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We employ a recent technique for building complex networks from time series data to construct a directed
network embodying time structure to collate the predictive properties of individual granular sensors in a series
of biaxial compression tests. For each grain, we reconstruct a static predictive model. This combines a subset
selection algorithm and an information theory fitting criterion that selects which other grains in the assembly
are best placed to predict a given grain’s local stress throughout loading history. The local stress of a grain at
each time step is summarized by the magnitude of its particle load vector. A directed network is constructed by
representing each grain as a node, and assigning an in-link to a grain from another grain if the latter is selected
within the best predictive model of the first grain. The grains with atypically large out-degree are thus the most
responsible for predicting the stress history of the other grains: These turn out to be only a few grains which
reside inside shear bands. Moreover, these “smart grains” prove to be strongly linked to the mechanism of force
chain buckling and intermittent rattler events. That only a small number of grain sensors situated in the shear
band are required to accurately capture the rheological response of all other grains in the assembly underlines
the crucial importance of nonlocal interactions, espoused by extended continuum theories which posit nonlocal
evolution laws. Findings here cast the spotlight on two specific mechanisms as being key to the formulation of
robust evolution laws in deforming granular materials under compression and shear: the long held mechanism
for energy dissipation of force chain buckling and the sudden switch in roles that a rattler plays as it enters in and
out of force chains.
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I. INTRODUCTION

What if some kind of smart grain sensor could be designed
which, to all intents and purposes, had the same rheological
response as the grains themselves but was capable of recording
and transmitting useful kinematic or force information to
experimentalists? Two trends in sensor technologies suggest
that the existence of such sensors is close to, if not al-
ready, a reality: miniaturization to tens of nanometers and
an ever increasing range of sensing capabilities including
measurements of pressure, inertial forces, magnetic fields,
chemical structure, and species [1]. Armed with a network
of such sensors a researcher could perhaps seed, or salt, a
fault gouge, foundations of a building, runway tarmac, etc., to
monitor the activity and, based on the transmitted information,
have real-time monitoring of the likely response of the fault,
building foundations, and so on. Despite great advancements
in science and industry of sensor technology, notably micro-
electromechanical sensors (MEMs) which include gyroscopes,
accelerometers, and magnetometers, we are some way away
from granular microelectromechanical sensors (gMEMs). We
can, however, turn to virtual particle simulations using the
discrete element method (DEM) and regard the grains as being
their own sensor network. If we do this, we can then ask what
information should the sensors sense, how many sensors do
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we need to tell us something useful, what extent of the material
should the sensor network encompass, and of course, how do
we process and summarize such information?

Perhaps the most pertinent question above is how can
data collected by yet-to-be-realized sensors be of greatest
utility to material characterization and modeling, in particular
predictive continuum modeling of granular matter. To develop
robust predictive continuum models for soil, rocks, powder,
and other forms of granular matter, we need information at
the grain scale as has been recognized for over a century [2].
The advance of DEM has been an invaluable and often the only
source of grain scale information to date (e.g., [3,4]); however,
high-resolution experimental data from soil micromechanics
are accumulating steadily (e.g., [5–12]). Irrespective of the
source of grain scale information, virtual or experimental,
the development of robust and tractable continuum models
requires the modeler to make sense of the voluminous data
and distill these down to a few fundamental rules that can
reproduce the emergent, self-organized behavior observed in
reality. To achieve this objective comprehensively, the modeler
must account for two aspects of granular behavior under load.
The first is a structural aspect from local interactions: here at
the physical grain to grain contacts. The second is a hidden
dynamical aspect from nonlocal interactions: grains, near and
far, interact with and influence a grain through collective
behavior, and arguably the most striking example of this lies
in force transmission, through so-called force chains. Clearly,
these two aspects are intertwined. Therefore, a prevailing
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challenge for modelers of granular systems lies in finding
strategies that can treat these aspects not independently, but
seamlessly in a single unified framework.

In this study, we propose a strategy for the analysis and
characterization of force transmission. Though we demon-
strate this strategy for quasistatically loaded dense assemblies
of grains which do not break and are cohesionless, it has
potential applications in the study of a wider range of granular
materials. Indeed while systems in the presence of binders and
particle breakage are examples farther away from the systems
we envisage here to be inhabited by the aforementioned
gMEMs, there are nonetheless common attributes in the way
forces are transmitted in a broad gamut of granular and,
more broadly, soft matter (e.g., polymers, colloids, gels, and
foams); see, for example, [13–21]. The formation of a highly
heterogeneous, ramified, and intermittent force network has
been observed to be a fundamental process across a range
of loading conditions and particle properties. For example, in
2D and 3D experiments [5,6,9,22–28] and also 2D and 3D
simulations [10–12,29–31], force chains and their failure have
been tied to energy dissipation and core processes of grain
rearrangements.

