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We study the freezing kinetics of colloidal polycrystals made of micelles of Pluronic F108, a thermosensitive
copolymer, to which a small amount of silica nanoparticles of a size comparable to that of the micelles are added.
We use rheology and calorimetry to measure Tc, the crystallization temperature, and find that Tc increases with
the heating rate Ṫ used to crystallize the sample. To rationalize our results, we first use viscosity measurements
to establish a linear mapping between temperature T and the effective volume fraction, ϕ, of the micelles, treated
as hard spheres. Next, we reproduce the experimental Ṫ dependence of the crystallization temperature with
numerical calculations based on standard models for the nucleation and growth of hard-sphere crystals, classical
nucleation theory and the Johnson-Mehl-Avrami-Kolmogorov theory. The models have been adapted to account
for the peculiarities of our experiments: the presence of nanoparticles that are expelled in the grain boundaries
and the steady increase of T and, hence, ϕ during the experiment. We moreover show that the polycrystal grain
size obtained from the calculations is in good agreement with light microscopy data. Finally, we find that the ϕ

dependence of the nucleation rate for the micellar polycrystal is in remarkable quantitative agreement with that
found in previous experiments on colloidal hard spheres. These results suggests that deep analogies exist between
hard-sphere colloidal crystals and Pluronics micellar crystals, in spite of the difference in particle softness. More
generally, our results demonstrate that crystallization processes can be quantitatively probed using standard
rheometry.
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I. INTRODUCTION

The crystallization of colloidal suspensions has been inves-
tigated in detail because of its intrinsic interest (e.g., in protein
crystallization [1]) and as a means to understand crystallization
in atomic and molecular systems, for which colloids are
often regarded as a model system [2] whose characteristic
time and length scales are more readily accessible. Thanks
to advanced light-scattering techniques and scanning confocal
microscopy, experiments have provided unprecedented infor-
mation on the nucleation and growth of crystals, including
the volume-fraction-dependent nucleation rate or the structure
of the nuclei [3–11]. Most experiments have focused on
hard-sphere or charged colloids, although, more recently, more
complex systems, such as thermosensitive colloidal microgels
or mixtures of colloids and polymers, have emerged [12–16].
In most experiments on colloids, crystallization has been
investigated following a quench from the fluid phase to the
crystal phase. This is usually achieved by shear melting the
samples and then stopping the shear abruptly [5,8,16–18] or by
changing abruptly the temperature for mixtures of colloids and
thermosensitive surfactant micelles [14] that induce attractive
depletion interactions. To the best of our knowledge, a slow
transition from the fluid to the crystalline phase has not been
investigated yet, in spite of the obvious relevance of such a
protocol for comparison with atomic and molecular materials.
In fact, such an experiment would require tuning precisely and
in situ the particle volume fraction, which is, in general, a very
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challenging task. Thermoswellable microgel particles could,
in principle, be used [19], but typical swelling ratios are too
small to allow a wide range of volume fractions to be covered
by a sample prepared at a single microgel concentration. A
different approach has been proposed in Ref. [20], where
the slow evaporation of the solvent in a microfluidic chip is
exploited. In this paper, we use the temperature-dependent
formation of spherical micelles in Pluronics block copolymer
solutions to investigate the crystallization kinetics in a colloidal
system whose volume fraction is increased at a constant rate.

Triblock copolymers of Pluronics type are a class of
commercial polymers made of two lateral water-soluble
polyethylene oxide blocks and a central polypropylene oxide
block, whose degree of hydrophobicity can be tuned by varying
the temperature, T . Depending on polymer concentration
and temperature, the Pluronics copolymer can form spherical
micelles that are sufficiently monodisperse to crystallize at
a high volume fraction. Due to their amphiphilic character,
thermoresponsive properties, and biocompatibility, the Pluron-
ics copolymers are extensively used in industrial applications
as antifoaming or thickener agents, for instance, and have
been recognized as having potentials in biomedical sciences
[21,22]. Because these materials exhibit the viscoelastic
properties of gels at room temperature and can flow at lower
temperature, they also have been considered as potentially
interesting hydrogels in electrophoresis experiments [23–26].
Pluronics samples are also at the heart of numerous more
fundamental investigations. Depending on the lengths of the
different building blocks, the temperature, and the concentra-
tion, Pluronic copolymers can self-assemble and form liquid
crystalline and crystalline phases in aqueous solvents [27,28].
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In particular, crystalline phases made of spherical polymer
micelles arranged on cubic lattices in water are frequently
obtained. These phases have been used to template a crystalline
assembly of nanoparticles [29,30] or as convenient systems
to investigate the nonlinear rheology and flow properties of
polycrystals [31,32]. However, their crystallization kinetics
have been hardly investigated.

