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We study with numerical simulations the transverse fluctuations in quasi-one-dimensional systems of particles
in a thermal bath, near the zigzag transition. We show that close to the zigzag threshold, the transverse fluctuations
exhibit an anormal diffusion, characterized by a mean square displacement that increases as the square root of time.
In contrast with the longitudinal fluctuations, this behavior of the transverse fluctuations cannot be explained by
the single-file ordering. We provide an analytical modelization, and in the thermodynamic limit we demonstrate
the existence of this subdiffusive regime near the zigzag transition, showing that it results from overdamped
collective modes of the system. These calculations are extended to finite systems, in excellent agreement with the
simulations data. We also exhibit some effects of the thermal fluctuations on the zigzag transition, and analyze
them in the light of stochastic bifurcation theory.
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I. INTRODUCTION

When biologists observed subdiffusive behaviors of
molecules through cell membranes [1], the basic idea of
the single-file diffusion (SFD) was that particles confined
in quasi-one-dimensional (1D) geometries, in such a way
that they cannot cross each other’s, will undergo anomalous
diffusion. The first theoretical approaches have considered
hard-core interactions between particles ordered along a line
[2]. A non-Fickian diffusion is indeed demonstrated, with a
longitudinal mean square displacement (MSD) scaling as the
square root of time in the thermodynamic limit. This result has
been extended to more realistic models with finite (nonzero)
range interactions [3–6] and with finite numbers of particles
[7–11]. The SFD has been observed in experiments [12–15],
and in numerical simulations [5,16–18].

In Ref. [5], we described the longitudinal fluctuations of
the particles by linearizing the equations of motion near their
equilibrium positions. The resulting equations are those of a
chain of masses and springs in a thermal bath, and the relevant
coupled Langevin equations may be solved by a projection
onto the normal modes of vibration of the chain. In the
thermodynamic limit, we demonstrated that the longitudinal
MSD behaves like 〈�x2〉 = F t1/2 at long times. We found the
same expression for the mobility F as in overdamped systems
[3,4,6], extending this result to underdamped systems as well.
This is due to the fact that whatever the dissipation, provided it
is finite (nonzero), there is always a finite band of overdamped
modes near the zero frequency one [5]. For finite systems with
periodic boundary conditions, the long times behavior is the
collective ordinary diffusion of an effective particle of mass
that of the whole system. Nevertheless, a SFD regime is also
observed at intermediate times. We emphasize the relevance of
the zero frequency mode linked to the translational invariance
to those two regimes.

When the amplitude of the transverse confinement potential
is much greater than the characteristic interparticle energy, the
minimum of energy is reached when all particles are aligned
along the x axis. If the strength of the transverse potential is
progressively decreased, it becomes eventually energetically
favorable for the particles to move alternately away from the
longitudinal axis, compensating the energy increase in the

transverse direction by the interaction energy decrease due
to a larger interparticle distance between nearest neighbors.
This configurational phase transition is known as the zigzag
transition and is schematically displayed in Fig. 1. It has been
observed with ions in Paul’s trap [19–25] and with plasma dusts
[26–29]. It has also been the subject of many numerical and
analytical studies [24,30–39]. For trapped ions the interparticle
interaction is given by a Coulomb potential, whereas for
plasma dust it is given by a screened Yukawa potential, but
whatever the considered interaction the phenomenology of the
zigzag transition is basically the same.

The zigzag transition is a purely mechanical configurational
phase transition, and may be described as a supercritical (or
normal) pitchfork bifurcation [40,41] that happens at a critical
value βzz of the transverse stiffness, the zigzag pattern being
established for β < βzz. Exactly at the transition, the restoring
force for the alternate transverse motions of the particles
vanishes, so that a soft mode of null frequency appears.
This is an example of the critical slowing down which is
a typical feature of supercritical pitchfork bifurcations [41].
As was done in Ref. [5] for the longitudinal fluctuations, we
describe the transverse fluctuations in terms of the dynamics
of the transverse oscillation modes of the particles chain. The
key results of this paper are the observation of a transverse
SFD regime in numerical simulations and its theoretical
explanation. The soft mode linked to the zigzag transition
plays, for the transverse fluctuations, the same role as the
translationally invariant mode for longitudinal fluctuations
because both are of null frequency. It will explain in the same
way the transverse SFD behavior.