The specific objective of this paper is to consider the possi-
bility of gMEMs, and to demonstrate a way of processing and
summarizing the observed information on force transmission
to improve our understanding of the highly interdependent
local and nonlocal grain interactions occurring in deforming
cohesionless, dense granular materials. Particular attention
will be paid to the complex phenomena of self-organized
structures of grains in a dual network of force chains and
confining weak neighbors, and the related emergence of
shear bands when such load-bearing chains fail. We use
a combination of time series modeling, information theory
processing, and complex network analysis to develop an
abstract directed network which encompasses the essential
linear relationships between the force response of individual
grains. We find a special subset of these grains—those which
have higher out-degree than in-degree in the network—to be
intimately related to the mechanism of confined buckling of
force chains and give these grains the specific moniker of
“smart sensors” in contrast to the general future smart gMEMs
we have envisaged above.

The remainder of this paper is organized as follows. In
Sec. II, we briefly describe the suite of DEM tests examined,
the data used, and our method of obtaining a directed complex
network from models of the time series data. To consolidate
ideas, we apply the methods to a small subset of grains in
Sec. III. In Sec. IV, we present the results of applying our
methods to each of the DEM tests. We close the paper in Sec. V
by discussing the relevance of our findings in the context of
continuum constitutive modeling.

II. METHODOLOGY

We develop our ideas using synthetic data from DEM
simulations. Using output from DEM simulations affords us
the opportunity to explore the possibilities that future sensors
measuring grain stresses may provide. We also restrict our
investigation to a suite of DEM simulations previously studied
where the (virtual) rheology is more fully, if not completely,

understood. Consequently, any perspective from the proposed
sensor analysis can be properly assessed and appreciated.

A. DEM simulation

The data analyzed are taken from a series of biaxial
compression tests from an initially isotropic state, verified
by examining distributions of contact angles within the initial
packing. The simulations are 2D although this is achieved
by constraining assemblies of spherical grains to move in
a plane (see, e.g., [32–34]). The four tests differ from each
other with respect to boundary loading conditions or value of
rolling friction. Two of the tests are subject to constant volume
(or area), referred to by the label CV; the remaining two are
subject to constant confining pressure at the lateral walls.

The interaction between a grain at contacts with the other
grains and with the walls is modeled by a set of contact laws
which describe resistances to relative motion through various
combinations of a linear spring, a dashpot, and a friction
slider. Normal and tangential resistive forces, as well as a
moment (rolling resistance), act at each contact, in accordance
with [29]. The contact moment is introduced to account for the
effect of grain shape, e.g., resistance to relative rotations due
to grain interlocking [35]. This modification to the classical
DEM model of [36] has been adopted in numerous simulations
of granular processes in order to control the relative rotations
of grains at contacts and achieve more realistic rotations and
stress predictions (e.g., [37]). Each of the four tests are distin-
guished by the coefficient of rolling friction μr = 0.02 or 0.2.
The vertical walls in all the tests are frictionless, so that grains
can slide and roll along them without any resistance; otherwise,
all other material properties are identical to those of the grains.
The top and bottom walls are assumed to have the same
material properties as the grains. Table I provides a summary
of the simulation, material, and contact model parameters

TABLE I. DEM parameters and material properties for planar
deformation of an assembly of spheres constrained to move in a
plane. The initial packing was isotropic confirmed by examining
distributions of the direction of branch vectors. Parameters and
sectional properties below are per unit depth (into the page).

Parameter Value

Applied strain rate ε̇yy −8 × 10−3/s
Confining pressure σxx (when applicable) 7.035 × 102 N/m
Time step increment 6.81 × 10−7 s
Initial height:width ratio 1.08:1
Number of grains 5098
Grain density 2.65 × 103 kg/m3

Smallest radius 0.76 × 10−3 m
Largest radius 1.52 × 10−3 m
Average radius (uniform distribution) 1.14 × 10−3 m
Initial packing density 0.858
Intergrain friction μ 0.7
Grain-wall friction μ (top, bottom) 0.7
Grain-wall friction μ (sides) 0.0
Rolling friction μr 0.02 or 0.2
Normal spring stiffness kn 1.05 × 105 N/m
Tangential spring stiffness kt 5.25 × 104 N/m
Rotational spring stiffness kr 6.835 × 10−2 N m/rad
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FIG. 1. (Color online) Displacement field for the four tests across strain increments in the large strain failure regime after peak stress ratio.
Constant confining pressure (a) μr = 0.02, (b) μr = 0.2 for axial strain increment 0.0115. Constant volume (c) μr = 0.02, (d) μr = 0.2 for
axial strain increment 0.0107.

used (i.e., polydisperse grain distribution, friction coefficients,
spring model stiffness coefficients, etc.). The initial size of the
container satisfies a height-to-width ratio of 1.08:1.0 and in
the constant confining pressure test with μr = 0.02 after one
observed strain state the container is approximately 15.3 cm ×
16.6 cm. Additional details relating to sample preparation,
as well as choices of integration time steps and damping
terms to achieve quasistatic conditions, are fully discussed
elsewhere [33]. In all four samples, the development of a
persistent strain localization (i.e., shear banding) is captured.
To aid visualization and for comparison purposes, the zones
of localization in each sample are presented in Fig. 1 as seen
from the grain displacement field.