We have recently taken advantage of the thermophysical
properties of Pluronics micelles to study the effect of the ther-
mal history of Pluronics micellar crystal on the microstructure
of polycrystalline samples. We have shown, using confocal
microscopy [33], that the average grain size of Pluronics
polycrystals can be tuned by changing the heating rate, a
property well established for molecular and atomic systems
but hardly investigated in colloidal materials. In this paper,
we deepen the experimental study of the role of the heating
rate on Pluronics concentrated samples [34]. We use standard
rheometry to follow the crystallization processes while T is
continuously increased at a fixed rate, showing that varying
the temperature of the Pluronics sample results in a continuous
increase of the volume fraction of the micelles. The crystalliza-
tion temperature is found to increases with Ṫ : This behavior
is rationalized using standard theories for the nucleation and
growth of crystals developed for atomic and molecular systems
and extended to colloidal materials. Our analysis allows kinet-
ics crystallization parameters to be accessed and compared
to experimental data for hard-sphere suspensions. Finally, we
provide a quantitative link to the microstructure of the colloidal
polycrystal, a property hardly explored in colloidal crystals
[35].

The paper is organized as follows. We describe the system
and the experimental techniques in Sec. II and present our
results in Sec. III. Section IV is devoted to a detailed
presentation of the modeling of the nucleation and growth of
crystallites under nonisothermal conditions and of the resulting
polycrystal texture. Finally, in Sec. V, we quantitatively
analyze our experimental results in the framework of our model
and critically compare them to numerical and experimental
results for colloidal hard-sphere suspensions.

II. MATERIALS AND METHODS

A. Samples

The copolymer polycrystals are composed of an aque-
ous suspension of Pluronic F108, a commercial PEO-PPO-
PEO triblock copolymer purchased by Serva Electrophoresis
GmbH, where PEO and PPO denote polyethylene oxide and
polypropylene oxide, respectively. Each PEO block is made
of 132 monomers, and the central PPO block is made of 52
monomers. The copolymer mass fraction is fixed at 34%. The
copolymer is fully dissolved at T � 0 ◦C; on heating, the PPO
central block becomes increasingly hydrophobic, resulting in
the formation of micelles with a diameter of 22 nm [36],
whose number increases with T , eventually leading to a
crystalline phase at room temperature due to the packing of the
micelles [37]. The copolymer polycrystals are seeded with 1%
volume fraction nanoparticles. We used Bindzil plain silica
nanoparticles (Eka Chemical, sample type 40/130), with an
average diameter of 30 nm and a relative polydispersity of

19%, as determined by transmission electron microcopy. We
have recently shown by small angle neutron scattering [38]
that the presence of nanoparticle (NPs) does not perturb the
crystalline order of the copolymer micelles.

B. Experimental techniques

Rheology measurements were performed using a stress-
controlled rheometer (Physica UDS 200) equipped with a
Couette cell. A thin layer of low viscosity silicon oil was
spread on top of the sample to prevent water evaporation.
Temperature was controlled by a circulating water bath.
A temperature ramp from 3◦ to 23 ◦C at a given rate, Ṫ ,
was imposed on the circulating water. The actual sample
temperature was checked for each imposed Ṫ by inserting
a temperature probe directly in the sample confined between
the cup and the bob of the Couette cell. Typically, Ṫ was varied
between 10−3 ◦C min−1 and 2 ◦C min−1. For the fastest ramps,
Ṫ � 0.007 ◦C min−1, the same rate was applied in the full
range of temperatures, 3 ◦C < T < 23 ◦C. In order to reduce
the time required to prepare a sample, slower ramps were
run in three steps: A relatively fast ramp Ṫ = 0.5 ◦C min−1

was first imposed, up to T = 12 ◦C. The desired slow ramp at
Ṫ � 7 × 10−3 ◦C min−1 was then imposed in the intermediate
temperature range 12 ◦C–17 ◦C, during which the sample was
fully solidified. Finally, the temperature was raised to 23 ◦C
at a rate Ṫ = 7 × 10−3 ◦C min−1. We checked that such a
composite ramp provides the same rheological response and
crystallization temperature as a noncomposite ramp with a
fixed temperature change rate, equal to that imposed in the
intermediate temperature range from 12◦ to 17 ◦C min−1.

Complementary calorimetric experiments were performed
on a Micro-DSC III from Setaram, using deionized water
as a reference sample. Cooling and heating ramps between
0.5◦ and 25.7 ◦C at different imposed speeds, Ṫ , were used.
An isothermal step (1 h at 0.5 ◦C) was used to thermally
equilibrate the heat flow before starting the heating ramp, and
an isothermal step (900 s at 25.7 ◦C) was used before starting
the cooling ramp. In the following, we show the data acquired
during the heating ramps.

Sample imaging was performed with an upright Leica
microscope equipped with an air ×63 objective using dif-
ferential interference contrast. The samples were confined
in chambers made by two coverslips separated by a 250-
μm-thick 16 × 16 mm2 double-adhesive gene frame (Thermo
Scientific). Samples were prepared by placing the sample
chamber in a copper container immersed in a Haake thermal
bath, whose temperature was raised from 3 ◦C to 20 ◦C at a
controlled temperature rate.