Our system is submitted to a thermal bath, and the precise
analysis of the time evolution of the transverse MSD sheds
light on some effects relevant to stochastic bifurcations theory
[42–47]. The diagram of a noisy bifurcation is blurred with
respect to that of a purely deterministic bifurcation, so that the
singularity at the threshold has to be replaced by a bifurcation
region [43,45,47]. We will show that our simulation results
may be interpreted in these terms. In a further publication [48],
we will consider more thoroughly the thermal effects on the
zigzag transition.

This paper is organized as follows. The zigzag transition is
characterized in Sec. II. Then the simulation method and the
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FIG. 1. Schematic representations of equilibrium positions. Left
side β > βzz, right sides β < βzz. (a), (b) Periodic boundary condi-
tions. (c), (d) Finite cell, with walls in light grey. Note the nonuniform
distribution along the x axis in (c), and the nonuniform y displacement
in (d).

numerical results are given in Sec. III. We will mostly focus
on the simplest configuration, cells with periodic boundary
conditions at low temperature. However, some results about
finite boxes are also given and we discuss thermal noise
effects. In Sec. IV, we provide a theoretical explanation
for the transverse SFD behavior observed in the numerical
simulations. We focus on periodic boundary conditions, but the
Appendix is devoted to the theoretical analysis of transverse
fluctuations in finite boxes. Then Sec. V summarizes our
results.

II. EQUILIBRIUM CONFIGURATIONS AND THE
ZIGZAG TRANSITION

The zigzag transition is very easy to describe in a quasi-
1D system of identical particles with periodic boundary
conditions, because of the translational invariance of the
system. The potential energy U (rn) is thus given by

U (rn) =
∑
m�=n

Uint(|rm − rn|) + β

2
y2

n. (1)

The first term in the right member represents the repulsive
interaction between the particles. The quasi-1D confinement
of the particles along the longitudinal x axis is ensured by the
transverse harmonic potential βy2/2.

Let (x∗
n,y

∗
n) be the equilibrium position of the particle of

rank n. For β � βzz, the equilibrium positions are aligned,
with x∗

n = nd and y∗
n = 0. Below the critical stiffness, for

β � βzz, the persistent equilibrium y∗
n = 0 becomes unstable

and the symmetric configurations with y∗
n �= 0 are stable. This

zigzag equilibrium configurations are such that x∗
n = nd and

y∗
n = (−1)nh with h > 0. The mean longitudinal interparticle

distance d does not change at the transition.
The bifurcation threshold βzz is given by the minimiza-

tion of the potential energy. Restricting the interactions in
Eq. (1) to nearest neighbors only, we have to minimize E ≡
Uint(

√
d

2 + 4h2)+βh2/2. Both configurations ±h have the same
energy so that the zigzag transition is a supercritical pitchfork
bifurcation with a threshold determined by ∂2E/∂h2|h=0 = 0,
giving

βzz = −4U ′
int(d)/d ≡ 4β. (2)

For systems confined in linear finite boxes, it is necessary
to add to the right term in (1) a repulsive potential Uwall(x),
with an energy scale Ew and with a characteristic length λw.

β

h

βzz 0βzz T

FIG. 2. (Color online) Bifurcation diagram (order parameter h

as a function of the bifurcation parameter β) of the noisy zigzag
bifurcation, after Ref. [43]. The solid red line is the diagram of a
supercritical pitchfork bifurcation without noise, and βzz(0) is the
deterministic threshold. The blue dashed line indicates the blurring of
the bifurcation, because of the zone of local fluctuations that surround
the equilibrium state. βzz(T ) is the thermal threshold, and βzz(T ) �
β � βzz(0) defines the bifurcation region in the bifurcation parameter
space.

Although this longitudinal confining potential determines
the equilibrium positions of the particles [11,49], it has no
other direct influence on the transverse fluctuations. The
previous calculation of the deterministic threshold becomes
cumbersome in this case, because the particles cease to be
equivalent [10,11,19–23,26–28,31], so that both x∗

n − x∗
n−1 =

dn and the absolute value of the transverse displacement hn

depend on the particle rank n. It is thus much simpler to
get the deterministic bifurcation threshold from the vibration
modes [24,32–35,38,50], as explained in the Appendix and
shown in the inset of Fig. 7(b).