As mentioned, each of these samples belongs to a class of
DEM simulations that has been studied in detail using a variety
of methodologies. The mechanical response of the samples
exhibits the expected trends for dense granular assemblies [33].
Techniques from micromechanics, in particular micropolar
nonaffine deformation measures, describe temporally and
spatially the areas of local grain rearrangements responsible for
energy release and dissipation within the systems throughout
loading [33,38]. These areas have been demonstrated to
coincide with the structural failure of force chain columns
by buckling [34,39].

More recently, the methods of complex network theory
have been used to characterize the fabric, force anisotropy, and
emergent behavior through the evolution of contact network
representations of the grains. These networks whereby a
network node represents a grain and a network link connects

two nodes if the corresponding grains are in physical contact
highlight the role of formation and breaking of links (contacts)
as well as larger connected network structures in the deforming
material [40–42]. Networks with links based on similarity of
grain kinematic evolution across strain increments have also
been constructed and analyzed to reveal other novel features
of the rheology of systems from this class of simulations, as
well as from experimental tests on sand [28,43].

While these network methods have proven to be useful,
they are somewhat limited by their lack of a system wide
perspective. For instance, in [28], the temporal history of
the sand specimen’s behavior under load was not accounted
for, as information from each individual observation strain
state was examined separately and independently of system
behavior at other states. On the other hand, the work in [43]
did consider temporal information, but did not consider how
grain interactions at one state influence those at another
state of the loading history. Here we take the first steps
towards such an analysis, in particular, one which better
accounts for the interdependence of grain behavior across
the temporal dimension—beyond similarity of macroscopic
response across different strain states. Specifically, here we
propose to analyze the samples through the lens of complex
networks with the added information on relationships between
grain scale properties as they evolve temporally across many
strain increments, or even the entire loading history. We do
this by constructing models of the relationship between time
series of grain properties, in particular grain stresses, and
collating the information contained in all of these models as a
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directed complex network. We find that the basic properties of
these networks reveal which grains have the richest rheological
information throughout the loading history, thus enabling us to
relate them to known mesoscopic mechanisms governing en-
ergy storage and dissipation in deforming granular materials.

B. Particle load vector time series

Consider each grain to be its own internal sensor (gMEMs)
capable of measuring its internal stresses caused by contact
with other grains. This quantity can be found by calculating
what is referred to as a particle load vector. Mathematically,
the stress tensor provides a measure of the force anisotropy
within an assembly of granular particles. We define (for a
circular grain A with k contacting circular grains) the local
force moment tensor as

σ̂ij =
k∑

c=1

nAc
i f Ac

j (RAc + RBc), i,j = 1,2. (1)

Here, f Ac
j is the j th component of the contact force between

grain A and a contacting grain B, nAc
i is the component of the

unit branch vector from grain A to the contact with grain B,
RAc and RBc are the radii of the two contacting grains, and
the sum is taken over all k contacts of grain A. Incidentally,
the number of contacts k is the degree of the induced node
of grain A in a contact network representation of the fabric
of the material (cf. coordination number). The matrix σ̂ij and
its eigenvectors and eigenvalues are calculated. The largest
eigenvalue and its associated eigenvector define the particle
load vector. Its magnitude is the stress used to construct
our grain sensor load time series for each strain state of the
deformation. As an aside, if we were to sum the contributions
of (1) for each grain in the assembly and normalize by the area
of the assembly to get a global force moment tensor �ij , then
the eigenvalues of this matrix (say, σ1 � σ2) give the pressure
P = 1

2 (σ1 + σ2) and the shear stress τ = 1
2 (σ2 − σ1). For each

axial strain state of the deformation we normalize each local
particle load time series value by the total sum of values across
the assembly. Thus we obtain, for each of the 5098 grains in
the assembly, a time series of length 299 (i.e., the number
of axial strain states observed). Typical time series for three
grains are shown in Fig. 2. These are examples of the time
series we build models for, as explained below.

C. Building a static predictive model

A complete and accurate model of the relationships between
the properties of grains which interact locally yet exhibit
emergent collective behavior is likely to involve complex
nonlinearities. However, prominent relationships and inter-
actions may still be uncovered by considering appropriate
linear models. Indeed, even if the underlying process of
observed time series data has a nonlinear source, often useful
information and essential features can be extracted using
the linear tool of Fourier series through a power spectrum
analysis. For example, modeling the buckling of force chain
structures in granular materials using approximating Fourier
series models identified a characteristic length scale of shear
bands to be around eight grains wide [44]. A combined
structural mechanics and a micropolar continuum analysis of

FIG. 2. (Color online) The time series of particle load vector
magnitude for the force chain cluster shown in Fig. 3. The shaded
sections highlight the start and end of the strain increment where the
clusters were drawn. We search for linear relationships between these
time series. For example, the time series of PLV 1 could be predicted
by a linear combination of the time series of PLV 2 and PLV 3.

a confined elastic-plastic buckling of a 3-particle force chain
also revealed that, for a given strain state, the normal stresses
in this mesoscopic cluster are linearly related. Thus even in
these profoundly nonlinear processes, some linear relations
manifest among stresses at distinct static equilibrium states of
the sample’s loading history.

