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A generalization of the Faxén’s theorem to the nonsteady motion of a sphere through a compressible linear
viscoelastic fluid in arbitrary flow is presented. From this result, expressions for the velocity autocorrelation
function (VAF) and the time-dependent diffusion coefficient of the particle can be obtained. We analyze the
behavior of the VAF and the time-dependent diffusion coefficient for different physical regimes of the suspending
fluid. The relevance of the theorem to microrheology is discussed.
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I. INTRODUCTION

The velocity autocorrelation function (VAF) of a Brownian
particle in a highly viscous fluid probes time scales for which
compressibility effects are important. To have an estimate of
these effects, consider the different time scales that appear
when a small spherical particle of radius a is immersed in a
fluid. There is a sonic time scale tc = a/c, which is the time a
sound wave of speed c takes to travel a distance equal to the
particle’s radius. A second characteristic time scale is a viscous
one, tν = a2/ν, which is the time that a shear wave takes to
diffuse over the same particle’s radius, where ν is the kinematic
viscosity of the fluid. For a particle of radius a = 1 μm
suspended in water, typically tc ∼ 10−9 s and tν ∼ 10−6 s,
and these two time scales are well separated, meaning that on
the time scales in which the velocity decays (around tν) the
fluid behaves in all respects as incompressible (c → ∞). For
the same particle suspended in glycerol, however, these time
scales are comparable: tc ∼ 10−9 s and tν ∼ 10−9 s. That is,
for highly viscous fluids, the vorticity diffuses very rapidly
(on time scales comparable to the sound traversal time) and
compressibility becomes important. Note that the ratio of these
time scales gives the dimensionless number ac/ν which is
also the ratio between the length scale of the particle a and a
fluid length scale λνc = ν/c. We expect compressible effects
to become important as the size of the particle is reduced. For
water, this length scale is very small λνc = 6.6 × 10−10 m, but
for glycerol it takes the value λνc = 6.2 × 10−7 m. This implies
that for glycerol, compressibility is important already for
micron-sized particles, while for water it becomes important
for nanoscopic particles.

In addition, all fluids behave viscoelastically at sufficiently
short time scales because molecular relaxation is not in-
stantaneous. For example, glycerol behaves viscoelastically
with a Maxwell relaxation time τ = 0.6 × 10−9 s [1], which
is comparable to the previous two times discussed above.
Therefore, we expect that in order to describe the velocity
autocorrelation function of a micron-sized particle in glycerol,
one needs to take into account both viscoelasticity and
compressibility. Viscoelasticity becomes important also for
nanoscopic particles in water or any simple liquid, a fact that
was already appreciated in the pioneering work of Zwanzig and
Bixon [2] [see [3] for the correction of a small error in their

work]. For micron-sized particles in water, elastic relaxation
is so fast compared to the time scale of the velocity decay
that the fluid can be safely assumed to be Newtonian. On the
other hand, in the case of a Brownian particle suspended in
a wormlike micellar system, for example, a fluid known to
behave as a viscoelastic Maxwell fluid with a single relaxation
mode [4], typical time scales are tc = 10−9 s, tν = 10−9 s,
τ = 10−2 s [5]. In this case, we have that sound and viscous
times are comparable and well separated from the viscoelastic
relaxation time. This situation can occur in several polymeric
fluids (generally characterized by large elastic relaxation
times) for sufficiently small probe particles. For low viscosity
wormlike micellar systems, we may readily reach regimes
in which we have the three time scales well separated, i.e.,
tc � tν � τ . It is therefore apparent that, depending on the
type of solvent and the size of the suspended particle, a large
variety of cases might exist in which the different processes
can interplay. The analysis of particle diffusion on such small
time scales is not a purely academic problem, but thanks to
recent improvements in the experimental capabilities, sub-Å
spatial precision at nanosecond time frames in the detection of
a particle trajectory is becoming accessible [6,7].