In this paper we focus on a strong subdiffusive behavior
for the transverse thermal fluctuations of the particles close to
the zigzag transition (see Sec. III below). At finite (nonzero)
temperature, the actual definition of the threshold for the zigzag
bifurcation is not obvious, because the thermal fluctuations
transform the supercritical bifurcation into a smooth transition
[42–47]. The theory predicts that the diagram of a noisy
bifurcation is blurred with respect to that of a purely me-
chanical bifurcation and the existence of a bifurcation region
in which flips between equivalent zigzag configurations occur
[43,45,47]. Those flips become forbidden below a thermal
bifurcation threshold βzz(T ), which is shifted with respect
to the deterministic threshold βzz(0) ≡ βzz [43,47]. This is
illustrated in Fig. 2.

III. SIMULATION RESULTS

A. Simulations protocol

In the simulations, the summation of Eq. (1) is extended
to all m �= n. In most experimental situations [10,26–28]
Uint(r) is a repulsive potential. We use a screened electrostatic
interaction Uint(r) = E0K0(r/λ0) with energy scale E0, with
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characteristic length λ0, and where K0 is the modified Bessel
function of index 0. This potential has been chosen because it
is relevant to our experimental system [10,15].

We consider identical point particles of mass M located in
the plane (xOy), submitted to a thermal bath at temperature T .
Let rn = (xn,yn) be the position of the nth particle, and U (rn)
is its potential energy [see Eq. (1)]. We describe the dynamics
with the Langevin equation built upon the interaction potential
of Eq. (1),

r̈n + γ ṙn + ∇U (rn)

M
= μ(n,t)

M
. (3)

The thermal bath is accounted for by the damping constant γ ,
and by random forces μ(n,t) applied on each particle n, with
the statistical properties of a white gaussian noise. Therefore,
the components μxi

on the axis xi,i ∈ {1,2} must satisfy

〈μxi
(n,t)〉 = 0,

(4)
〈μxi

(n,t)μxj
(m,t ′)〉 = 2kBT Mγ δnmδij δ(t − t ′),

where 〈·〉 means statistical averaging, and kB is Boltzmann’s
constant.

The dynamics of the system is then simulated by the
numerical integration of the coupled Langevin equations (3).
The details on the numerical algorithm can be found in Ref. [5].
To increase the statistics, we use a sliding averaging process
that is discussed at length in Refs. [5,15].

The densities and energy scales in the simulations are
chosen to allow the study of both a very low temperature
regime, and a regime that is comparable to our experimental

one [10,15]. Let L be the length of the simulation cell,
with either periodic or fixed boundary conditions, and N

the number of particles. To avoid any defect in the zigzag
structure N is even for periodic systems. In all simulations,
the mean distance d ≡ L/N is kept constant, and most often
L = 60 mm and N = 30. The typical energy scale of the
interparticle interaction is Uint(d)/kB ∼ 6 × 1011 K. The
transverse confinement is very close to its critical value βzz

at the zigzag transition (see Sec. II below), so that the relevant

energy scale is βzzd
2
/kB ∼ 3 × 1013 K. The temperature of the

thermal bath varies between 107 and 1012 K. In our experiments
[10,15], the effective temperature due to the mechanical
agitation ranges between 1010 and 1012 K. The dissipation
coefficient γ varies between 1 and 60 s−1 (γ ≈ 10 s−1 in the
experiments), to be compared to the maximum frequency of
transverse oscillations

√
βzz/M ∼ 14 s−1 according to (10).