III. EXPERIMENTAL RESULTS

A. Mapping between temperature and volume fraction

The complex modulus in the linear regime was measured
as a function of time at a fixed frequency, f = 0.5 Hz, while
a temperature ramp was imposed at rate Ṫ , from T = 3 ◦C
to T = 23 ◦C [Fig. 1(a)]. At low temperature the sample is
fluidlike with a loss modulus, G′′, of the order of 1 Pa and
a storage modulus, G′, of the order of 0.1 Pa. Above ∼4 ◦C,
G′′ increases smoothly while G′ is constant. This regime was
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FIG. 1. (Color online) Storage (squares) and loss (circles) moduli
as a function of temperature during a temperature ramp at a fixed
positive rate. In (a) the temperature rate is 0.007 ◦C min−1, in (b)
data are shown for three different temperature rates (0.007, 0.1,
and 0.5 ◦C min−1). The strain amplitude is 0.1% and the frequency
0.5 Hz. Inset: Frequency dependence of the storage (squares) and loss
(circles) moduli in the fluid phase at low temperature (top) and in the
crystalline phase at room temperature (bottom).

followed by an abrupt increase of both G′ and G′′, and the
storage modulus eventually exceeds the loss modulus. At
the final temperature G′ is of the order of 12 000 Pa and
is at least one order of magnitude larger than G′′. The very
abrupt fluid-to-solid transition is the signature of the sample
crystallization. We define Tc as the temperature at which the
storage and the loss modulus cross each other and identify
Tc as the crystallization temperature. We show in the inset of
Fig. 1(a) the frequency dependence of the complex modulus
at low (T = 4 ◦C) and room (T = 23 ◦C) temperature. At low
temperature the sample exhibits a typical terminal behavior of a
Maxwell fluid, G′′ = η0ω with an effective viscosity η0 = 0.32
Pa s, angular frequency ω = 2πf , and G′ = η0τω2, with a re-
laxation time τ = 0.056 s. At room temperature, the behavior
is typical of a viscoelastic solid, with a frequency-independent

storage modulus more than one order of magnitude larger
than the weakly frequency-dependent loss modulus. Note that
the transition is reversible, as the subsequent cooling of the
viscoelastic solid leads back to the initial low-temperature
Maxwell fluid.

In order to rationalize our experimental results, we propose
to use existing theories for colloidal suspensions, for which the
standard control parameter is the volume fraction of colloids.
To this aim, the first step is to provide a mapping between
temperature and volume fraction for the sample investigated
here. A mapping was derived in Ref. [37] by modeling the
structure factor of the micelles with that of hard spheres.
For a system very similar to ours, the authors found that the
volume fraction of micelles varies linearly with temperature.
Therefore, we assume that the volume fraction of the micelles
varies linearly with T ,

φ = α(T − T0), (1)

and we propose [39] to determine the parameters T0 and α

by comparing our rheology data to viscosity measurements
for colloidal hard-sphere suspensions [40,41]. The complex
viscosity, η = 1

2πf

√
G′2 + G′′2, is calculated and normalized

by the complex viscosity at low temperature (η0 = 0.32 Pa s)
and plotted as a function of temperature in Fig. 2. Up to
about ∼4.2 ◦C, the viscosity is constant, and then it increases
smoothly up to a temperature around 15 ◦C, where it has grown
by one order of magnitude. We find the best collapse of the
two sets of data for T0 = 4.2 ◦C and α = 0.0455 ◦C−1 (Fig. 2).
A reasonable agreement is found up to a fivefold increase
of the viscosity corresponding to a volume fraction of about
0.35. For volume fractions in the range 0.35–0.50 (before
crystallization), the reduced viscosity of the copolymer sample
increases more gently than that of supercooled hard spheres
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FIG. 2. (Color online) Complex viscosity normalized by the
viscosity of the solvent at low temperature (0.32 Pa s) as a function
of temperature (bottom axis) and effective volume fraction (top axis),
for samples prepared with different heating rates as indicated in the
legend. Inset: Viscosity of the suspension normalized by the viscosity
of the solvent versus volume fraction for our samples (blue triangles)
and for two independent measurements [40,41] of colloidal hard
spheres suspensions (red symbols).
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suspensions. This discrepancy may have several origins: first,
as micelles form, the “solvent viscosity” might decrease due
to polymer consumption. Moreover, the aggregation number
and the size of the micelles might slightly increase with
temperature [42], inducing slight changes in the effective
volume fraction. Finally, the micelle softness, as compared
to hard sphere particles, might play a role. Indeed, it is known
that at low φ the viscosity of soft and hard spheres behave
very similarly, while at larger φ soft spheres are less viscous
than a corresponding suspension of hard particles (see, e.g.,
Refs. [19,43]). In spite of these discrepancies at φ > 0.35, we
find that crystallization occurs for an equivalent hard sphere
volume fraction on the order of 0.52–0.56, a range similar to
that observed experimentally for hard-sphere suspensions.