The understanding of the behavior of the velocity
autocorrelation function of a colloidal particle in a fluid has
a long history and is still a fascinating lively topic [6–11].
The usual approach is to consider the time- (or frequency-)
dependent force acting on a sphere due to the surrounding fluid.
This force is proportional to the velocity of the particle with a
frequency-dependent friction coefficient. From the knowledge
of the friction coefficient, one can directly infer the behavior
of the velocity autocorrelation function. The force on a sphere
in an incompressible Newtonian fluid can be computed by
solving the linearized equations of hydrodynamics around the
sphere and integrating the stress tensor [12]. An equivalent
elegant alternative is to use the method of induced forces
introduced by Mazur and Bedeaux [13]. Bedeaux and
Mazur also have solved the problem of computing the
memory friction of a Brownian particle suspended in a
compressible Newtonian fluid [14]. This is done in the form
of a generalization of Faxén’s theorem that allows one to
relate the force on the sphere with the unperturbed arbitrary
flow of the fluid. The effects of harmonic trapping on the
VAF of a particle in a compressible fluid have been addressed
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in Ref. [15]. On the other hand, Grimm et al. [16] have
considered the VAF of an incompressible viscoelastic fluid
of the Maxwell type. To the authors’ knowledge, there are no
results for the force on a sphere immersed in a compressible
non-Newtonian fluid, nor of the corresponding VAF. The
formulation of Faxén’s theorem for a compressible linear
viscoelastic fluid represents an extension of Stokes’ theorem in
the sense that it provides not only the force on a quiescent fluid
(and hence the memory friction which is relevant for passive
microrheology experiments), but also the force on arbitrary
flows of the solvent surrounding the particle which can be
important under specifically designed active microrheology
experiments.

The behavior of the VAF and its corresponding time
integral that gives the time-dependent diffusion coefficient
in a viscoelastic fluid represents a crucial issue in passive
microrheology experiments [17]. In these experiments, the
video tracking of the position of a diffusing Brownian
particle is used in order to infer the viscoelastic properties
of the media. Many new techniques have appeared for the study
of such fluids involving embedded colloidal particles, such as
one-particle [18–21], two-particle [22–24], and many-particle
microrheology [25,26] as well as optical tweezers [27,28]. The
extraction of the viscoelastic properties from the diffusion of
the particles is done through a generalized Stokes-Einstein
relation (GSER), which is a heuristic approximate expression
relating the particle mean square displacement with the
complex modulus of the suspending fluid. The limits of validity
of the GSER have been thoroughly discussed in Ref. [17].
In particular, inertia of both probe particle and medium are
neglected in the GSER so that the standard microrheology is
inaccurate at high frequency where inertia is important. For
incompressible fluids, it has been recently shown [29] that the
contributions to inertia in one-particle passive microrheologi-
cal analysis can be properly taken into account. In other words,
it is not necessary to use the approximate GSER and one can
use (1) the direct connection of the velocity autocorrelation
function with the friction memory in the (exact) generalized
Langevin equation of the Brownian particle, and (2) the direct
connection of the friction memory with the force exerted
by a viscoelastic incompressible fluid on a sphere. In this
way, it is possible to obtain the viscoelastic modulus as a
function of the mean square displacement, without further
approximations beyond the assumed incompressibility and
linear viscoelastic behavior, permitting us to extend the range
of frequencies available to quantitative microrheology [29]. As
the range of frequencies available experimentally is increased,
it seems relevant to address what the effects of compress-
ibility are in the VAF of particles suspended in viscoelastic
fluids.

The outline of the paper is the following: In Sec. II,
Faxén’s theorem is generalized to the case of a compress-
ible viscoelastic fluid with inertia, and an explicit form of
the friction memory is evaluated. In Sec. III, the velocity
autocorrelation function (VAF) based on the viscoelastic
friction memory is calculated for a particular linear vis-
coelastic model, the Oldroyd-B model, and its behavior under
different fluid regimes investigated. We end up with some
comments on the use of the results of this paper for passive
microrheology.

