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Topological regulation of activation barriers on fractal substrates
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We study the phase-ordering dynamics of a ferromagnetic system with a scalar order-parameter on fractal
graphs. We propose a scaling approach, inspired by renormalization-group ideas, where a crossover between
distinct dynamical behaviors is induced by the presence of a length λ associated with the topological properties of
the graph. The transition between the early and the asymptotic stages is observed when the typical size L(t) of the
growing ordered domains reaches the crossover length λ. We consider two classes of inhomogeneous substrates
with different activated processes, where the effects of the free-energy barriers can be analytically controlled
during the evolution. On finitely ramified graphs, the free-energy barriers encountered by domains walls grow
logarithmically with L(t), whereas they increase as a power law on all other structures. This produces different
asymptotic growth laws (power laws vs logarithmic) and a different dependence of the crossover length λ on the
model parameters. Our theoretical picture agrees very well with extensive numerical simulations.
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I. INTRODUCTION

The slow relaxation of glasses, spin glasses, and phase-
separating systems is a subject of paramount importance in
nonequilibrium statistical mechanics. In the case of homo-
geneous ferromagnets, i.e., nondisordered magnetic systems
defined on homogenous substrates such as lattices, the basic
features of the dynamics after a quench below the critical
temperature are well understood in terms of the domain
growth mechanism [1]. The unbounded growth of the size of
ordered domains with nearly equilibrium composition involves
a scaling symmetry due to the presence of a dominant length
scale, which is manifested in the lack of time-translational
invariance and aging. Although this simple paradigm of
slow relaxation is expected to encompass a broad variety of
situations, its applicability to more complex systems, such as
spin glasses, where both homogeneity and ferromagnetism
are spoiled, remains a debated issue [2]. An intermediate
class of systems is that of nonhomogeneous ferromagnetic
materials [3]. In these systems space homogeneity is wrecked
by spacial modulations of some relevant parameter that, in
order to maintain the system ferromagnetic, must coexist with
the low-temperature order. In this case phase-ordering kinetics
is preserved, although interesting new features may arise. The
agent whereby homogeneity is spoiled may be random, such
as random fields, random bonds, or dilution, or deterministic,
as in the case of models defined on deterministic graphs. The
kinetics of these systems has been an active area of research
for quite some time now. A unifying feature is the ubiquitous
appearance of energetic barriers slowing down the motion
of domain boundaries. This happens because, due to space
inhomogeneity, interfaces are pinned in particular positions,

which may have dramatic consequences on the growth law
and the properties of correlation functions [4–7]. Despite
many experimental and theoretical studies [3], a number
of issues are still open. In particular, the conditions under
which inhomogeneities may radically modify the asymptotic
dynamics are not a priori known [8]. Indeed, there are
cases where disorder merely changes the time units, such
as the one-dimensional Ising model with random bond [6],
and others, such as the same model but with disorder in
the form of a random field [9], where profound qualitative
modifications occur. For this second class of systems the nature
of both the dynamical scaling symmetry and the asymptotic
growth law is not yet fully characterized. Related to that,
the conjecture of a superuniversal behavior, namely, the idea
that scaling functions are robust with respect to the presence
on inhomogeneities that do not change the low-temperature
properties of the system [10], has been proposed.

Recently, in the context of disordered ferromagnets, the
observed behavior has been interpreted [11] in terms of
a picture inspired by renormalization-group ideas where
disorder introduces, in addition to the domain size, another
characteristic length that gives rise to a crossover pattern. In
this paper we apply similar ideas to the realm of ferromagnets
defined on nonhomogeneous physical [12] fractal graphs,
which turn out to be a simple but paradigmatic case where
energy barriers thoroughly modify the asymptotic behavior of
phase-ordering dynamics. Indeed, at variance with the case of
disordered systems, the nature of the energetic barriers and
their scaling properties can be reasonably well understood
and can be related to the topological inhomogeneity. This
allows one to make precise predictions about the growth laws,
the scaling properties, and the crossover phenomena. These
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predictions conform quite well to the outcome of numerical
simulations of the dynamics of the Ising model on graphs.
The main result of this paper is the existence of a crossover
from an early power-law behavior to a slower asymptotic
growth. The latter may be a power law (with a smaller
temperature-dependent exponent) or logarithmic according to
the structure of the barriers, which in turn depends on the
topology of the graph. In particular, we conjecture power laws
to be associated with graphs that sustain ferromagnetic order
only at zero temperature, while logarithms are expected if
an ordered phase exists. The scaling functions of correlation
functions are sensitive to the crossover.