B. Transverse SFD for periodic boundary conditions

We first consider small temperatures, such that
Uint(d)/(kBT ) ∼ 105 (that is, T = 107 K). In this case the
bifurcation is almost not perturbed by the thermal noise. We
define ε ≡ β/βzz − 1 as the dimensionless distance toward the
threshold. In Figs. 3(a) and 3(c), we display the time evolution
of the transverse MSD for periodic boundary conditions, and
ε = 0.1, 0.01, and 0.001. The striking feature displayed by
these figures is a SFD regime for the transverse fluctuations,
〈�y2〉 ∝ t1/2, near the zigzag transition (ε � 1%), during a
time that increases at the vicinity of the transition. In order to
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FIG. 3. (Color online) Plot of the transverse MSD (μm2) as a function of time (s), in logarithmic scales, for 30 particles with periodic
boundary conditions and T = 107 K. Left plots simulations, right plots calculations; see Eq. (9). Upper plots γ = 10 s−1, lower plots γ = 60 s−1.
Blue dots (upper curve): ε = 0.001; green dots (middle curve): ε = 0.01; red dots (lower curve): ε = 0.1; thick solid lines for the calculations,
with the same color code. In each plot, the thin solid black line shows the asymptotic behavior in the thermodynamic limit given by Eq. (12).
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FIG. 4. (Color online) Plot of the transverse MSD (μm2) as a function of time (s), in logarithmic scales, for 30 particles with periodic
boundary conditions, γ = 10 s−1 and T = 107 K. We compare simulations data above [red (dark grey) dots, ε > 0] and below [green (light
grey) dots, ε < 0] the zigzag transition. (a) |ε| = 1.7 × 10−4; (b) |ε| = 9.5 × 10−4. In each plot, the thin solid black line shows the asymptotic
behavior in the thermodynamic limit, Eq. (12).

realize this regime, strong correlations between the particles’
motions are necessary. Here, in contrast with the case of lon-
gitudinal fluctuations, the ordering of the particles cannot be
invoked to explain these correlations. In the case of transverse
fluctuations, the correlations only appear in the vicinity of the
transition β → βzz, because of the zigzag pattern that induces
a soft mode which dominates the dynamics.

The transverse SFD behavior is observed on both sides of
the zigzag transition, as shown in Fig. 4 for two small values
of |ε|, a low temperature T = 107 K, and γ = 10 s−1. The
data sets for which ε > 0 are almost indistinguishable from
those for which ε < 0. This is consistent with the peculiarities
of a supercritical pitchfork bifurcation. As will be shown in
Sec. IV, the SFD regime is linked to the soft mode that takes
place on both sides of the transition, and corresponds to the
critical slowing down of the dynamics [41]. Moreover, the
bifurcation is continuous, hence the amplitude of the zigzag
equilibrium for ε < 0 scales as

√|ε|. Thus very near the
bifurcation threshold, the transverse confining force and the
repulsive interactions result in an effective transverse stiffness
βzzε. The transverse fluctuations are therefore those of a
particle in a potential well of stiffness ∼βzz|ε| on both sides of
the transition. This explains why the transverse fluctuations
have the same magnitude. At large time they eventually
saturate at a value that scales as 1/

√
ε. This is actually the case

for the data displayed in Fig. 3. In this figure, we also compare
the transverse SFD regime with that for an infinite system
in the thermodynamic limit, given in Eq. (12). We see that
despite the rather small number of particles (N = 30) the
agreement is excellent. The complete solution of Eq. (9),
which is valid for a finite number of particles, is shown in
Figs. 3(b) and 3(d). There is no free parameter in the analysis,
and the agreement between the calculations and the simulation
data is almost perfect.

Let us now discuss some finite temperature effects. A more
complete analysis will be published later [48]. To this aim,
we study the time evolution of the dimensionless transverse
MSD 〈�̃y2〉 ≡ Mγ 2〈�y2〉/(kBT ) that is independent on the
temperature T according to Eq. (9). In Fig. 5, we plot it for
107 � T � 1010 K, hence a dimensionless interaction energy
105 � Uint(d)/(kBT ) � 102. The data clearly show that 〈�̃y2〉
actually depends on the temperature.

This may be interpreted in the light of noisy bifurcation
theory. As shown by Agez et al. [47], at finite temperature
an intrinsic bifurcation point ε(T ) occurs, which is shifted
from the deterministic bifurcation point ε = 0, with in our
specific case ε(T ) < 0 and |ε(T )| an increasing function of
the temperature (see Fig. 2 for an illustration of this idea).
The dimensionless transverse MSD 〈�̃y2〉 depends upon ε

through the frequency spectrum 	q defined in Eq. (10) that
may be written

	2
qk

= βzz

M

(
ε + cos2 qk

2

)
. (5)