Here we build a class of linear models for each particle
load time series, inspired by the reduced autoregressive (RAR)
model fitting methods developed for detecting periodicity in
(possibly) nonlinear data [45]. The method involves the use of
an information theory criterion, namely description length, to
select which linear combination of past values of a time series
is best able to fit the current value of the time series without
overfitting the data. The use of description length in this way
has been extended to nonlinear combinations of past values of
the time series with success [46].

Our use of RAR is similar in spirit to the method of principal
orthogonal decomposition, or principal components analysis
(PCA). In PCA, data are projected to a smaller subspace
which contains most of the information contained in the data
with the contribution of the “ignored” dimensions attributed to
noise. The size of the smaller subspace, or number of principal
components, is determined by examining the eigenvalues of
a covariance matrix constructed from the data. The selection
of the number of principal components is often a subjective
choice, dependent on the skill and experience of the researcher.
The RAR modeling approach we follow here also attempts
to determine a smaller subspace in which to describe the
data; however, the incorporation of the information theory
description length introduces a more objective framework to
decide what constitutes the “best” subspace.

The description length of a model of observed data consists
of a term capturing how well the model fits the data, and
terms which penalize for the number of parameters needed for
the model to achieve a prescribed accuracy. Specifically, an
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approximation to description length takes the form

DL(k) = N ln(eT e/N ) + k

(
1

2
+ ln γ

)
−

k∑
j=1

ln δ̂j , (2)

where N is the length of the time series to be fitted and e are
the fitting errors. The latter two terms comprise the penalty for
model size with k being the number of parameters and δ̂j the
accuracy with which the parameters must be specified. These
δ̂’s are found by solving a nonlinear optimization problem
setup using the Hessian of the likelihood function of the
data and is explained in great detail elsewhere, e.g., [45,47].
The factor γ is just a constant and typically fixed to be
γ = 32 [47].

In [45,48,49], RAR models are reconstructed using a scalar
time series. In our case, we employ that methodology to
reconstruct for each particle load time series a static predictive
model which is a linear combination of a subset of the other
grains time series. Specifically, we predict the particle load
vector magnitude of grain i at time t as

xi(t) = λ0 +
∑

c∈S(i)

λcxc(t), (3)

where the λi are parameters estimated using least squares, and
S(i) is the subset of grains, not including grain i itself, which
have been selected as having the best history of particle load
values to predict xi(t) with respect to description length in (2)
and given a linear model class of the form in (3). This subset
is determined in an iterative growing and culling algorithm
established by [46]. The parameter λ0 is also considered part
of the subset for selection and so may or may not be present in
the model. Note that selecting the optimal subset from a large
dictionary of basis functions is typically an NP-hard problem
which usually has to be solved by heuristic methods [46].
The models obtained by selection algorithms can offer near-
optimal models. The selection algorithm we use has proven to
be effective in modeling nonlinear dynamics [46,50].

Our procedure is to find the best subset of particle load
histories which best predicts a given grain’s load history. The
best model is taken to be that model which minimizes the
description length. We do this for all grains in the assembly,
and summarize the information of these best models using a
directed network as described below in a fashion similar to
and inspired by [48,49].

D. Directed network construction

In [48,49], weighted directed networks embodying the
time structure of scalar time series were constructed. By
encapsulating the time structure present in a time series, these
networks extended and complemented the idea of studying
nonlinear dynamics using a complex network representation
constructed by considering closeness of pseudocycle sections
of the time series or distance in phase space, etc. [51–54].
Once the nodes are defined in pseudocycle networks (nodes are
individual pseudo-cycles) or phase space networks (nodes are
reconstructed phase space points), all information regarding
time evolution is suppressed and not exploited. By contrast, in
the approach of [48,49], directed networks were developed by
first assigning a node to each scalar value of the time series

and then adding weighted directed links if earlier values of
the time series (nodes) appeared in the best RAR predictive
model. Thus the time structure in terms of predictability of
the time series is encoded into the direction of the links of the
networks. The links were further assigned weights based on
a transformation of the coefficients of the fitted RAR models.
Our approach using the static predictive models of the previous
section and multivariate time series differs slightly in a way
which we now explain.

The nodes of our network represent each grain (i.e., each
of the multivariate time series). We connect a directed link
in to node i from other grain nodes if that grain is selected
in the modeling using (2) and (3). If a grain j is used in (3)
then clearly that grain’s node j has an out link. We ignore
the λ0 term regardless of its being included in the best models
as it does not represent a grain. In future work, it might be
interesting to create an über node representing this constant
term. We do not include the transformation of the coefficients
to obtain weights for the links as in [48,49] despite its being
straightforward to do so. Here, we are more interested in
the unweighted structural topology of the resulting directed
networks and reserve the addition of the weights to a future
investigation which will also consider more general feedback
predictive models than the static linear ones described in
(3). Accordingly, of interest is the in-degree of a grain
(i.e., the number of other grains deemed best to predict its
particle load behavior) and the out-degree of a grain (i.e., the
number of grain models it appears in). Important quantities
of note are thus the distribution of in-degree, the distribution
of out-degree, and any grains with atypically large out-
degree.