The temperature dependence of the complex modulus
[Fig. 1(a)] can be rationalized using the mapping thus
established: from T = T0 to T = Tc, the sample becomes more
and more viscous (G′′ increases) as the volume fraction of
micelles increases continuously. The sample elasticity is not
affected (G′ remains small and constant), until crystallization
occurs due to micelle crowding, yielding the abrupt upward
jump of both G′ and G′′.

B. Effect of the heating rate on the crystallization temperature

Viscoelasticity data measured for different heating rates
are shown in Figs. 1(b) and 2. Prior to crystallization, all
data collapse nicely, indicating that the rate of increase of
the micelle volume fraction is not controlled by kinetics
factors but is instead controlled by thermodynamics and, thus,
depends only on temperature. Similarly, data collapse in the
solid crystalline phase at high temperature, and, hence, high
volume fraction, showing that the mechanical properties of
the solid phase are robust with respect to a change of the
solidification protocol. Note, however, that there are slight
differences in the loss modulus, which will be analyzed in
detail elsewhere. In contrast, we find that the crystallization
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FIG. 3. (Color online) Crystallization temperature as a function
of the heating rate as measured by linear rheology (blue circles) and
DSC (green stars). The red line is a fit to the experimental data using
the model described in the text.
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FIG. 4. (Color online) Heat flow versus temperature when tem-
perature is varied from 0.5 to 25 ◦C at a rate of 0.1 ◦C/min. Inset:
Zoom of the data in the zone when the crystallization peak occurs,
for data acquired at different temperature rates as indicated in the
legend. Data in the inset have been arbitrarily shifted along the y

axis. ** and * point, respectively, to the peaks due to micellization
and crystallization.

temperature depends significantly on Ṫ . Although this is
not a priori surprising since crystallization involves kinetic
processes, it is interesting to observe that simple rheology
experiments can capture these effects. Figures 1(b) and 2
show that the crystallization temperature is shifted toward
higher temperatures as Ṫ increases. The evolution with the
heating rate of the crystallization temperature, Tc, as measured
by rheology, is plotted in Fig. 3, for Ṫ spanning more than
three orders of magnitude. Numerical values are in the range
(15.5–19.5) ◦C. Although rather scattered, data clearly indicate
a decrease of Tc when Ṫ decreases leading eventually to an
“equilibrium” value Tc � 15.5 ◦C for very slow heating rates,
essentially independent of Ṫ .

We complement the rheology data with differential scan-
ning calorimetry (DSC) measurements of the crystallization
temperature. A complete DSC curve is shown in Fig. 4. One
can distinguish a very broad and deep inverse peak, due
to micellization, which is centered around T = 5 ◦C. This
peak is followed by a low-amplitude peak around 16 ◦C,
which is due to the crystallization of the micelles [39,44].
DSC data acquired at different Ṫ , although in a range
smaller than for rheology experiments due to experimental
limitations, show a similar shift toward higher temperature
of crystallization as Ṫ increases. Numerical values of the
crystallization temperature extracted from DSC are plotted
together with the rheology data in Fig. 3. Data measured with
the two techniques are compatible, supporting the method used
to extract a crystallization temperature from viscoelasticity
measurements.

IV. MODELING THE NUCLEATION
AND GROWTH OF CRYSTALS

The fact that crystallization occurs at a higher tempera-
ture (higher φ) when solidification proceeds faster can be
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understood by recalling that crystallization is a kinetic process.
As shown in a so-called time-temperature-transformation
diagram [45] (TTT diagram), crystallization occurs at small
supercooling (smaller volume fraction and, hence, lower T in
our case) for a very slow temperature ramp, while it occurs
at higher supercooling (larger volume fraction, higher T ) for
very fast ramps. To quantitatively account for our experimental
observations, however, one needs to take into account not
only the kinetically controlled nucleation process but also the
growth process of the crystalline phase. We use here standard
theories for the nucleation and growth of crystalline phases,
initially developed for atomic and molecular systems and
subsequently applied to colloidal suspensions. Moreover, we
adapt these theories in order to take into account the presence
of nanoparticles and the nonisothermal conditions under which
the sample solidifies.

A. Crystallization temperature and average crystallite size

We first recall how an average grain size can be computed,
using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory
[46–50]. In this theory one assumes that nucleation occurs
randomly and homogeneously and that the growth speed of
the crystallites, vG, does not depend on the extent of the
crystallization process and is isotropic. Following JMAK, the
extended crystal fraction at time t , Xe(t), that is, the volume
fraction of the whole sample which is occupied by crystals,
reads

Xe(t) = 4π

3

∫ t

0
I (τ )

[ ∫ t

τ

vG(τ ′)dτ ′
]3

dτ, (2)

where I (τ ) is the nucleation rate per unit volume at time τ and
4π
3 [

∫ t

τ
vG(τ ′)dτ ′]3 is the volume at time t of a grain that has

nucleated at time τ and has grown from time τ to time t , with
a time-dependent growth velocity vG(τ ′).