This paper is organized as follows. In Sec. II we provide an
overview of domain growth laws and the scaling framework
proposed in Ref. [11] for disordered systems. In Sec. III we
specify and adapt the scenario to the case of ferromagnets on
graphs, providing also predictions for several quantities such
as crossover lengths and exponents. In Sec. IV we present
numerical results for the phase ordering of the Ising model
on three model fractal graphs: the Sierpinski carpet (SC), the
Sierpinski gasket (SG), and the T fractal (TF). For the first
structure a low-temperature ordered phase exists, whereas it
is not sustained in the other two. We will argue this fact to
represent a basic difference for the dynamical evolution. The
numerical results are interpreted using the scaling ideas of
Secs. II and III and agree quite nicely with the predictions
obtained there. In Sec. V we conclude with a summary and a
discussion of the generality of our results.

II. GROWTH LAWS AND DYNAMICAL SCALINGS

Domain growth kinetics is characterized by an ever increas-
ing typical domain size L(t) after the quench of a system to a
final temperature T in the ordered phase. When L(t) becomes
the dominant length in the problem, dynamical scaling is
observed, meaning that all other lengths can be measured in
units of L(t). Such a property is reflected, for instance, in the
two-point and two-time order parameter correlation function
G(r; t,tw), where r is the distance between the two points and
t > tw, which in homogeneous systems scales as [13]

G(r; t,tw) = Ĝ[r/L(t),L(tw)/L(t)], (1)

Ĝ being a scaling function.
Generally speaking, the growth law and other properties

such as Ĝ may depend on several factors, e.g., temperature,
conservation laws, dimensionality, order parameter symmetry,
disorder, and topology of the substrate. In the simplest cases,
as in homogeneous magnets with nonconserved dynamics, the
kinetics proceeds without activation events. This means that
no free-energy barriers are encountered in the evolution and,
consequently, phase ordering is observed down to temperature
T = 0. In this case the typical domains size increases as L(t) ∼
t1/2. In contrast, the kinetics of other coarsening systems
require thermal activation. The simplest example are perhaps
homogeneous magnets with conserved dynamics. In this case
energy barriers arise as due to the microscopic evaporation-
condensation mechanism underlying the evolution [14]. In
general, barriers can have different origin and scaling proper-
ties. In nonhomogeneous systems, such as the disordered ones
or those embedded in a nonhomogeneous substrate, they are

typically due to the pinning of interfaces in certain preferred
positions. In a wide class of disordered systems, such as the
Ising model with random fields [9,11,15,16], random bonds
[17], or random dilution [7], this pinning effect asymptotically
slows down the growth law to a logarithmic form

L(t) ∝ [ln(t/τ )]1/ψ , (2)

where τ and ψ are model-dependent quantities. With an
Arrhenius form

t ∝ eE/kBT (3)

for the time needed to escape a barrier with activation free
energy E , the problem of establishing the growth law is directly
related to the one of determining the typical height E of barriers
at a certain stage of the evolution. Indeed, inverting the relation
(3), one concludes that the typical activation increases with the
domains size as a power law

E(L) ∝ Lψ. (4)

Equation (4) is not the only possible situation since a different
algebraic growth law

L(t) ∝ t1/ζ , (5)

with ζ a temperature-dependent exponent, is observed asymp-
totically in systems defined on a class of fractal structures
[18,19] and preasymptotically in random field [11] and random
bond ferromagnets [4,5,17,20]. Plugging Eq. (5) into Eq. (3),
one arrives at

E(L) ∝ [ln(L)ζ ] (6)

for the scaling of the barriers with the domains size. A
classification of phase-ordering systems according to the
possible growth laws is made in Ref. [8]. In general, however, a
complete characterization of L(t) in the many varied instances
of coarsening systems is lacking. Besides that, understanding
the behavior of the scaling functions such as Ĝ in Eq. (1) is
also an open problem.