II. FAXÉN’S THEOREM

We consider a macroscopic sphere of radius a immersed
in a linear viscoelastic compressible fluid. The effects of heat
conductivity are neglected and the fluid is isothermal. The
linearized conservation equations for the mass and momentum
densities of a viscoelastic fluid are given by

∂

∂t
δρ(r,t) = −ρeq∇ · δv(r,t), |r| > a

(1)

ρeq ∂

∂t
δv(r,t) = −∇ · P(r,t) + Fext(r,t), |r| > a

with usual stick boundary conditions on the surface. Here,
δρ,δv are the perturbations with respect to equilibrium of the
hydrodynamic fields, Fext(r,t) is an external body force acting
on the fluid, and P(r,t) is the pressure tensor which is linear
with respect to the velocity gradient. The pressure tensor for a
compressible linear viscoelastic fluid is assumed to be of the
form

P(r,t) = p1 −
∫ t

−∞
S(t − t ′)∇ · δv(r,t ′)dt ′1

−
∫ t

−∞
G(t − t ′){∇δv(r,t ′) + [∇δv(r,t ′)]T }dt ′,

(2)

where p is the hydrostatic pressure which is given as a function
of the density of the fluid in terms of the equation of state

∇p(r,t) = c2
0∇ρ(r,t), (3)

where c0 = √
dp/dρ is the total speed of sound of the fluid,

obtained from a total pressure p made by a solvent pressure
contribution ps and a usual osmotic polymeric correction p0,
generally small in dilute polymer solutions. The memory
functions G(t − t ′) and S(t − t ′) define the compressible
viscoelastic response. For a Newtonian fluid, these memory
functions are extremely short ranged in time and can be
modeled as proportional to Dirac delta functions

G(t − t ′) = ηδ(t − t ′), S(t − t ′) = (
ηv − 2

3η
)
δ(t − t ′),

(4)

where η and ηv are the shear and bulk viscosities, respectively.
Therefore, the memory functions generalize shear and bulk
viscosities in the viscoelastic realm. For a dilute polymer
solution, aside from the Newtonian contribution, there exists a
polymer contribution which is proportional to the polymer con-
centration [see for example, the Oldroyd-B model in Eq. (26)].
Obviously, for very dilute solutions, the non-Newtonian effects
will be proportionally small. Note that the constitutive model
(2) for compressible linear viscoelasticity that we adopt in this
work is the most general isotropic relationship between the
stress tensor and the shear rate tensor.

In order to solve the hydrodynamic equations (1) in the
presence of the sphere and evaluate the forces acting on it, we
follow here the pioneering work of Mazur and Bedeaux based
on the method of induced forces [13]. In this formulation, the
fluid equations are extended to all points of space, including
the space occupied by the sphere. The presence of the sphere,
which is conventionally taken into account through boundary
conditions on the surface of the sphere, is now accounted for
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by a set of induced force densities Find(r,t) whose target is to
reproduce the same effect that the boundary conditions would
have on the fluid motion. In this way, for all r we have

ρeq ∂

∂t
δv(r,t) = −∇ · P + Find(r,t) + Fext(r,t). (5)

The induced force density Find is nonzero only inside, and
on the surface of the sphere, this is Find(r,t) = 0, r > a. The
continuity equation remains the same, but now it is valid for
all r. In the case of stick boundary conditions, Find is chosen
in such a way that

δv(r,t) = u(t) + �(t) × r, |r| � a
(6)

δρ(r,t) = 0, |r| < a

where u(t) and �(t) are, respectively, the linear and angular
velocities of the sphere. By this choice, we ensure that the
resulting fluid motion is the same as that evaluated from Eq. (1)
with stick boundary conditions. The induced force for r < a

takes the form

Find(r,t) = ρ
∂

∂t
[u(t) + �(t) × r] (7)