The extended crystal fraction does not take into account the
impingement between crystallites. As shown by Kolmogorov
and Avrami, the actual crystal fraction is related to Xe(t) by

X(t) = 1 − exp[−Xe(t)]. (3)

The average grain size R at the end of the crystallization
process can be derived from the final grain density [51,52]:

R =
[

3

4π

∫ ∞

0
Ia(τ )dτ

]−1/3

. (4)

Here Ia is the actual nucleation rate which takes into account
the fact that nucleation can only occur in regions which have
not crystallized yet,

Ia(τ ) = [1 − X(τ )]I (τ ) . (5)

The above equations are very general and hold for time-
dependent nucleation and growth rates, as is the case in our
experiments where a continuous heating is imposed. Note
that, using these equations, the standard result obtained in
the case of time-independent nucleation and growth rates
can be recovered [35]. In this case, Xe(t) = 4π

3 Iv3
Gt4. If one,

moreover, neglects impingement and considers the extended
volume fraction of crystallized material as the actual volume
fraction, the time t∗ at which crystallization stops reads
t∗ ∼ (Iv3

G)−1/4. Hence, the average crystallite size [Eq. (4)]
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FIG. 5. (Color online) Evolution of the crystal fraction X, with
temperature (bottom x axis) and with volume fraction (top x axis).
X is computed with the same parameters as the ones used to fit the
experimental data (Fig. 3). Data are shown for several heating rates,
as indicated in the caption.

reads R ∼ I (
∫ t∗

0 dτ )−1/3 ∼ ( vG

I
)1/4, as previously derived but

not experimentally verified for colloidal samples [35].
For a time-varying process, one can use Eqs. (2) and (3) to

calculate the temporal evolution of the crystallinity, provided
that expressions for vG and I are given. Before discussing in
detail how to model the T (or, equivalently, φ) dependence of
the nucleation and growth rates, we anticipate the results for
the calculated X(t) in the case of our samples. The evolution of
the actual volume fraction of the sample that has crystallized
is shown as a function of temperature (bottom axis) or volume
fraction (top axis) in Fig. 5, for several Ṫ spanning three orders
of magnitude. We take as time t = 0 the time at which the
sample temperature reaches the equilibrium solidification tem-
perature (T = 15.5 ◦C, φ = 0.514). All curves have sigmoidal
shapes and reach asymptotically 1. They are shifted towards
higher temperatures (and, hence, higher volume fractions)
when Ṫ increases, as observed experimentally. Although X(t)
reaches 1 only asymptotically, the curves shown in Fig. 5 can be
used to define a crystallization time, t∗, by setting a threshold
Xth such that X(t∗) = Xth. Knowing the temperature history
imposed to the sample, the evaluation of temperature T ∗ at
which crystallization is completed is then straightforward.
Having established how the crystallization temperature can
be, in principle, calculated, we now need to provide analytical
expressions for the nucleation and growth rates.

B. Nucleation rate, growth rate, and the effect of nanoparticles

We assume that crystallites grow into spherical particles at
a rate vG, which is given by the Wilson-Frenkel equation [35],

vG = Ds

λ
[1 − exp(−|
μ|/kBT )] . (6)

Here Ds is the long-time self diffusion coefficient of the
particles (atoms, molecules, or colloids) in the fluid phase, λ
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is the typical distance over which a particle diffuses to become
part of a growing crystallite, 
μ is the difference in chemical
potential between the solid and the fluid phases, and kB is
Boltzmann’s constant. Note that λ is expected to be of the
order of the particle size. All quantities depend on temperature
for atomic and molecular systems and on volume fraction for
colloidal systems.

We use the classical nucleation theory (CNT) to evaluate
the nucleation rate. Classical nucleation theory predicts that
the nucleation rate per unit volume, I , is an Arrhenius-like
function [53],

I = � exp[−
G∗/kBT ], (7)

where 
G∗ is the nucleation barrier and � the kinetic factor
[35],

� =
(

1

6πkBT nc

|
μ|
)0.5

ρL

24Ds

λ2
n2/3

c . (8)

In Eq. (8), nc is the number of particles in a critical nucleus and
ρL is the particle number density in the fluid phase. In CNT,
the critical radius and the nucleation barrier are calculated by
balancing the surface Gibbs free energy of a crystalline nucleus
of radius r , ES = 4πr2γ0, and the volume Gibbs free-energy
term, EV = − 4π

