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Nonequilibrium growth of patchy-colloid networks on substrates
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Patchy colloids with highly directional interactions are ideal building blocks to control the local arrangements
resulting from their spontaneous self-organization. Here we propose their use, combined with substrates and
nonequilibrium conditions, to obtain structures, different from those of equilibrium thermodynamic phases.
Specifically, we investigate numerically the irreversible adhesion of three-patch colloids near attractive substrates,
and analyze the fractal network of connected particles that is formed. The network density profile exhibits three
distinct regimes, with different structural and scaling properties, which we characterize in detail. The adsorption
of a mixture of three- and two-patch colloids is also considered. An optimal fraction of two-patch colloids is
found where the total density of the film is maximized, in contrast to the equilibrium gel structures where a

monotonic decrease of the density has been reported.

DOI: 10.1103/PhysRevE.87.032308

I. INTRODUCTION

The past few years have witnessed a sustained interest in
the self-organization of patchy colloids, with the development
of a wide range of techniques to synthesize them [1-6]. These
particles, with functionalized surfaces, yield new features, such
as anisotropic interactions, control of the valence, and the
formation of permanent electrical dipoles, paving the way to
the development of novel materials with fine tuned mechanical,
optical, and thermal properties [3,7-9]. Understanding how
nonequilibrium conditions influence this self-organization is
crucial to develop strategies to design new materials, as the
novel structures emerge at very low temperatures, where
thermal and mechanical equilibration might be difficult to
achieve under normal experimental conditions.

Theoretical and experimental studies of patchy colloids
have been focused on their cooperative behavior in solution
[9-12], where several models were considered with the aim
of describing a range of more complex building blocks,
such as amphiphilic molecules, colloidal clays, proteins,
and DNA nanoassemblies [7,9,11,13—18]. By contrast, the
investigation of self-organization of the simplest of these
models at planar substrates is only just beginning [19,20].
Theoretical studies have shown that, in the presence of a
substrate, a rich equilibrium phase diagram emerges with
very unusual properties, such as, e.g., two wetting transitions
and a nonmonotonic surface tension [20]. These works have
been restricted to equilibrium features; however, it is widely
recognized that the use of substrates might improve the degree
of control of aggregation, especially under nonequilibrium
conditions [21,22]. For example, a growth direction can be
defined which allows the use of kinetic features to control the
film structure [23].
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In this paper we address the nonequilibrium adsorption of
patchy colloids on substrates, resulting from the irreversible
nature of the binding, and we characterize the resulting
network of connected particles. In deep contrast with equi-
librium films, a fractal network is assembled with a fractal
dimension compatible with the one reported for diffusion
limited aggregation (DLA) [24,25]. We systematically analyze
the dependence of the network structure on the substrate
size and diffusion coefficient of the colloids in solution
(which can be controlled experimentally, for example, by the
thermostat temperature). We show that, although the density
of the film strongly depends on the diffusion coefficient, the
fractal dimension is resilient over a wide range of growth
conditions. By contrast with previous models based on DLA,
here directional interactions are considered with results that
depend on the diffusion coefficient and colloidal valence.

It has been shown that the distribution of patches affects
the aggregation process and, consequently, the equilibrium
bulk structures [8,10,12,18,26,27]. For example, control of
the valence allows tuning up the density and temperature
of both the gas-liquid and sol-gel critical points [10,28,29].
Here, we consider three-patch colloids and investigate the
density profile of the adsorbed nonequilibrium network. We
then proceed to investigate the adsorption of three- and two-
patch colloids, which can be synthesized with the available
experimental techniques [2,7,30-33], and characterize the
dependence of the film density on the concentration of the
mixture. Studies of the coexisting thermodynamic structures
of mixtures of two- and three-patch colloids in solution reveal
a monotonic decrease of the density with the fraction of
two-patch colloids [27,28,34]. Somewhat surprisingly, we
have found that the density of the adsorbed network film, under
nonequilibrium conditions, increases with the concentration
of two-patch particles before it decreases, exhibiting a well
defined maximum at an intermediate concentration.