Indeed, with Eq. (7), the fields (6) are the solution of
Eq. (5) with Eq. (2), the latter containing memory effects.
The induced force contains, in addition, a singular surface
contribution proportional to δ(r − a) as detailed in Ref. [13].
The explicit form of this singular contribution can be found
in particular simple flows as shown in Ref. [13] where the
singular induced force is seen to depend on the flow. When
memory is present, we expect that the way this surface singular
induced force depends on the flow will contain also memory
effects. However, in the method of Mazur and Bedeaux, this
is not important because the explicit knowledge of form of
the induced force is not used, only integrals over the sphere
of the induced forces are required. These integrals are readily
obtained in terms of flow properties, as detailed in Ref. [13].

By defining the Fourier transform of a field a(r,t) with the
convention

a(r,ω) ≡
∫ ∞

−∞
eiωta(r,t)dt, (8)

we may transform the equations of motion for the fluid to
Fourier space, obtaining

[−iωρeq − G+(ω)
]δv(r,ω)

= −γ (ω)∇δρ(r,ω) + Find(r,ω) + Fext(r,ω),

[−ω2 − c2(ω)
]δρ(r,ω)

= −∇ · [Find(r,ω) + Fext(r,ω)] , (9)

where the following definitions have been introduced:

γ (ω) ≡ c2
0 − iω

ρeq
[G+(ω) + S+(ω)],

(10)

c2(ω) ≡ c2
0 − iω

ρeq
[2G+(ω) + S+(ω)],

G+(ω) ≡
∫ ∞

0
eiωtG(t)dt, S+(ω) ≡

∫ ∞

0
eiωtS(t)dt. (11)

These Equations (9)–(11) are formally identical to those
obtained by Bedeaux and Mazur [see Eqs. (2.12) and (2.13) of

Ref. [14]]. The only difference is in the definition of γ (ω),c(ω)
given in Eq. (10), which in Ref. [14] has the following form,
valid for a Newtonian fluid only:

γ (ω) ≡ c2
0 − iω

ρeq

(
η

3
+ ηv

)
, c2(ω) ≡ c2

0 − iω

ρeq

(
4η

3
+ ηv

)
.

(12)

In this way, Eq. (11) is obtained from Eq. (12) by replacing η

by η(ω) and ηv by ηv(ω), where

η(ω) = G+(ω), ηv(ω) = S+(ω) + 2
3G+(ω). (13)

The calculation required to compute the total force K(ω)
remains unchanged from that of Bedeaux and Mazur under
the transformation η → η(ω) and ηv → ηv(ω). Therefore, we
can simply read off the final expression for the total force
on the particle from the expression given in Eq. (3.14) of
Ref. [13]; this is

K (ω) = −12πG+(ω)a(αa)2

[(
iωa

c

)2

A(ω) + 2(αa)2B(ω)

]−1

×
{[(

1 + αa + 1

9
(αa)2

)
B(ω) − 1

9

(
iωa

c

)2

A(ω)

]

× u(ω) − B(ω)

[
(1 + αa)δvs

o(ω) + 1

3
(αa)2δvv

0

]

+ 1

9

iω

ρeq

[(
iωa

c

)2

A(ω) − (αa)2B(ω)

]
rδρ0

v

}
(14)

(note a wrong sign in the original equation). We have
introduced the following definitions:

A(ω) ≡ 1 + αa + 1

3
α2a2, B(ω) ≡ 1 + iωa/c + 1

3
(iωa/c)2,

α(ω) ≡
(

− iωρeq

G+(ω)

)1/2

, Re(α) > 0 (15)

δvs
0(ω) ≡ 1

4πa2

∫
δv0(an,ω)dS,

δvv
0(ω) ≡ 3

4πa3

∫
r<a

δv0(r,ω)dr, (16)

rδρ0
v
(ω) ≡ 3

4πa3

∫
r<a

rδρ0(r,ω)dr.