In Ref. [11] it was proposed to unify the wide variety
of behaviors observed in domain growth into a generalized
scaling framework. The basic idea, originally conceived
for disordered systems, is that the agent responsible for
inhomogeneity introduces an extra characteristic length λ.
In the case of the Ising model with nonconserved dynamics
defined on a inhomogeneous graph considered in this paper
(see Sec. III), the only parameters of the model are the
ferromagnetic coupling constant J and T , which enter in the
combination ε = J/T . Then it must be that λ = λ(ε). The
presence of λ introduces a crossover phenomenon between
two different dynamical behaviors when L(t) crosses λ. For
the domain size this is assumed to be described by

L(t ; ε) = t1/zL̂(ε/tφ), (7)

where z and φ are a growth and a crossover exponent, with a
scaling function behaving as

L̂(x) = const for x → 0
(8)

L̂(x) = x1/φz�(x−1/φ) for x → ∞,

where x = ε/tφ . In systems where disorder plays the role of
an irrelevant parameter, φ is positive, inhomogeneities only
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affect the dynamics at early times, and L(t) crosses over to
the pure system behavior L(t) ∼ t1/z at large times [11]. This
usually happens if there is an upper limit for the height of
energetic barriers. In contrast, when barriers of any size can
be encountered, as in the fractal models considered in this
paper and elsewhere, φ is negative and Eq. (8) describes the
crossover from the early stage power law

L(t) ∼ t1/z, (9)

with a temperature-independent growth exponent z, to the
asymptotic form L(t) = λ(ε)�(t/ε1/φ) at the crossover length
λ = ε1/(φz). The functions λ(ε) and �(t/ε1/φ) are in general
hard to determine both analytically and numerically. However,
some prediction can be made in the case of coarsening on
deterministic fractal structures, as will be discussed in Sec. III.

A. Autocorrelation function

In order to discuss the effect of inhomogeneities on the form
of the correlation functions, let us consider as a paradigm the
autocorrelation function C(t,tw) = G(r = 0; t,tw). Generaliz-
ing the crossover approach (7) to this two-time quantity, one
would expect the form

C(t,tw; ε) = Ĉ

[
L(t)

L(tw)
,

λ(ε)

L(tw)

]
, (10)

where Ĉ is a scaling function. In the context of disordered
ferromagnetic systems, a superuniversality conjecture was
proposed according to which the effect of disorder is simply
accounted for by the slower growth of L(t), while scaling
functions entering correlation functions remain unchanged
with respect to the clean case. This amounts to saying that, e.g.
for the autocorrelation function, Ĉ(x,y) should not depend on
the second entry. The superuniversality property was checked
in several models, arriving at different conclusions. Indeed,
while d = 1 results [6,9] clearly demonstrate the absence of
superuniversality, in the cases with d � 2, there is evidence
both in favor [16,20,21] and against [6,11] its validity and
there is presently an intense debate on the subject.

The original formulation of superuniversality was con-
ceived for systems where inhomogeneities are introduced
by disorder. The problem of determining the relevance of
inhomogeneities in the scaling functions, however, may be
posed on more general grounds and the simple systems studied
in this paper may help the clarification of this issue.