III. A SIMPLE EXAMPLE

We first demonstrate our strategy for a small granular cluster
to render transparent and make our ideas more concrete and
understandable. Consider a simple example of a particle load
vector time series of the cluster of grains in Fig. 3, which
is taken from one of the constant confining pressure tests
with μr = 0.02. This cluster depicts the arrangement of a
three-grain force chain (IDs 1, 2, and 3) and its confining
neighbors (IDs 4–11). The cluster is shown for two axial strain
states where the first Fig. 3(a) shows the force chain prior
to failure by buckling and Fig. 3(b) shows the grains after
the force chain has failed by buckling. This force chain has
been previously identified as being the trigger buckling event
precipitating failure in the material. The particle load time
series of Fig. 2 correspond to the grains with IDs 1, 2, and 3 in
this cluster. The gray shaded area indicates the strain increment
where the clusters in Fig. 3 are shown.

For each grain in this cluster, we build a static predictive
model of the form of (3) using the other particle load time
series of the cluster and use (2) to evaluate the best subset
of these for prediction. A directed graph is constructed with
adjacency matrix elements aij = 1 if grain j belongs in the
best subset of grains to predict the particle load time series of
grain i. The adjacency matrix obtained by this procedure is
represented in Fig. 4 where nodes are labeled by grain ID and
the arrows show the in- and out-links in the network.
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FIG. 3. (Color online) A cluster of grains comprising a force chain and its confining neighbors at two strain states (a) 0.0296, (b) 0.035
taken from the μr = 0.02 constant confining pressure compression test. The buckling of this force chain has previously been identified as
the “trigger” buckling event that precipitated the failure of the material, i.e., the first force chain buckling that initiated the formation of the
persistent shear band. The cluster depicted in (a) is prior to this buckling event and in (b) is many axial strain stages after buckling. The grain
ID is shown as an aide memoire for Fig. 4. (c) The contact network degree of grain ID 7 demonstrating the changing contact topology a grain
can experience throughout deformation.

IV. RESULTS

Having consolidated how the idea works on a small subset
of grains, we can now study the entire assembly in each of
the four test systems. For the size of our systems (i.e., 5098
grains/nodes) it becomes difficult to visualize the directed
networks in the same manner as Fig. 4. We must instead rely on
summary statistics although it is useful and informative to view
the nonzero entries of the directed network adjacency matrix.
In Fig. 5 we show the adjacency matrices obtained for all four
test systems which summarizes the grain membership of each
static predictive linear model as determined by description
length. In these figures, each row and column corresponds
to a grain identification label. If we scan along a given row

FIG. 4. (Color online) The directed network summarizing the
predictive models of the particle load vector time series. Nodes are
labeled by grain ID. An in-link means the originating grain is used
in a model of a destination grain. An out-link means that grain is
present in a model of another grain. Note that here only the grains in
the trigger cluster form the set of grains for which the subset of grains
in model (3) are selected.

(i.e., we select a grain), then the dots (i.e., nonzero entries)
represent the grains which have been selected to have the
best linear combination of particle load vector histories to
predict the history of the grain in question. A row sum thus
represents the in-degree of a grain and corresponds to the
number of other grains required to best predict that grain’s
history. On the other hand, the column sum represents how
many times a given grain appears in the best models of other
grains. As observed in Fig. 5, a distinct structure to these
adjacency matrices manifests for each test. The appearance of
bold vertical linelike columns suggests that the particle load
vector histories of some grains are more representative of the
response of other grains throughout loading than others.

The in-degree and out-degree distributions help clarify this
situation further. In Fig. 6, we show the empirical distribution
of grain in-degrees for all tests. Across the tests, there is
remarkable consistency in these distributions. Regardless of
test, it appears that the typical model size (i.e., number of
other grains deemed best to predict a given grain’s particle
load vector history) is around 10–12 (the mean of the empirical
in-degree distribution) and at most 30. Hence, if we wanted
to salt a granular material with smart gMEMs for real-time
monitoring, we may only need 10 sensors for around 5000
grains (i.e., the size of our test systems). Furthermore, the
consistency in the results for all the tests, keeping in mind
these differ in material properties as well as loading conditions,
suggests this finding may be generic to dense granular
materials. The same set of 10–12 sensors would not lead to
the best set of relationships describing the behavior of all
grains. A larger set of grain sensors is likely necessary to obtain
an improved balance of sensor numbers to RAR relationship
accuracy for the entire assembly. A guide to such a number
can be found by examining the out-degree distribution.