3 ρS |
μ|r3, where γ0 is the surface energy
between the fluid and the crystal phase and ρS is the number
density of the particles in the solid phase. Since Es grows as
r2 while EV decrease as −r3, the net change of free energy
for a nucleus as compared to the fluid phase goes through
a maximum: The free-energy barrier to be overcome for a

nucleus to be stable is then 
G∗ = 16π
3

γ 3
0

(ρS |
μ|)2 .
We now provide a model to account for the presence of

a small amount of NPs of diameter σP that are added to
the copolymer suspension at a volume fraction φP . We have
previously observed that, on solidification, the NPs concentrate
in the grain boundaries and influence the microstructure of
the polycrystals [33]. In the following, we neglect the effect
of the diffusion of NPs on crystal growth, which could
occur because of NPs partitioning, and, thus, assume that
vG remains unchanged [Eq. (6)]. By contrast, we argue that
the NPs influence the barrier for nucleation, 
G∗, because
they are trapped at the interface between the crystalline phase
and the fluid phase, as observed experimentally [33,54]. We
assume that the net effect of this trapping is a decrease of
the surface free energy of the crystalline nuclei. To model this
phenomenon, we adapt the CNT calculation of the free-energy
barrier by modifying the surface free-energy term ES . We
propose that the surface free energy is reduced by an amount
E′

S proportional to the surface occupied by the NPs trapped
at the interface. Since these particles were initially in the
volume occupied by the crystallite (the number of particles
in a crystallite of radius r is 8r3φP /σ 3

P ), their number scales
as r3φP /σ 3

P . Thus, E′
S ∼ σ 2

P r3φP /σ 3
P , assuming that each NP

at the interface contributes to a reduction of surface energy
proportional to the area it occupied at the interface, π

4 σ 2
P , so

the modified surface free energy reads

ES = 4πγ0r
2 − E′

S = 4πγ0r
2 − γ0

2πEP φP

σP

r3, (9)

where EP is a proportionality constant accounting for both
the partitioning of the NPs (i.e., for what fraction of them
is actually rejected at the interface of the growing crystallite)
and the reduction of surface tension due to one single NP. Note
that the fact that impurities could affect the liquid-solid surface
tension was already mentioned in Ref. [55] in the context of
metallic alloys and in Ref. [56] in the context of phospholipid
monolayers.

By balancing the surface and volume terms, we find a
modified equation for the nucleation barrier:


G∗ = 16π

3

γ 3
0[

ρS |
μ| + 3
2γ0EP φP /σP

]2 . (10)

Interestingly, the NP contribution, although physically due to
a change of the surface term, can formally be incorporated
in the volume term EV , because it scales with the volume
of the nucleus. The net effect of the NPs is, thus, to lower the
nucleation barrier thanks to an effective increase of the volume
term.

V. ANALYSIS OF THE EXPERIMENTAL DATA

A. Numerical values of the parameters

In this subsection, we detail the numerical values and the
fitting parameters used in evaluating vG and I as defined in
Sec. IV B. Several parameters can be evaluated from previous
numerical and experimental works on hard-sphere colloidal
suspensions, finally leaving four fitting parameters. In all
calculations, we use the mapping between volume fraction
and temperature determined experimentally, Eq. (1), assuming
that this mapping is valid in the whole range of volume
fractions considered. The number density in the liquid phase
is ρL = 6φ

πσ 3 , with σ = 22 nm the micelle diameter. To reduce
the number of fitting parameters with no significant loss of
generality, we assume a constant volume fraction in the solid
phase (φs = 0.5), so ρS = 6φs

πσ 3 . We, furthermore, fix nc = 100,
since for hard spheres the number of particles in a critical
nucleus has been found numerically to depend weakly on
volume fraction [35]. Note that the exact value of nc does
not have a strong influence on the calculations, since only
the kinetic parameter � depends on nc but very weakly,
� ∼ n

1/6
c [Eq. (7)]. Finally, the micelle diffusion coefficient

Ds is strongly dependent on volume fraction and, hence,
on temperature. Ds could be, in principle, estimated from
the viscosity data of Fig. 2. However, viscosity is measured
macroscopically on samples where crystalline and fluid phases
may coexist, while Eqs. (6) and (8) require the microscopic
diffusion coefficient in the fluid phase alone. We thus estimate
Ds from measurements of the microscopic structural relaxation
time, τα , of supercooled suspensions of colloidal hard spheres,
assuming Ds

Ds,0
= τα,0

τα
, where the index 0 refers to quantities

in the limit φ → 0. By fitting the data of Ref. [57] for
φ � 0.575, we find the empirical law Ds = D0[(1 − 2.5φ +
1.36φ2)(1 − φ

φc
) + 11.056φ2(1 − φ

φc
)2.5], with φc = 0.598 and

D0 = 6 × 10−14 m2 s−1 evaluated from the Stokes-Einstein
relation, Ds = kBT

3πη0σ
, using η0 = 0.32 Pa s. This empirical law

holds to a very good approximation up to φ ∼ 0.55 and is
consistent with our viscosity data for the micellar suspension
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up to the onset of crystallization. Although at higher φ this law
eventually departs from the data of Ref. [57], we have checked
that the detailed form of Ds at very high φ is irrelevant for our
findings.