In the following section we describe the model. In Sec. III,
we quantify these results and illustrate the full scaling behavior
of the nonequilibrium adsorbed film. Finally, in Sec. IV, we
draw some conclusions.
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FIG. 1. (Color online) Schematic representation of a patch (red
circle) on the surface of a colloid [blue (dark gray)] and its interaction
range [green (light gray)]. The limits of the interaction range are
defined by an angle 6 with the center of the patch.

II. MODEL

In order to simulate the colloidal adsorption we propose
and use a stochastic model based on the nonequilibrium Monte
Carlo (MC) method. Patchy colloids are frequently described
as spherical particles with a short-range repulsive core and
patch-patch attractive interactions. The attraction is truncated
at a certain angle around the center of the patch [35].

As shown in Fig. 1, to account for particle-particle inter-
action we define an interaction range [green (light gray)], on
the surface of the colloid [blue (dark gray)], around each patch
(red circle). This range is characterized by a single parameter,
namely, the angle 6 with the center of the patch. Here we have
used 0 = /6. In the event of a collision with a preadsorbed
colloid, if the contact point is within the interaction range of the
preadsorbed particle, the binding is successful with probability
p, corresponding to the fraction of the surface of the landing
colloid covered by the interaction range of all patches. In the
case of successful binding, the position of the landing particle
is adjusted based on the patch-patch orientation; otherwise,
an elastic collision occurs. The interaction range accounts for
both the extension of the patch on the colloid surface and the
range of the patch-patch interaction. In particular, the range
of the patch-patch interaction is 7o /6, where o is the colloid
diameter. Thus, our model contains a single control parameter
(the interaction range) that can be tuned to mimic different
patch-patch potentials.

In the presence of a substrate, two characteristic timescales
can be identified: one related to the flux of colloids towards
the substrate (interarrival time) and the other to the binding
between patches (binding time). In general, the interarrival
time is a function of the colloid shape and radius, diffusion
coefficient, and concentration of colloids in the bulk. For
simplicity, we consider equisized spherical particles and the
limit of highly diluted colloids. In this limit, the diffusion
coefficient affects only the trajectory of the colloids, and
the interarrival time can be considered much larger than the
binding time. Since the binding is irreversible, we assume
that the colloids arrive one at a time towards the substrate
and adhere instantaneously. In addition, we consider chemical
bonds between the patches, which are highly directional and
assumed irreversible within the timescale of interest. In order
to describe the colloid motion in solution, a Brownian algo-
rithm is considered, adapting ideas previously implemented
for molecular dynamics (see, e.g., Ref. [10]). Collisions
with the solvent are assumed Poisson processes, i.e., the
time between collisions is exponentially distributed. At each
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particle-solvent collision, a new value for the particle velocity
is generated, drawn randomly from the Maxwell-Boltzmann
distribution at the thermostat temperature. The direction of the
velocity is obtained from a uniform distribution. By selecting
the thermostat temperature and the collision rate (Poisson
process), we can then adjust the diffusion coefficient. The
substrate is considered attractive and, therefore, collisions with
the substrate always result in irreversible colloidal binding.
Our model shares important features with diffusion limited
deposition (DLD), an extension of the famous DLA developed
to account for the growth of films on fibers and surfaces [24].
In DLD, particles diffuse one after the other and adhere to
the first preadsorbed particle. For patchy colloids, since a
link is established only when there is an effective overlap
between interaction ranges, the colloid does not, necessarily,
bind during the first collision. Besides, somewhat artificially,
in the continuum version of DLD the random walkers’ mean
free path is considered of uniform length (typically of the
order of the diameter of the particle) and, consequently, the
diffusion coefficient only affects the time scale. Here, we use
a more realistic description where the intercollision time with
the solvent, and consequently the mean free path, is a function
of the thermostat temperature. As we will show below, an
interesting dependence on the diffusion coefficient emerges.