In Fig. 7, we plot the empirical distribution of grain
out-degree for all tests. This distribution is conveniently
viewed on a log-log scale: Despite showing hints of power
law behavior, any maximum likelihood fit does not pass a
rigorous significance test. Nevertheless, whatever the best
mathematical explanation for the distribution might be, we
once again observe remarkable consistency across the different
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FIG. 5. (Color online) Adjacency matrices of the directed networks for each compression test. Constant confining pressure (a) μr = 0.02,
(b) μr = 0.2. Constant volume (c) μr = 0.02, (d) μr = 0.2.

test systems. We also note that the power-law-like scatter of
points quantifies the vertical lines present in the adjacency
matrix plots, and highlights that some grains/sensors are
present in many models of other grains. Similarly, there are a
large population of grains/sensors whose particle load vector

FIG. 6. (Color online) The empirical distributions of the in-
degree of the reconstructed directed networks. Despite the different
parameters, properties, and loading conditions for each test we see
remarkable consistency in the in-degree distributions.

histories are rarely considered to be rich enough in information
to participate in other grains’ predictive model. If we recall the
in-degree distribution, we actually find a few grains in all
the tests that have a particle load vector history that is best
predicted by a constant model; that is, no information from
any other grain is deemed sufficient by description length to
accurately model the history of any one of these few grains.

A. Spatial distribution

We have seen from the adjacency matrices and the in-
degree and out-degree distributions that some grains are more
important than others with respect to the number of models
of other grains they appear in. An obvious question to ask
is, where are these “smart” grains located? We consider the
spatial location of grains which have an out-degree at least as
high as their in-degree. That is, grains which appear in more
models of other grains than the number of grains required to
predict their own history. These are the grains corresponding
to the vertical “lines” in Fig. 5. The number of grains which
satisfy this directed network degree condition in each of the
four tests is fairly steady: For the constant confining pressure
tests, we have for μr = 0.02 and 0.2, 379 and 282, respectively,
whereas for the constant volume tests and μr = 0.02 and 0.2
we find 287 and 302 smart grains, respectively. Thus, we can

032203-7



WALKER, TORDESILLAS, NAKAMURA, AND TANIZAWA PHYSICAL REVIEW E 87, 032203 (2013)

FIG. 7. (Color online) The empirical distributions of the out-
degree of the reconstructed directed networks plotted on log-log scale.
Once again we see remarkable consistency in the distributions across
all four compression tests. We note that a straight line plot on this
scale with or without cutoffs fails to satisfy a rigorous statistical
significance test for the distribution to be adequately described by a
power law.

modify the requirement of around 10 sensors to around 300
sensors in order to better track the representative behavior
of the sample with respect to linear relationships of force
interaction. Moreover, there are 56 common grains satisfying
the above condition. The spatial location of all of these smart
sensors and the sensors common to all four tests are shown in
Fig. 8.

The smart grains/sensors appear to share other properties
in common, both physical and functional. If we examine the
grain size distribution of the smart sensors with respect to the
polydisperse system we find that the smart sensors are typically
smaller in size (see Fig. 9). A Kolmogorov-Smirnov test
verifies that the difference in the smart grain size distribution
and the size distribution of the remaining grains is statistically
significant for all tests. In coarse-fine mixtures it is known that

FIG. 8. (Color online) The spatial location of smart grains, i.e.,
grains which have at least a higher out-degree than in-degree in the
constructed directed networks. Grain locations are plotted according
to their position at the initial state of the samples for each test. The
smart grains marked by crosses are those grains which are active for
all four tests.

FIG. 9. (Color online) The grain size distribution of the smart
grains in each test which have at least a higher out-degree than in-
degree in the constructed directed networks compared to the size
distribution of all grains. A KS test confirms that this difference in
grain size distribution is statistically significant. Smart grains are
typically smaller in size.

force chains tend to comprise the larger particles (e.g., [55,56]).
We can examine the relationship of these smaller smart sensors
with respect to their role in force chains. At each observed stage
of the deformation history a grain can be classified as being a
member of a force chain or not. A force chain is a quasilinear
arrangement of three or more grains each possessing an above
average particle load vector magnitude. For each smart sensor
in each test we can determine whether they are classed as being
part of a force chain or not and calculate the percentage of the
deformation history when they are in force chains. In Fig. 10
we show the time of the deformation history each smart sensor
spends as part of a force chain. Interestingly, in each test over
half of the smart sensors are never classed as being a force chain
particle: For the constant confining pressure tests, we have for
μr = 0.02 and 0.2, 50% and 54%, respectively, whereas for
the constant volume tests and μr = 0.02 and 0.2 we find 52%
and 67% smart grains, respectively. This is consistent with
observations of coarse-fine mixtures. Furthermore, even those
smart sensors that are found to be in force chains typically do
not spend a long time of the deformation history staying as
force chains.

The smart sensors, however, do play an important role in
force chain evolution, notably, force chain failure by buckling.
In Fig. 11 for each of the four test systems we plot the spatial
location of these grains, or smart sensors, represented by
filled and unfilled black circles. Comparing with the kinematic
displacement fields in Fig. 1, we find these grains reside in the
regions of strain localization. It appears that the dynamics
of grains in the shear band, as observed by their particle load
vector time series history, is of the richest nature and essentially
provides a basis or spanning set for the rest of the sample.