The remaining parameters appearing in vG and I are
treated as fitting parameters. According to numerical work
on hard spheres [35], the volume fraction dependence of
the chemical potential difference between the solid and the
liquid can be well adjusted by the simple functional form

μ= AμkBT (φcrys − φ), with φcrys = 0.49776 and Aμ = 14.7.
Here we consider the prefactor Aμ as a fitting parameter
and take φcrys = 0.514. With this choice, 
μ = 0 for T =
15.5 ◦C, which is the experimental numerical value of Tc

measured for extremely slow heating rates (see Fig. 3), for
which the crystallization temperature is nearly independent
of the heating rate. The surface tension between the fluid
and solid phases in colloidal suspensions has been measured
experimentally by several groups. They all find γ0 = kBT

Aγ

σ 2

with Aγ of order one [58–60]. In the following, we use the
same expression taking Aγ as a fitting parameter. Numerical
simulations and experiments show that the typical distance
over which diffusion occurs is proportional to the colloid
size: λ = Aλσ , although there is a significant discrepancy
between simulation and experiments: Aλ is found in the range
0.3–0.5 in simulations [35], while it ranges from 3 to 17 in
experiments [6]. In the following, we assume λ = Aλσ with
Aλ a fitting parameter. The fourth adjusting parameter is Ep,
the proportionality constant that accounts for the effect of NPs
in the reduction of the surface tension already discussed in
Sec. IV B; see Eq. (10).

B. Fit of the experimental data

We use the model developed above to fit the experimental
crystallization temperature as a function of temperature in-
crease rate (Fig. 3). We remind that rheology measurements
yield Tc, defined as the temperature at which the sample
response becomes predominantly solidlike (the storage mod-
ulus G′ becomes larger than the loss modulus G′′). In the
model, one needs to define a threshold for the crystallinity X

in order to define the crystallization temperature, T ∗, since
the sample is fully crystallized only for t → ∞ (Fig. 5).
We identify Tc with T ∗ choosing a threshold Xth = 0.9 and
check that the results are essentially threshold independent
for 0.5 � Xth � 0.98. The best fit to the experiments is
shown as a continuous line in Fig. 3, showing a good
agreement with the data. This adjustment was obtained with
the following values of the fitting parameters: Aμ = 10 ± 2,
Aγ = 1.5 ± 0.1, Aλ = 0.11 ± 0.3, EP = 113 ± 5. The values
for Aμ, Aγ , and Aλ are in agreement with those expected
from numerical simulations and experiments on hard-sphere
colloidal suspensions (see Sec. V). They are also reasonably
close to the values extracted using the same model for
reproducing the crystallite size as a function of NP content
and temperature rate [33] [Aμ = 17 ± 3, Aγ = 0.75 ± 0.2,
Aλ = 0.14 ± 0.05, EP = 126 ± 24], albeit with a different
kind of nanoparticle impurities.

As a further check of the soundness of our approach, we
compare the Ṫ dependence of the average crystallite size
obtained from the model to that measured experimentally

(a) 0.001°C/min (b) 0.02°C/min

(c) 0.2°C/min (d) 2°C/min

FIG. 6. Differential interference contrast light microscopy of the
samples prepared with different heating rates as indicated in the
legend. Scale bars: 20 μm.

by analyzing images of the polycrystalline microstructure
(Fig. 6). The images are taken by differential interference
contrast optical microscopy and the microstructure is visible
thanks to the presence of nanoparticles that segregate in
the grain boundaries, thereby providing the required optical
contrast between adjacent grains. To calculate the average
grain size, R, as a function of Ṫ , we use Eq. (4) with
the same set of fitting parameters as determined by fitting
Tc(Ṫ ). Experimental and numerical results are shown in
Fig. 7 as symbols and a line, respectively. For Ṫ in the
range 10−4–1 ◦C min−1, the model predicts R to be in the
micrometer range and to continuously decrease as Ṫ increases,
as observed previously [33]. Note that the drop of R is
significant at relatively fast heating rates, while the grain
size levels off at about 10 μm for very slow rates. Indeed,
as discussed in Ref. [33], for slow ramps the crystallite size
is only limited by the presence of nanoparticles. The model

0.0001 0.001 0.01 0.1 1
0.1

1

10

100

  Model
  Experiments

R
 (

μm
)

T (°C/min)
.