III. RESULTS

We start with an empty planar square substrate, with lateral
size L, defined in units of the particle diameter, and assume pe-
riodic boundary conditions in the horizontal plane. Iteratively,
spherical colloids, with three patches uniformly distributed on
their surface, are released one after the other and diffuse until
they bind either to the substrate or to a previously adsorbed
colloid. Figure 2 shows a snapshot of a typical network of
connected three-patch colloids and the density profile p*(z),
defined as the number of particles per unit volume, where
z is the distance to the substrate. One can distinguish three
different regimes: the surface layer, liquid film, and interfacial
region. As we move away from the surface, the density rapidly
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FIG. 2. (Color online) Density profile of the colloidal network
on a substrate showing three different regimes: surface layer (green,
left); liquid film (red, middle); and interfacial region (blue, right). Top:
Snapshot of a typical configuration, where each stick corresponds to
a colloid-colloid connection. Bottom: Density p*(z) as a function of
the height z after the adsorption of 40 particle layers, averaged over
500 independent realizations. o; is the density of the liquid film and
212 is the film thickness, defined as the height at which the density is
pi/2.
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FIG. 3. (Color online) Left: Dependence of the density of the first
adsorbed layer, p*(0), on D, for values ranging from 103 to 1, and
substrates with lateral size L, ranging from 16 to 128. Right: Snap-
shots of the first adsorbed layer (directly in contact with the substrate)
for different diffusion coefficients D, namely, 1073, 1072, 107", and
1, on a substrate with lateral size 32 in units of the particle diameter.

decreases (surface layer, z < 50) until a saturation value pj is
reached, which is constant within the liquid film (50 < z <
150), and vanishes in the interfacial region (z > 150). In the
following, we discuss in detail each of these regimes.

Surface layer. As the colloid-substrate interaction is
isotropic, the patches of colloids directly adsorbed on the
substrate are oriented randomly. By contrast, the colloid-
colloid (i.e., patch-patch) interaction is strongly anisotropic,
and the network chains extend only along the direction of the
patches. As the front of the network propagates, its branches
screen the inner layers and span along the lateral direction,
with a consequent decrease of the density. This effect was
also reported for DLD, where a power-law decay with z is
observed, with multifractal scaling [24,36]. However, here the
conspiracy between the order promoted by the patches and the
disorder imposed by the first layer results in an exponential
decrease, at least for the lateral sizes that were investigated.

The plot in Fig. 3 shows the dependence of the first-layer
density p*(0) on the size of the substrate L and diffusion
coefficient D. While there is no significant finite-size effect, an
increase of p*(0) with D is observed (see snapshots in the same
figure). For the irreversible adhesion of colloids on substrates,
in the limit where particles only stick to the substrate and not
on top of other particles, extensive simulations have shown
no significant dependence on the diffusion coefficient [37,38].
In that case, the structure of the film should resemble that
of random sequential adsorption (RSA) [21,39,40]. Instead,
the patch-patch interaction promotes the formation of colloid
chains hindering the access to the substrate. Additionally, in the
diffusion process, the typical colloid mean free path increases
with D. Since multiple collisions can occur before irreversible
binding, the larger the mean free path the higher the probability
that the colloids can squeeze into the fjords and, eventually,
arrive at the substrate. Consequently, the first-layer density
increases with D towards the RSA limit (limit line in Fig. 3).
However, patchy particle systems will always form networks
and the RSA limit is never reached.

Liquid film. As the lateral growth of the network proceeds,
the finite size of the substrate induces a saturation of the density
at p = ;. For the range of values of L and D considered here,
the network is always a fractal with fractal dimension d,; =
2.58 £ 0.04, calculated using the box counting algorithm; this
value is compatible with the one reported for DLA and DLD
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FIG. 4. (Color online) (a) Liquid-film density for substrates with
lateral size ranging from 16 to 128, and diffusion coefficient D
between 1073 and 1. (b) Dependence of the interfacial decay length
Eneer on L and D.