We have also overlaid these smart sensors on top of
a density-like plot of grains which are involved in the
physical mechanism of force chain buckling; i.e., the colored
grains of Fig. 11 show every grain involved as either a
3-grain buckling segment of a force chain or a member of
these segments’ confining first ring of neighbors, so-called
CBFCs (confined buckling of force chains) [34]. The color
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FIG. 10. (Color online) Constant confining pressure (a) μr = 0.02, (b) μr = 0.2. Constant volume (c) μr = 0.02, (d) μr = 0.2. The
percentage of the deformation history when a smart sensor is a member of a force chain. In each test a large proportion of the smart sensors are
never classed as a member of a force chain.

indicates the number of times a given grain is in one of
these categories increasing from light to dark. The smart
grains represented by the unfilled black circles coincide with
this system failure mechanism of force chain buckling. The
figures quoted below the plots indicate the relative makeup
of the smart sensor (SS) and CBFC sets. We see that for the
lower rolling friction tests, over half of the smart sensors are
intimately related to the mechanism of force chain buckling
and failure within dense granular materials. This discovery
that a few appropriately placed sensors can be used to
model the entire assembly has profound implications for the
development of continuum theories. Our findings corroborate
earlier findings that the nonlocal interactions—specifically
germane to shear banding—are what governs force transmis-
sion and the related aspect of energy storage and dissipation in
quasistatically deforming densely packed granular materials
[27–29,34,37,57].

A remaining question is what mechanism or role do the
other smart sensors (filled black circles) not involved in
force chain buckling play within the material? In addition,
why are other grains selected as useful according to the
information fitting criterion for improved RAR modeling,
even though they have not been classed as smart sensors (i.e.,
in-degree is higher than their network out-degree)? In order to
distinguish these grains from SS grains, we refer to them as TS
grains.

The TS grains are responsible for the diagonal-like lines
in the adjacency matrix representations of Fig. 5 and their

inclusion in the best RAR models can be attributed to
proximity. These TS grains appear necessary in the RAR
models, as they have local information of the stresses on
grains throughout deformation. We can demonstrate our reason
for this assertion by considering (with respect to the initial
packing) the distribution over all grains of the distance between
a grain and the grains in the best RAR model (i.e., a grain
and those grains responsible for its in-links in the directed
network). Furthermore, we can partition these distributions
into contributions from the smart (SS) and other (TS) sensors.
Figure 12 show these distributions for each test. Observe that
the TS classed grains are typically distributed closer to the
grains whose behavior they help predict and for each pair
of distributions in all four tests a Kolmogorov-Smirnov test
shows that a significant difference in the SS and TS distance
distributions exists.

The set of smart sensor grains which are not directly
associated with force chain buckling (filled black circles
in Fig. 11) can also have their selection in most models
as being due to proximity. However, there is another more
intriguing explanation for their selection which gives a new
perspective to considerations of microscopic and mesoscopic
mechanisms crucial for robust predictions from continuum
model formalisms. In [58], it was shown that the statistical
properties of structural building blocks of planar granular
materials—referred to as quadrons—are unduly influenced
by the presence of so-called rattlers within the assembly.
Rattlers are grains within the assembly that, for a period of the
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FIG. 11. (Color online) Constant confining pressure (a) μr = 0.02, (b) μr = 0.2. Constant volume (c) μr = 0.02, (d) μr = 0.2. A
representation of the test assemblies at the initial stage of loading where black circles (unfilled) represent smart sensor (SS) grains in
CBFCs and (filled) represent SS grains not associated with CBFCs. Smart sensor grains indicate a positive difference in the out- versus
in-degree of the directed networks. The colored grains indicate a “density” plot of a grain’s participation in the confined buckling of force
chains through deformation. A comparison with the displacement fields of Fig. 1 reveals that the (unfilled) smart sensor grains and CBFC
grains reside in the area of strain localization, i.e., the shear band. The percentages indicate that SS grains with the richest information regarding
evolution of stress within the material predominantly reside in the area of richest kinematics.

deformation, have no or at most one contact and are thus unable
to support significant stresses during this period. In the present
context we define a rattler to be those grains whose nodes in an
induced contact network—nodes are grains and links exist if
the grains are in physical contact [40]—have node degree equal
to zero. For example, see the time series trace in Fig. 3(c) which
shows the number of contacts of grain ID 7 in the cluster of
Fig. 3. In real systems, these rattlers sit snugly in a cavity inside
the pore space of the assembly; when the material is deformed
(e.g., sheared), the pore space gets squashed and suddenly the
rattler becomes load bearing, and possibly even a member of
a force chain in the next observation time step. For example,
in Fig. 3, grain ID 7 spends 80% of its time as a rattler during
the first half of the loading history, only changing its status to
a nonrattler for a brief period to be involved in supporting the
force chain before its failure through buckling. Furthermore,
the mechanism of force chain buckling gives rise to open
pores between the force chain and its confining neighbors.