If this picture is correct, at temperature T the actual dimen-
sionless distance toward the zigzag threshold is ε − ε(T ). We
thus inject a fitting parameter εfit in Eq. (9), which provides a
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FIG. 5. (Color online) Plot of the dimensionless transverse MSD,
Mγ 2〈�y2〉/(kBT ), as a function of time (s), in logarithmic scales,
for 30 particles and periodic boundary conditions. In the simulations
γ = 10 s−1, ε = 0.0010 and from top to bottom plots T = 107 K
(magenta), T = 108 K (cyan), T = 109 K (green), T = 1010 K
(orange). Without the thermal noise effect on the bifurcation, all
data should be on the same curve. The solid black lines correspond
to the calculation in Eq. (9), with εfit equal to, from top to bottom
plot, 0.0010 (magenta), 0.0018 (cyan), 0.0035 (green), and 0.0105
(orange). In the inset, we plot 103|ε(T )| as a function of 108T , in
logarithmic scale. The solid line is of slope 1/2.

032163-4



TRANSVERSE SINGLE-FILE DIFFUSION NEAR THE . . . PHYSICAL REVIEW E 87, 032163 (2013)

measurement of ε(T ) = ε − εfit. At low temperature ε(T ) = 0,
which is consistent with the data analysis shown in Figs. 3 and
4 for which εfit = ε. The striking feature exhibited by Fig. 5 is
that the single fitting parameter εfit is sufficient to fully describe
the entire time evolution of 〈�̃y2〉 at large temperature. In the
inset of Fig. 5 we plot the values of ε(T ) deduced from εfit as
a function of the temperature T , and see that it is consistent
with the

√
T scaling predicted by Agez et al. [47].

C. Transverse SFD in finite boxes

In quasi-1D systems of finite size, the particles are not
equidistant at equilibrium, and in the zigzag pattern the
distance of a particle from the longitudinal axis depends upon
its rank in the chain. However, the configurational transition
is as before a supercritical pitchfork bifurcation occurring at
a critical value of the transverse confining potential [22,27,
28,31,51]. As for periodic boundary conditions, the particle’s
transverse fluctuations are thus strongly correlated near the
transition. Since interparticle distances are the smallest in the
cell center [10,11], the SFD behavior for transverse motions
is most easily observed for the center particles. A convincing
example is provided by Fig. 6(a), where the MSD of the center
particle exhibits the typical SFD behavior near the zigzag
transition, at ε = 0.01.

In Fig. 6(b), we display the analytical results given in the
Appendix [see Eq. (A2)], which are in very good agreement
with the simulations. We also display the scaling law in
the thermodynamic limit given by Eq. (12), in which we
replace βzz by the value βzz(N,λw) for the corresponding
finite box [see inset of Fig. 7(b)]. We see that the agreement
is very good although the particle’s number is not very large
(N = 33), and although the confining potential is not of very
short range (L/λw = 7.5; for a precise classification of the
confining potentials see Ref. [49]).

IV. THEORETICAL DESCRIPTION OF THE
TRANSVERSE SFD

In this section we explain the transverse SFD behavior
observed in the simulations. We restrict our calculations to the
vicinity of the zigzag transition β → β+

zz, when the particles
are aligned on the x axis at equilibrium. The equilibrium

positions of the particles are thus r∗
n = (x∗

n,0). In the most
general case, dn ≡ x∗

n − x∗
n−1 depends on the particle rank n.

Let

|rn − rn−1| = [(dn + un − un−1)2 + (yn − yn−1)2]1/2, (6)

where yn and un are respectively the small fluctuations in
the transverse and longitudinal directions. The dynamics of
the thermal fluctuations around the equilibrium positions
is easily deduced from Eq. (1) where for simplicity we
restrict the analysis to nearest neighbors’ interactions, m =
n + 1. Expanding Eq. (1) up to second order in the small
quantities un/dn and yn/dn, we may calculate the transverse
and longitudinal forces exerted on the particle n, −∂E/∂yn,
and −∂E/∂un. The longitudinal and transverse fluctuations
are uncoupled, and the Langevin equation for the transverse
fluctuations reads

ÿn + γ ẏn + 1

M
[(β − βn+1 − βn)yn + βn+1yn+1 + βnyn−1]

= μ(n,t)

M
, (7)

where for simplicity we drop the index in μy(n,t), and with
βn ≡ −U ′

int(dn)/dn. Formally, this equation is very similar to
the one for longitudinal fluctuations [5,11].