[24]. Notwithstanding, p; depends on L and D [see Fig. 4(a)].
In both cases, a power-law scaling is observed, namely, p; ~
L%~4DP with dy —d = —0.4 £0.1 and B = 0.23 £0.02.
The exponent in the size dependence results from the scale
invariance of the network and is straightforwardly connected
with d f-

Interfacial region. The density vanishes at the interface
between the network and the solution, which corresponds to the
active front of the film. The position of the interface depends
on the total number of adsorbed particle layers N. We define
21,2 as the thickness of the film, corresponding to the height at
which the density is p; /2 (see Fig. 2). Since the thickness of the
surface layer does not depend on N, z; > asymptotically scales
as zi2 ~ N/p; = NL™. The profile of the density in the
interfacial region scales as p*(z) = p; tanh[(z — z1/2)&iner], as
typically observed for models of diffusion limited growth in
the stationary regime (see, e.g., Ref. [41]). The decay exponent
&Einter also scales with L and D [see Fig. 4(b)]. In both cases,
a power law is observed, &iyer ~ L"- D"?, with vy, = —0.73 &+
0.04 and vp = 0.18 £ 0.04.

Based on the properties of the liquid film and interfacial
region, we propose full scaling of the density profile with L and
D, defined as p*(z) = DPLY~F[(z — z1)L"* D""], where
F[x]is ascaling function described by the hyperbolic tangent.
Figure 5 shows the data collapse for several values of D and

2.0 ——1p*()D PLY U=F[(z-2,,)L"'D""]

O

(Z_Z 1/2)LVLDVD

FIG. 5. (Color online) Data collapse for the liquid film and
interfacial region, including the dependence on the substrate lateral
size L and the diffusion coefficient D. Results obtained after
adsorbing 60 particle layers and averaging over 500 samples for
L = {16,32}, 200 samples for L = 64, and 100 samples for L = 128.
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FIG. 6. (Color online) Top: Density profile of the colloidal
network on a substrate with anisotropic particle-substrate interaction.
Results after the adsorption of 40 particle layers, averaged over 500
independent realizations. p; is the density of the liquid film. Bottom:
Snapshot of the particles in the surface layer regime.

L. This scaling allows the definition of the network density for
any size of the substrate and of the diffusion coefficient.

For simplicity, we have considered an isotropic particle-
substrate interaction. In general, some anisotropy is expected
due to the patches. Figure 6 shows the density profile of
the colloidal network when this interaction is anisotropic. In
particular, as illustrated in the snapshot (bottom of the figure),
we considered the case where adsorbing colloids bind to the
substrate only through the patches. The parameters are those
considered in Fig. 2. We show that the qualitative picture
discussed here is not affected by the details of the interaction
with the substrate and the quantitative results are different only
within the surface layer.

We have also assumed optimal bonds such that binding
is established along the direction of the patches. It has been
shown recently that nonoptimal bonds may enrich the diagram
of self-organized states [42]. In Fig. 7, we also consider the
case of nonoptimal bonds, i.e., as in the optimal case a landing
patchy colloid only sticks to a previously adsorbed one when
their interaction ranges overlap, but the binding is established
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FIG. 7. (Color online) Data collapse for the liquid film and
interfacial region, where bonds are considered optimal. Results are
obtained after adsorbing 60 particle layers and averaging over 500
samples for L = 32 and 200 for L = 64.

PHYSICAL REVIEW E 87, 032308 (2013)

FIG. 8. (Color online) Snapshots of a region in the liquid film
for different fractions of two-patch colloids, rp. From left to right,
top to bottom: 0, 0.3, 0.6, and 0.8. Snapshots obtained from the
adsorption on a substrate with a lateral size of 32 particle diameters
and 40 particle layers. Three-patch colloids are in blue (dark gray),
two-patch colloids are in green (light gray), the (red) spheres on the
surface of the colloids represent the patches, and the (red) sticks are
the connections between colloids.