When a force chain collapses by buckling, so does the pore
and the ensuing grain rearrangements in this unjamming event
often involves intermittent rattlers. Could the smart sensors not
associated with CBFC mechanisms be involved in this rattler
mechanism? To identify whether this is indeed the case, we
consider the distribution of times the smart sensors in CBFCs
spend as a rattler throughout deformation and the time the
smart sensors not in CBFCs spend as a rattler. In Fig. 13,
we show these distributions for all four tests. In all cases,
we see that the SS grains not in CBFCs spend a significantly
longer time of the deformation history as a rattler, and so it
appears that in addition to proximity these grains are included
as important contributors to the RAR models because they
are capturing the intermittent behavior of the status of the
important mechanistic role rattlers play in the deformation of
dense granular materials.

The importance of rattlers is often downplayed when
explanations for the mechanisms behind granular failure are
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FIG. 12. (Color online) Constant confining pressure (a) μr = 0.02, (b) μr = 0.2. Constant volume (c) μr = 0.02, (d) μr = 0.2. The
empirical distributions of the distances (with respect to the initial packing) of a grain and the other grains selected in the best RAR model of
its stress response throughout deformation (i.e., those grains responsible for the in-links of a grain). The distribution is partitioned into two
classes: the smart sensors (SS) and the other grains (TS). TS grains are typically closer to the grain being predicted and so their inclusion in the
best RAR can be attributed to proximity and the local information they contain.

sought [59]. A reason for this is the quasistatic nature of
compression tests and analysis. At any stage of the deformation
rattlers are present but because, by definition, they have no
load-bearing contacts these grains at a particular stage do
not contribute to the determination of mechanical stiffness
measures from stiffness matrices [59]. Moreover, since rattlers
are present at all stages of deformation and their population
does not significantly vary throughout deformation, the rattlers
are often justifiably disregarded. What is ignored, however, is
the temporal perspective and despite the overall cardinality
of the set of rattlers being steady the membership of this set
changes. We showed one example earlier of the intermittent
status of a rattler throughout deformation in Fig. 3(c). This
grain changed its status from a rattler to a load-bearing
nonrattler precisely over the strain interval where a load-
bearing force chain failed due to buckling. Thus, in addition
to the correct treatment of rattlers in calculation of statistical
measures being of import [58] their mechanistic role when they
change their latent rattler status to one of active load-bearing
should perhaps be reconsidered.

V. DISCUSSION

We have considered the possibility of the future design of
grain sensors (gMEMs) and ways to turn information harvested
from them to useful knowledge and tractable continuum
models that can deliver robust predictions of granular behavior.

To all intents and purposes, this sensor may exhibit the same
rheological response as the material grains it is “sensing”
but has the capabilities of modern microelectromechanical
sensors to record and transmit detailed information of its
surroundings. We posited that a useful granular sensor might
be one which can sense its own internal stresses throughout
loading. Restricting our study to the virtual, we considered the
time series of grain stresses represented by a grain’s particle
load vector magnitude within a suite of DEM tests. Using a
combination of information theory arguments, nonlinear time
series modeling, and complex network methods, we showed
that the observed stress behavior of a given grain in the
assembly can be predicted based on information from a very
few other grains. These few grains also exhibited the richest
rheology in the system. We also observed that such apparently
rich or smart grains resided in the areas of strain localization
and were strongly linked to the governing failure mechanism
of force chain buckling. Those smart grains not associated
with force chain buckling appeared to spend a significant
proportion of the loading history with the status of being a
rattler, thus providing compelling additional evidence to the
findings of [58] that the appropriate consideration of rattler
behavior is key to a complete and thorough understanding of
granular rheology. These findings were generic across the four
different compressions tests.

The discovery that only a small number of sensors, placed
in the locality of the shear band, is required to accurately
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FIG. 13. (Color online) Constant confining pressure (a) μr = 0.02, (b) μr = 0.2. Constant volume (c) μr = 0.02, (d) μr = 0.2. The
empirical distributions of the proportion of the deformation history the SS grains in and not in CBFC events spend as rattlers. The SS grains not
part of CBFC events can be seen to be rattlers for a considerably longer period of the deformation history than the SS grains directly associated
with CBFC events. Thus a second mechanism to perhaps consider in a continuum modeling formalism is the important role of rattler “dynamics”.

capture the rheological response of all other grains highlights
the crucial importance of nonlocal interactions, espoused by
extended continuum theories which posit nonlocal evolution
laws (e.g., [60–63]). This is especially the case with respect
to the evolution of force chains, in particular, their failure by
buckling. The relevance of nonlocal effects in dense granular
materials, particularly in relation to force chain buckling, has
been discussed in [64] and then incorporated into a nonlocal
thermomicromechanical continuum model of Cosserat type
in [34,39]. Our findings not only serve as a reminder that future
advances in nonlocal continuum theory necessitate a multi-
scale approach, but also cast the spotlight on which micro-
scopic and mesoscopic mechanisms, i.e., rattler behavior and
force chain buckling, need to be addressed for robust predic-

tions of deforming granular materials under compression and
shear.
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[8] E. Andò, S. A. Hall, G. Viggiani, J. Desrues, and P. Bésuelle,
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