is likely associated with the overall
uncertainties involved in the estimate. Error bar at the seventh
moment shows a variation of ±5% .

The small-scale intermittent height fluctuations can also
be characterized by the PDF of nearest-neighbor height
gradient P (δ), which is displayed in Fig. 5. Data were
taken at various film thicknesses. As the figure shows, the
distributions of the height gradient are very well described
by the distribution function of a stretched exponential, that
is, P (δ) ∼ exp(−aδm), where δ = |h(x + r0) − h(x)|/r0. We
note that a stretched exponential provides good working
approximations to typical experimental data for the tails of
the PDF of velocity increments [19]. The solid lines through
the data points are from the best fit with the stretching
parameter m displayed in the inset. The PDF obtained from
the naturally grown SiO2 surface (bare substrate) is accurately
described by an exponential function (m = 1). A Gaussian
distribution (m = 2) develops in the tail section of the PDF,
as polymer islands grow on the substrate (not shown in the
figure). When the substrate is nearly covered at d ∼ 14 nm, the
shape of PDF becomes fit between Gaussian and exponential
function. Multiscaling in a small-r scale occurs only after the
substrate is fully covered, at which the PDF of the height
gradient is strongly non-Gaussian (i.e., m � 1). The evolution
in the shape of the PDF of height gradient as a function
of log10(d) is shown in the inset. The solid line through
the data points is from a power law fit m ∼ (log10(d))−γ

with γ = 0.70 ± 0.04. The fact that m follows a power law
as a function of log10(d) is consistent with the Reynolds
number dependence of the stretching parameter proposed
by Lohse and Grossmann in the context of fluid turbulence
[20], which seems to confirm the presence of one-to-one
correspondence between the correlation length of growing
interface and the Reynolds number of turbulent fluid as
expected.

The study of the scaling properties of the correlation
function Gq(r) using the collection of moments has a few
limitations due to its small scaling range and large uncertainty
at high order of moments. A better strategy based on the
multifractal picture of turbulence dynamics is to examine the
PDF of height difference [14] as displayed in Fig. 6. Data show
that as the separation length r increases, the shape of PDFs
evolves from square-root exponential for r = r0 to Gaussian
for r ∼ 11r0. Notice that the separation length r ∼ 11r0 is
consistent with the length scale r ∼ 20 nm at which the small-r
multiscaling disappears in the scaling function displayed in
Fig. 3(c). As the separation increases above r = 12r0, the
tail section of the PDFs deviates from Gaussian distribution
due to an increasing number of rare events with large height
difference, which is likely responsible for the large-r scale
multiscaling. The structural and statistical properties of the
large-r multiscaling seem different from those of the small-r
multiscaling. The mechanisms leading to the formation of
height fluctuations in the small-r scale, similar to the velocity
fluctuations in fluid turbulence, would be an interesting subject
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in its own right which is beyond the current scope of our
discussion.

IV. CONCLUSION

We have studied the spatial structure and statistical prop-
erties of polymer interfaces in the context of fluid turbulence.
The similarities between these two seemingly very different
nonequilibrium systems are found to extend beyond what
has been previously observed in real two-dimensional growth
systems. The qth-order scaling exponents displaying clear
deviation from a self-affine slope, and the characteristic
progressions in the shape of the PDF of the height gradient for
the separation lengths and for the film thicknesses are taken
as decisive signatures of turbulencelike interfaces formed by

vapor deposition polymerization. Interestingly, on the polymer
interfaces, two distinctive multiscaling are discovered in
different spatial scales, which are turned on and off depending
on the growth stages of polymer film. These rich scaling
properties should provide a rare glimpse into the interplay
between the phenomena of multiscaling and intermittency
which result in the known unusual kinetic roughening of
polymer interface.
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