at the contact point. In spite of changes in the liquid film
density, the same scaling and fractal dimensions are found.
Adsorption of two- and three-patch colloids. Finally we
consider the adsorption of a mixture of two- and three-patch
colloids. While the two-patch colloids (patches on the poles)
favor long chains, the three-patch particles promote branching.
We define rp as the fraction of adsorbed two-patch colloids
and investigate how it affects the network structure. Figure 8
shows snapshots of the liquid film for different rp. The larger
rp is, the longer the chains of two-patch colloids are. In all
cases, including rp = 0, the resulting network is a fractal with
the same fractal dimension (see Fig. 9). However, the density
of the liquid film can be controlled with rp [see Fig. 10(a)].
Somewhat surprisingly, a maximum is observed in the
density at a fraction of two-patch particles around 0.35, by

FIG. 9. (Color online) Mass scaling as a function of the inverse
box size in the box counting algorithm, for networks, with different
concentrations of two-patch colloids, rp. Results obtained with 32
layers of the 60 layers of adsorbed particles in the liquid film on a
substrate with L = 32, averaged over 20 samples. A fractal dimension
dy = 2.57 £0.04 was found.
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FIG. 10. (Color online) Analysis of the dependence on the
fraction of two-patch colloids, rp. (a) Liquid-film density (black
squares) and the contribution from two- (red triangles) and three-patch
(green spheres) colloids. (b) Total number of chains of two-patch
colloids between three-patch ones with sizes 0, 1, and 2. The peak
of the distribution of chains of unit size coincides with the peak of
the film density. Results for 60 particle layers adsorbed on a substrate
with L = 32 averaged over 500 samples.

contrast to equilibrium coexisting gels (i.e., optimal networks
at zero pressure) where a monotonic decrease is observed
[28]. In fact, the film density remains above the three-patch
colloid limit (rp = 0) over a wide range of rp (up to around
0.6). As rp increases, long chains of two-patch colloids are
formed and the density is expected to decrease. However,
in the absence of relaxation, kinetically trapped structures
are obtained and geometrical constraints hinder the access of
colloids to the free-patches in the inner layers. The competition
between the formation of long chains and the maximization of
accessible patches drives the reported film density maximum.
The plot in Fig. 10(b) shows the number of chains of two-patch
colloids between three-patch ones with sizes 0, 1, and 2. With
increasing rp, the number of chains of size 0 (corresponding
to pairs of connected three-patch colloids) decreases and a
maximum in the number of chains of size 1 is observed at
the same concentration as the maximum in the film density.
In Fig. 11 we show that, increasing rp reduces the number of
free patches in the film and increases the average size of the
chains exponentially.

IV. CONCLUSIONS

This work reveals that, in the presence of a substrate
and under nonequilibrium conditions, self-organized patterns
are obtained which differ from the thermodynamic optimal
networks or equilibrium coexisting gels (at zero pressure). For
mixtures of three- and two-patch colloids, fractal networks
of connected particles are formed with a fractal dimension
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FIG. 11. (Color online) (a) Fraction of free (unconnected) patches
on two-patch (red triangles) and three-patch (green circles) colloids
in the liquid film. (b) Exponential increase of the average size of
chains of two-patch colloids.

resilient over a wide range of diffusion coefficients and con-
centrations of two-patch colloids. Yet, the obtained structures
depend both on the diffusion coefficient and the colloidal
valence. These networks might be of relevance in the fields of
microfluidics and filtering. For example, the density variation
in the surface layer resembles the filtering mechanism recently
found in the human airways [43]. Here, we focused on the
nonequilibrium properties of the network, resulting from the
irreversible nature of the binding, which dominates at low
temperatures. However, in a significant long timescale or at
higher temperatures, an adsorbed colloid might detach and
rebind to another patch or to the substrate. In this case, the
thermodynamic equilibrium structures might, in principle,
be reached. As a follow up, the stability and aging of
the networks should be investigated as well as the kinetic
pathways towards the thermodynamic equilibrium structures.
Additionally, techniques to stabilize these structures over
extended periods of time might also be a focus of future
research. The model may be used to investigate other features,
such as different particle-substrate interactions [6,22] and
nonoptimal bonds, where fluctuations in the bonding direction
are taken into account [42].
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