We hereafter restrict the calculations to the case of periodic
boundary conditions, and treat the case of the finite boxes in the
Appendix. Therefore, x∗

n = nd with d the mean interparticle
distance and all βn = β = −U ′

int(d)/d . As in [5], we perform
a discrete Fourier transform

Y (qk,t) =
N∑

l=1

eiqklyl(t), yl(t) = 1

N

N∑
k=1

e−iqk lY (qk,t), (8)

where qk = −π + 2πk/N for k = 1, . . . ,N ensures
yN+l(t) = yl(t). It is easily seen that each mode Y (qk,t)
behaves as a particle of mass M in a harmonic potential well,
and that the MSD in the transverse direction is [5]

〈�y2(t)〉 = 2kBT

NM

∑
k

1

	2
qk

[
1 + 	−(qk)e	+(qk )t

	+(qk) − 	−(qk)

− 	+(qk)e	−(qk )t

	+(qk) − 	−(qk)

]
, (9)
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FIG. 6. (Color online) Plot of the transverse MSD (mm2) for the center particle, as a function of time (s), in logarithmic scale, for 33 particles
and fixed boundary conditions. The range of the longitudinal confinement is λw = 4 mm, Ew = 0.1E0, T = 109 K, and γ = 10 s−1. In both
plots the black solid line is the behavior in the thermodynamic limit, Eq. (12), with βzz replaced by its critical value βzz(N,λw) for the simulated
finite box. (a) Simulations, for ε = 0.010 (green, light grey), ε = 0.019 (dashed red line), ε = 0.038 (dotted blue line), and ε = 0.058 (solid
black line). (b) Analytical calculations, from Eq. (A2) with the same color code.
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FIG. 7. (Color online) (a) Plot of the frequency spectrum 	q (Hz) as a function of the dimensionless wave number q for periodic boundary
conditions, for 30 particles, for a period of 60 mm and β = βzz. The modes for negative q are symmetric with respect to the q = 0 axis. (b) Plot
of the frequencies 	s (Hz) as a function of the mode index s for 33 particles, for a cell of length 60 mm, for λw = 4 mm and β = βzz(λw). Inset:
Plot of βzz(N,λw) (N/mm) as a function of λw (mm), for Ew = 0.1E0 and N = 33. The abscissa λw = 0 corresponds to periodic boundary
conditions.

with

	±(qk) ≡ −γ

2
±

√
γ 2

4
− 	2

qk
,

(10)

	2
qk

≡ 1

M

(
β − 4β sin2 qk

2

)
.

A plot of 	qk
is shown in Fig. 7(a) for β = 4β. At this

particular value, a soft mode 	±π = 0 appears. The shape
of this mode is an alternate transverse displacement of the
particles, and the vanishing of its frequency indicates the
zigzag transition. We thus recover our previous result for βzz,
Eq. (2)

The physical origin of the soft mode is clear: exactly at the
transition, there is no restoring force for the mode q±N = ±π .
The calculation of the characteristic frequencies is a classic
way to determinate the zigzag threshold from the vanishing of
one frequency [24,32–35,38,50]. This method is particularly
efficient for finite boxes, for which the critical value βzz must
be determined numerically. A frequency spectrum is shown in
Fig. 7(b) for the particular value βzz(N,λw) at which a soft
mode of zero frequency appears. A plot of βzz(N,λw) as a
function of the confinement range λw is shown in the inset of
Fig. 7(b). The zigzag transition is favored by the confinement
because the distance between the inner particles decreases,
so that moving away from the x axis becomes energetically
favorable at higher values of β. This explains the increase of
βzz(N,λw) with the confinement length λw.

A. Transverse SFD in the thermodynamic limit

The long time behavior of the MSD may be computed in
closed form from Eq. (9) near the zigzag transition β → 4β|+,
in the thermodynamic limit N → ∞. Replacing the discrete
sums by integrals, with the rule (1/N)

∑
k −→ (1/2π )

∫ π

−π
,

we may write

∂〈�y2(t)〉
∂t

= 2kBT

m

1

π

∫ π

0
dq

e	+(q)t − e	−(q)t

	+(q) − 	−(q)
, (11)

where we have used the invariance q → −q. The large time
asymptotic behavior of this integral may then be determined by
the Laplace method [52]. For t → ∞, the integral is dominated

by the immediate neighborhood of the point corresponding
to the maximum value of either 	+(q) or 	−(q) in [0,π ].
From Eq. (10), we see that a maximum of 	+(q) takes place
at q = π , with 	+(π ) = 0, 	′

+(π ) = 0, and 	′′
+(π ) < 0. A

simple calculation then gives

〈�y2(t)〉 t→∞∼ 4kBT√
πMγβzz

t1/2. (12)

This establishes that the transverse fluctuations of an infinite
system, in the thermodynamic limit, undergo the typical SFD
behavior with a t1/2 scaling.