Here, δρ0 and δv0 are the solutions of Eq. (1) in the absence
of induced forces, that is, the flow fields unperturbed by the
presence of the spherical particle. The integration of δvs

0 is
made over the surface of the spherical particle, while for δvv

0
it is made over its volume.

Equation (14) represents a generalization of Faxén’s theo-
rem to a compressible linear viscoelastic fluid and it provides
the force K (ω) acting on a particle moving with velocity u(ω)
through an arbitrary inhomogeneous, unsteady velocity field
δv0(ω,r). When the unperturbed fluid is homogeneous and
at rest, this is δv0 = 0 and δρ0 = 0, the force on the particle
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reduces to

K (ω) = −ζ+(ω)u(ω), (17)

where the frequency-dependent friction coefficient is given by

ζ+(ω) = 6πG+(ω)aφ(ω) (18)

and

φ(ω) = (αa)2

[
1 + αa + 1

9 (αa)2
]
B(ω) − 1

9

(
iωa
c

)2
A(ω)

1
2

(
iωa
c

)2
A(ω) + (αa)2B(ω)

.

(19)

Equation (18) is the Stokes formula for a compressible linear
viscoelastic fluid. The Newtonian case given by Bedeaux
and Mazur [13] is recovered after substituting the Newtonian
memory functions

G+(ω) = η, S+(ω) = ηv − 2
3η, (20)

which are the Fourier transforms of Eq. (4).
The incompressible limit is obtained formally by taking

c0 → ∞ in Eq. (18). This leads to the memory friction for an
incompressible linear viscoelastic fluid

ζ+(ω) = 6πG+(ω)a
(
1 + αa + 1

9 (αa)2
)
. (21)

This result has been presented recently in Ref. [29]. In the
Newtonian limit for which (20) applies, one recovers from
Eq. (21) the result given by Mazur and Bedeaux in Ref. [14]
for an incompressible Newtonian fluid.

III. VELOCITY AUTOCORRELATION FUNCTION

In this section we compute, with the help of Faxén’s
theorem, the velocity autocorrelation function of a spherical
Brownian particle moving in a compressible linear viscoelastic
fluid, particularized to the case of the Oldroyd-B model, and
we analyze its behavior for different physical fluid regimes.

The equation of motion for a single particle of mass m

and velocity u(t) suspended in an equilibrium solvent can
be obtained from the microscopic dynamics with a projector
operator technique [30]. In this technique, a few relevant
variables are selected as those that allow us to describe the
dynamics of the system. By splitting the dynamics into relevant
and irrelevant parts with the help of a projection operator and
solving formally for the latter in terms of the former results
in a closed, formally exact equation of motion for the selected
variables. The formally exact result when the relevant variable
is the velocity of a colloidal particle is

mu̇(t) = −
∫ t

−∞
ζ (t − t ′)u(t ′)dt ′ + F̃(t), (22)

where ζ (t) is a friction memory function and F̃(t) is a
microscopically defined “random” force that satisfies the
fluctuation-dissipation theorem

〈F̃(t)F̃(t ′)〉 = kBT ζ (|t − t ′|)1, (23)

where 1 is the unit tensor. If we average Eq. (22) over initial
conditions and transform in frequency domain, we obtain
an equation that is identical to Eq. (17). We may, therefore,
model the microscopic friction memory ζ+(ω) in terms of the
memory obtained from the continuum theory. This fact allows

us to transfer the information gathered with the macroscopic
continuum equations (1) to the realm of microrheology where
thermal fluctuations responsible for the diffusion of probe
particles are monitored.