FIG. 7. (Color online) Average size of the crystallites as a func-
tion of the heating rate. The symbols correspond to the experimental
data and the line is the numerical values calculated with the model
detailed in the text. The adjusting parameters are the ones extracted
from the fit of the experimental data of Fig. 3.
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is in very good agreement with the experimental values of
R for samples prepared with temperature rates in the range
0.001–0.2 ◦C min−1, capturing both the decreasing trend of
R and its absolute value, thus providing additional support
to our analysis. Interestingly, the grain size can be measured
easily for the lowest heating rates, for which the network of
grain boundaries is clearly visible in the microscope images
[Figs. 6(a) and 6(b)]. For Ṫ = 0.2 ◦C min−1 [Fig. 6(c)] the
contrast is poorer, but the grain boundaries are still visible.
By contrast, the sample prepared with the fastest heating rate,
Ṫ = 2 ◦C min−1 [Fig. 6(d)], appears uniform, presumably due
to the very small grain size, as predicted by the model, and to
a less efficient partitioning of the NP between the bulk and the
grain boundaries, as also observed in Ref. [33].

C. Discussion

We have used a thermosensitive micellar system, for
which the volume micelle volume fraction can be tuned with
temperature, to investigate the crystallization dynamics of
colloidal suspensions under time-varying volume fraction con-
ditions. The crystallization temperature Tc was measured using
standard rheometry and its dependence on the rate of the tem-
perature ramp used to solidify the sample was investigated. The
experimental data can be very well accounted for by using a
standard model for the nucleation and growth of colloidal crys-
tals that has been adapted to the case of time-varying volume
fraction conditions and to the presence of NP impurities. Our
model predicts also how the microstructure of the polycrystal
evolves with Ṫ , which is found in good quantitative agreement
with the experiments, thus providing a successful cross-check
of our approach. We have, therefore, demonstrated that rheom-
etry experiments combined with standard models for the nu-
cleation and growth of colloidal crystals allow quantitative pa-
rameters related to the crystallization processes to be derived.

Our analysis was performed assuming that the behavior of
the suspension of copolymer micelles can be mapped to that of
hard-sphere suspensions. To proceed a step further along this
analogy, we compute the nucleation rate, as given by Eqs. (7)
and (10), using the set of adjusting parameters determined
in Sec. V, and compare it to results from experiments and
simulations of hard spheres. Data taken from the literature
are collected and plotted as a function of volume fraction in
Fig. 8, together with our model. In order to compare data
obtained with different particles and solvent viscosity, we
plot the normalized nucleation rate I ∗ = Iσ 5/D0, where σ

is the colloid diameter and D0 its diffusion coefficient in the
dilute regime [35]. Interestingly, one finds a good agreement
between the experimental data of hard sphere suspensions
and the curve extracted from our model, the agreement being
much less good with results from numerical simulations of
hard sphere suspensions. More quantitatively, our data are
slightly shifted towards higher volume fraction as compared
to data for hard spheres. We indeed find that the maximum of
I ∗ occurs at φ = 0.58 for copolymer micelles, compared to
φ = 0.56 for hard-sphere colloids. By contrast, the height of
the maximum is of the same order of magnitude: we calculate
a maximum normalized nucleation rate of ∼2 × 10−8 for our
micelles, whereas experiments on hard-sphere yield values in
the range 2 × 10−5–7 × 10−8. Despite small discrepancies, the

0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61
10-25

10-21

10-17

10-13

10-9

10-5

 I*

 HS (Exp.)
 HS (Simulation)

 Model 

φ

FIG. 8. (Color online) Normalized nucleation rate, I ∗ = Iσ 5/D0,
as a function of particle volume fraction. Symbols are experimental
data for hard spheres suspensions of Ref. [7] (squares), Ref. [3]
(circles), Ref. [40] (diamonds), and Ref. [4] (triangles). Line and
symbols are numerical simulations of monodisperse (circles) and 5%
polydisperse (squares) hard-sphere suspensions, taken from Ref. [35].
The thick line is our model. Figure adapted from Ref. [35].

remarkable agreement found here hints at profound analogies
between hard-sphere suspensions and suspensions of Pluronics
micelles, in spite of the different nature of the materials.
In particular, the interaction potential between micelles is
expected to be much softer than that between hard spheres. The
softness of the potential is known to have a profound influence
on the suspension properties near jamming. However, this
appears not to be the case when the packing fraction is still well
below random close packing, as at the onset of crystallization,
presumably because the particles hardly experience any direct
contact.

To conclude, thanks to our approach combining exper-
iments and modeling, we have pointed out analogies be-
tween hard-sphere colloidal crystals and Pluronics micel-
lar crystals, in spite of the difference in particle softness.
This observation should be of particular interest to the
numerous groups currently working on soft, thermoswal-
lable microgel particles. In addition, we have provided a
general framework to rationalize the effect of temperature
history or, more generally, volume fraction history, on
colloidal crystallization. These results should be relevant
for colloidal systems where volume fraction can be tuned
and in particular for the vastly investigated Pluronics gels.
Finally, we have demonstrated that crystallization processes
can be quantitatively probed using standard rheometry, an
experimental method more readily accessible than most
microscopic characterization tools, such as neutron or x-ray
scattering.
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