For longitudinal as well as transverse fluctuations, the
SFD behavior is strongly linked to the existence of a finite
band of overdamped modes. Those low frequency modes are
in the vicinity of a peculiar mode, the frequency of which
vanishes. For longitudinal fluctuations, the mode of vanishing
frequency is the one with null wave number associated to
translational invariance [5]. For transverse fluctuations, the
mode of vanishing frequency is the soft mode of wave number
±π associated to the zigzag transition.

B. Transverse SFD in finite periodic systems

At very short time, all N terms in the sum (9) are equal so

that 〈�y2(t)〉 t→0∼ (kBT /M)t2. We recover the obvious result
that, at very short time, all particles are uncorrelated and
undergo a ballistic motion at temperature T . The prefactor is,
of course, the same as for longitudinal fluctuations [5] since
the very short time motions are isotropic.

Let us now consider the intermediate regime, before the
saturation, assuming that we are exactly at the zigzag transition
β = 4β. Using a linear approximation of the dispersion
relation for qk → π , as done in [5] for longitudinal fluctuations
(hence qk → 0), with the help of the Debye approximation,
we get 	2

qk
∼ βδ2

k/M where δk ≡ π − qk . Let us also assume
a large damping, γ � 2	0. Thus 	−(qk) ∼ −γ , 	+(qk) ∼
−	2

qk
/γ and 	+(qk) − 	−(qk) ∼ γ . In the sum (9), each mode

	qk
eventually saturates at the time t ∼ γ /	2

qk
. Hence, at a

given time t , the modes which are not saturated have a wave
number such that 	2

qk
< γ/t or δk < (Mγ

βt
)1/2. There are n(t)

modes which are not saturated, with n(t) ∼ 2 N
2π

(Mγ

βt
)1/2 (the
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factor 2 takes into account the symmetry qk ←→ −qk). In the
sum (9) we drop the subdominant terms e	−(qk )t to obtain

〈�y2(t)〉 ∼ 2kBT

NM

∑
k

1

	2
qk

⎡
⎣1 −

γ
(
1 − 	2

qk
t

γ

)
γ

⎤
⎦

∼ 2kBT

NMγ

(∑
k

)
︸ ︷︷ ︸

=n(t)

t ∼ 2

π
kBT

(
t

Mγβ

)1/2

. (13)

This rough estimate for intermediate times establishes the
existence of a SFD regime for transverse fluctuations in finite
periodic systems, and a comparison with the exact formula
given in Eq. (12) shows that the approximate prefactor is quite
close to the exact one.

The dependence of the saturation value of the transverse
MSD on the transverse stiffness may also be estimated as
follows. Let us assume that we are near the zigzag transition,
that is, β = 4β(1 + ε) with 0 < ε � 1. Both 	±(qk) are
strictly negatives, so that at large time each term in the
sum (9) saturates toward 1/	2

qk
. The sum is thus dominated

by the small frequency modes, with a wave number such that
δk = π − qk � 1. Their frequency is 	2

qk
≈ β(4ε + δ2

k )/M ,
which stays small up to δk ∼ 2

√
ε. The index k associated to

the last mode is k ∼ Nδk/(2π ) ∼ N
√

ε/π . The MSD at long
time may thus be approximated as

〈�y2(t)〉 t→∞∼ 2
2kBT

NM

N
√

ε

π

M

4βε
∼ kBT

πβε1/2
. (14)

This estimate is in good agreement with the simulations data
displayed in Fig. 3.

From the results (13) and (14) it is easy to get an
expression for the time tsat taken by the system to reach the
saturation when the zigzag transition is approached. Assum-
ing [tsat/(Mγβ)]1/2 ∼ kBT /(πβε1/2), we get tsat ∼ Mγ/(βε).
The saturation time diverges at the transition ε → 0, and the
scaling law tsat ∝ ε−1 exhibits the critical slowing down in the
vicinity of a supercritical pitchfork bifurcation [41].