We introduce the normalized autocorrelation function c(t)
as

c(t) = m

3kBT
〈u(t)·u〉 (24)

that satisfies c(0) = 1. In the Appendix it is shown that the
normalized autocorrelation function c(t) can be obtained from
ζ+(ω) as

c(t) = 2

π
m

∫ ∞

0
dω cos(ωt)

× Re[ζ+(ω)]

{Re[ζ+(ω)]}2 + {Im[ζ+(ω)] − mω}2 . (25)

In what follows, we use the linear viscoelastic compressible
result in Eq. (18) for the memory friction ζ+(ω). Details
are given in the Appendix. We need to further specify the
functional form of the moduli G+(ω),S+(ω) and we choose
the Oldroyd-B model for explicit results. In this model, the
moduli are given by

G+(ω) = η + ηp

1 − iωτ
,

(26)

S+(ω) = ηv − 2

3
η − 2ηp

1 − iωτ
,

where τ is the relaxation time of the fluid and ηp = npkBT τ its
polymeric viscosity, determined by the concentration of poly-
mers np, the Boltzmann constant kB , and the temperature T .

We study the effect of the speed of sound, viscosity,
and elastic relaxation time on the velocity autocorrelation
function by solving numerically the integral in Eq. (25).
The full set of parameters in the system is given by
m,a,kBT ,ρb,ρf ,η,ηv,ηp,c,τ , where ρb and ρf are, respec-
tively, the particle and fluid densities. We choose units such
that kBT = 1,a = 1,ρf = 1 and construct the following di-
mensionless numbers: the buoyancy parameter b = ρb/ρf , the
ratio of bulk and shear viscosities α = ηv/η, the ratio of solvent
and polymer viscosities β = η/(η + ηp), and the following
quantities obtained from the thermal velocity vT = √

kBT /m:
a dimensionless sound speed c∗ = c/vT , a dimensionless
viscosity η∗ = η/(avT ρ), and a dimensionless elastic time
τ ∗ = vT τ/a.

We reduce the high dimensionality of the parameter space
by choosing a neutrally buoyant particle b = 1, taking α = 0
(no bulk viscosity), and choosing β = 0.5. A number of
characteristic time scales are important in the system that are
given in terms of the previous parameters as thermal time
tT = a/vT , sonic time tc = a/c, viscous time tν = a2ρ/η, and
relaxation time τ .

We have studied the particle VAF c(t) and the time-
dependent diffusion coefficient D(t) = ∫ t

0 c(t) dt under dif-
ferent choices of the model fluid parameters and the results
are reported in Figs. 1–3. As time increases, the function D(t)
reaches a plateau that corresponds to the value of the diffusion
coefficient of the Brownian particle, given in terms of the usual
Green-Kubo formula D = ∫ ∞

0 c(t) dt .
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FIG. 1. (Color online) VAF(t) and D(t) for c∗ from 5.26 × 104

to 4.166 × 105, while η∗ = 4.166 × 103, τ ∗ = 2.4 × 10−2. The sonic
times for the four sets of parameters have been indicated with vertical
lines, showing the correlation with the sonic bumps.

In Fig. 1, we have fixed the dimensionless viscosity η∗
and the dimensionless elastic time τ ∗ to η∗ = 4.166 × 103

and τ ∗ = 2.4 × 10−2, and the effect of changing c∗, namely
compressibility, is studied in the range c∗ ∈ [5.26 × 104 −
4.1666 × 105]. In terms of typical fluid times, the viscous and
elastic times are fixed, respectively, to tν = 0.001 and τ = 0.1,
while the sonic time is in the range ts ∈ [10−5 − 8 × 10−5].
The resulting VAF and D(t) plotted in Fig. 1 show that the
only difference for the different set of parameters is in the
location of a sonic bump (corresponding to the self-interaction
of the particle velocity with the pressure wave generated by its
movement) which correlates very well with the value of the
sonic time ts , represented by the vertical lines in the figure. It
is worth noting that the diffusion coefficient of the Brownian
particle is unaffected by the compressibility of the fluid.

In a second setup, the dimensionless sound speed c∗ and
the dimensionless elastic time τ ∗ are fixed, respectively, to
c∗ = 4.166 × 105 and τ ∗ = 2.4 × 10−2, and the effect of the
dimensionless viscosity η∗ is studied by changing it in the
range η∗ ∈ [2.0833 × 103 − 1.6 × 104]. The resulting curves
are plotted in Fig. 2. Note the identical location of the sonic
bumps in all cases, corresponding to ts . The different tν
characterize the times when the particle velocity becomes
approximately uncorrelated (VAF smaller than 5% of its initial
value). Note that an anticorrelation appears in the VAF on
time scale of the order of the elastic relaxation time (inset
Fig. 2), which tends to be enhanced for smaller values of η∗,
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FIG. 2. (Color online) VAF(t) and D(t) for η∗ from 2.0833 × 103

to 1.6 × 104 while c∗ = 4.166 × 105, τ ∗ = 2.4 × 10−2. The viscous
and sonic times have been drawn with vertical lines.

namely, for increasing viscous time scales, approaching τ .
This rebound effect, which is maximal when the relaxation
time τ and the viscous time tν are similar, has also been
observed recently in Ref. [16]. When a clear scale separation
exists (tν � τ ), the phenomena are strongly attenuated. This
anticorrelation is reflected in the behavior of D(t) as a local
maximum located around τ .

Finally, in Fig. 3 we show the VAF and D(t) functions for
different values of the dimensionless elastic time τ ∗ ∈ [2.4 ×
10−3 − 2.4 × 10−1], keeping the dimensionless viscosity η∗
and the dimensionless sound speed c∗ fixed, respectively, to
η∗ = 4.166 × 103 and c∗ = 4.166 × 105. The VAFs are very
similar except for the anticorrelation effect discussed above.
As expected, the time scale characterizing anticorrelation is
moved to larger time for increasing τ and, accordingly, is
strongly attenuated as result of the increased scale separation
with the fixed viscous time. It is interesting to note that
the effect of a so small change in the VAF produces a
significant change in the behavior of the time-dependent
diffusion coefficient D(t), where the elastic bumps can be
clearly detected. This observation could be used to characterize
unambiguously the longest elastic relaxation time of complex
liquids from measurements of the particle diffusion.

IV. DISCUSSION

By using the method of induced forces, we have obtained
the force that a compressible linear viscoelastic fluid in
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FIG. 3. (Color online) VAF(t) and D(t) for τ ∗ numbers from
2.4 × 10−3 to 2.4 × 10−1 while η∗ = 4.166 × 103 and c∗ = 4.166 ×
105. The elastic times for the different set of parameters have been
drawn as vertical lines.

arbitrary flow exerts on a suspended sphere. This result,
valid for any linear compressible viscoelastic model, can be
obtained from the compressible Newtonian results of Bedeaux
and Mazur [14] by changing the shear and bulk viscosities
η,ηv of the Newtonian case by the corresponding viscosities
η(ω),ηv(ω) of the viscoelastic model. This is consistent with
the result given in Ref. [29] for an incompressible fluid.
Also, general expressions for the calculation of the velocity
autocorrelation function of a spherical particle embedded in a
general compressible viscoelastic fluid have been derived. For
the particular case of an Oldroyd-B model, we have analyzed
the VAF and the time-dependent diffusion coefficient under
different physical regimes of the suspending fluid.

In this paper, we have considered a given viscoelastic fluid
(modeled as a compressible Oldroyd-B fluid) and have com-
puted the velocity autocorrelation function by using Faxén’s
theorem. The inverse problem, that is, given the velocity auto-
correlation function to infer the properties G+(ω),S+(ω) of the
viscoelastic fluid, is the main aim of passive microrheology.
The friction memory ζ+(ω) is directly linked to the velocity
autocorrelation function and the root mean displacement of a
particle. Therefore, it is directly measurable from observations
of the position of a Brownian particle. Because the friction
memory ζ+(ω) is given in a linear viscoelastic fluid in terms
of the viscoelastic memory functions G+(ω) and S+(ω), we
wonder to what extent it is possible to infer the latter from