V. CONCLUSION

In this paper we have studied the transverse fluctuations
in quasi-1D systems of particles in a thermal bath, near
the zigzag transition. We have demonstrated that close to
the zigzag threshold, the transverse fluctuations exhibit the
typical SFD behavior, with a MSD that scales as the square
root of time. This subdiffusive behavior traces back to strong
interparticle correlations, and is observed on both sides of the
transition. In contrast with the longitudinal fluctuations, for
which the correlations are due to the noncrossing condition,
the transverse motions of the particles are only correlated close
to the zigzag transition. Their dynamics is closely linked to the
overdamped modes in the vicinity of the soft mode that appears
at the transition, and replaces the zero frequency mode due to
translational invariance for longitudinal motion [5,15].

The small thermal fluctuations may be described by the lin-
earization of the full dynamical equations in the neighborhood
of the equilibrium positions, close to the zigzag transition,
when the equilibrium positions are still aligned. In this

configuration, longitudinal and transverse motions are decou-
pled in the linear regime, so that an adaptation of our previous
calculations [5,11] is obvious. We have calculated analytically
the MSD 〈�y2(t)〉 and found an excellent agreement with the
simulations data. In the thermodynamic limit we demonstrate
the existence of the SFD regime at the zigzag transition. We
calculate the mobility for transverse fluctuations and find
a perfect agreement with the simulations. For finite sized
systems, we are able to recover this result up to a numerical
factor.

The zigzag transition is a supercritical pitchfork bifurcation,
whose features depend on the thermal noise in the system. At
high temperature, the MSD is still quite well described by our
model, if only we take into account a shift in the bifurcation
threshold that increase with the thermal noise level, hence
with the temperature. We find a good agreement between this
shift and the predictions of stochastic bifurcation theory [47].
In a future work [48], we will show that the measurement
of the duration of the SFD regime provides a very efficient
way to determine the bifurcation threshold in a system which
undergoes thermal noise.

APPENDIX: FINITE BOXES

We consider a system of 2N − 1 moving particles xi with
i = −N + 1, . . . ,N − 1. Since the longitudinal confining
potential depends only on x, the transverse motion of particles
±(N − 1) is free in contrast with Ref. [11]. We distinguish the
long-ranged longitudinal confining potentials, the influence of
which extends toward the inner particles of the cell, from the
short-ranged potentials for which all particles are equidistant
with a distance d, except the outermost ones which are at
a distance dw from the fixed walls [49]. In this latter case,
Eq. (7) is that of a chain of identical masses and springs with
free boundary conditions. The relevant frequencies may be
calculated analytically [53],

	2
s ≡ 1

M

[
β + 4

U ′
int(d)

d
cos2 (2N − s)π

2(2N − 1)

]
, (A1)

with s = 1, . . . ,2N − 1. The maximum frequency corre-
sponds to s = 1, when all particles oscillate in phase in
the confining transverse potential. The zigzag transition
happens when a frequency vanishes, for s = 2N − 1 hence
βzz = −4[U ′

int(d)/d] cos2{π/[2(2N − 1)]}. The result (10) is
recovered in the limit N → ∞, as expected since in the
thermodynamic limit both systems are identical.

In the general case of long-ranged longitudinal confining
potentials, the eigenfrequencies 	s and the orthogonal eigen-
modes Ys(n) of unit norm are calculated numerically for the
Hessian matrix deduced from Eq. (7). It is a simple task to
show that Eq. (9) is replaced by [11]

〈�y2(n,t)〉

= 2kBT

M

2N−1∑
s=1

Ys(n)2

	2
s

[
1 + 	s

−e	s
+t

	s+ − 	s−
− 	s

+e	s
−t

	s+ − 	s−

]
,

(A2)
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where

	s
± ≡ −γ

2
±

√
γ 2

4
− 	2

s . (A3)

Once the normal frequencies and the components of the
normal modes are known, the dynamics of the transverse

fluctuations is completely determined by Eq. (A2). The
calculations are displayed in front of the simulations in
Fig. 6(b), showing a very good agreement, without any
free parameter since the relevant Hessian matrix is fully
determined once the equilibrium positions are known from the
simulations [11].
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