the former. In the incompressible case, this is rather simple
because (21) is a quadratic form that can be solved for G+(ω),
in terms of ζ+(ω). This route has been pursued successfully
in Ref. [29] where the viscoelastic modulus is obtained from
the measurable friction memory. In the compressible case,
however, apart from the problem of finding the roots of
a rational function, there is a more fundamental problem.
Indeed, we have two memory functions G+(ω),S+(ω) that
need to be extracted out of one single memory friction ζ+(ω).
Obviously, there is an infinite number of combinations of
G+(ω),S+(ω) that give the same friction memory ζ+(ω),
therefore more information is required in order to measure
both material functions. One possible approach is to consider
two Brownian particles and extend the results of Mazur [31] to
the case of compressible linear viscoelastic fluid for the case
of two identical spheres (two-point microrheology). Because
of its linearity, the problem should be relatively simple to
solve: instead of a frequency-dependent friction coefficient,
we would obtain a friction matrix that expresses not only
the friction with the solvent, but also the hydrodynamic
interactions between the two spheres. The friction matrix
is expressed in terms of G+(ω),S+(ω). From that result
it should be possible to predict the correlation matrix of
the velocities of both particles. In this way, by measuring
both the autocorrelation and the cross-correlation function
of the velocities of the particles, one could obtain sufficient
information to extract both functions G+(ω),S+(ω).

An alternative route makes use of one of the distinguishing
features of Faxén’s theorem, which is that it gives the force on
the sphere on a viscoelastic fluid moving in an arbitrary flow.
This force may be used to compute the velocity autocorrelation
of a particle in, for example, the presence of a stationary
sound wave. In this way, by measuring the VAF in such an
experimental setup, an alternative procedure to measure the
material functions G+(ω),S+(ω) could be implemented. The
numerical model to study microrheology presented in Ref. [32]
would be useful to test these possibilities. We plan to present
these results in future publications.
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APPENDIX: CALCULATION OF THE VAF
FROM THE MEMORY FUNCTION

We wish to solve Eq. (22) and we transform to Fourier space
by using the following definitions:

f (ω) =
∫ ∞

−∞
dt exp{iωt}f (t). (A1)
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The Fourier transform of Eq. (22) is

− iωmu(ω) = −ζ+(ω)u(ω) + F̃(ω), (A2)

where

ζ+(ω) =
∫ ∞

0
dt exp{iωt}ζ (t). (A3)

Because the friction memory is real, the following symmetry
relation is satisfied:

ζ+(−ω) = ζ+(ω), (A4)

where the overbar denotes complex conjugate. The solution of
Eq. (A2) is

u(ω) = F̃(ω)

ζ+(ω) − iωm
. (A5)

By Fourier transforming (23), we find that

〈F̃(ω)F̃(ω′)〉 = kBT 2πδ(ω + ω′)[ζ+(ω) + ζ+(−ω)]1. (A6)

The force correlation (A6) is a real function. By using this
result (A6), one can compute the correlation of the velocity

with the result

〈u(ω)u(ω′)〉 = 〈F̃(ω)F̃(ω′)〉
[ζ+(ω) − iωm][ζ+(ω′) − iω′m]

= kBT 2πδ(ω + ω′)2Re

[
1

ζ+(ω) − iωm

]
1.

By returning to real time

〈u(t)u(t ′)〉 = kBT

π

∫ ∞

−∞
dω exp{−iω(t − t ′)}

×Re

[
1

ζ+(ω) − iωm

]
1. (A7)

By using the symmetry property (A4), we have that the
normalized velocity correlation function (24) is real and can
be written as

c(t) = 2

π

∫ ∞

0
dω cos(ωt)

× Re

[
1

m−1ζ+(ω) − iω

]
. (A8)

By separating real and imaginary parts within brackets, the
final form given in Eq. (25) is obtained.
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