III. COARSENING ON FRACTAL STRUCTURES

We will consider in the following the Ising model defined
by the Hamiltonian

H [σ ] = −J
∑
〈ij〉

σiσj , (11)

where σi = ±1 is a unitary spin and 〈ij 〉 are nearest neighbors
on a graph. The dynamics is introduced by randomly choosing
a single spin and updating it with a transition rate that in the
numerical simulations will be chosen in the Metropolis form

w([σ ] → [σ ′]) = min{1, exp(−
E/kBT )}. (12)

3

G
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G

2

FIG. 1. Construction of the first three generations of the TF (top),
SG (middle), and SC (bottom).

Here [σ ] and [σ ′] are the spin configurations before and
after the move and 
E = H [σ ′] − H [σ ]. Phase ordering
is observed after a quench from an high initial temperature
(assumed to be infinite in the following) to T = 0 or to
a temperature below the critical one Tc. In order to infer
the properties and the physical content of the quantities
introduced in the preceding section, let us focus on the
structures of the SG, the TF, and the SC [22,23], representing
prototypical examples of finitely ramified (SG and TF) and
infinitely ramified fractals (SC). Indeed, a wide class of fractal
structures feature topological properties similar to the SG,
TF, and SC [24]. In finitely ramified fractals, an arbitrary
large part of the structure can be disconnected by removing
a finite number of cutting bonds. In general, they admit an
ordered phase only at T = 0. In a broad sense these structures
can be considered as nontrivial topological analogs of a
low-dimensional homogeneous system with d � d�, d� being
the lower critical dimension. Infinitely ramified graphs, in
contrast, can possess a low-temperature ordered phase below
a critical temperature Tc. All these fractals can be built starting
from an elementary object, denoted by the first generation G1,
obtaining then an object of generation G2 by combining G1

parts, and then proceeding recursively as sketched in Fig. 1.
In doing that, the linear size Ln of the structure at generation
n grows as Ln = f Ln−1, where f is a constant that depends
on the structure considered and, specifically, f = 2 for the SG
and TF and f = 3 for the SC.

Since the Ising model on finitely ramified fractals is
characterized by Tc = 0, phase ordering could in principle be
truly asymptotic only after a quench to T = 0, where, however,
the dynamics is frozen because activated moves are prevented.
Nevertheless, as explained in Ref. [18], a preasymptotic coars-
ening stage of diverging duration is observed for sufficiently
low temperatures, similarly to what happens, for instance, on
the one-dimensional lattice. We will focus on this stage of the
dynamics to study coarsening on finitely ramified structures.

During the evolution, energetic barriers arise due to the
mechanism sketched in Fig. 2. Let us consider the SG first,
represented in the top panel. The figure shows schematically
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L(n)

L(n+1)

L(n+1)L(n)

FIG. 2. (Color online) Schematic description of energy barriers in
the SG (top) and SC (bottom). For the SG, the green and the magenta
arches represent the positions of the interfaces in a configuration
of minimum energy after a region of generation n (and n + 1) has
been reversed. The dashed green and magenta lines represent the
configurations of the interface with larger energy while reversing the
structure of generation n (and n + 1). For the SC, the continuous
green, blue, and magenta lines represent the positions of minimum
energy of an interface after the reversal of part of the structure of
generation n (and n + 1). The corresponding dashed lines are the
positions of larger energy to be exceeded.

the evolution of an interface that progressively spans a part
of the structure. Initially, the position of the domain wall
is outside the structure represented in the figure, in the left
corner. This means that all the spins are, say, down. As time
goes on, the interface enters the graph by moving across
the intermediate position I (max)

n indicated by a dotted green

line (this means that spins on the left of the green line have
been reversed upward). The index n refers to the fact that
the interface is currently spanning the nth generation of the
fractal. When the spins of the whole generation n have been
reversed, the interface, depicted by two green arches, is located
in the configuration I (min)

n on the four cutting bonds. Since the
energy of a domain wall is J times its length, it is clear that in
I (min)
n the interface has a minimum energy E(min)

n . On a finitely
ramified structure, since the number of cutting bonds is finite,
this quantity is bounded from above and for large n it becomes
n independent, i.e., E(min)

n = E(min). For the SG, E(min) = 4J

for any n since there are four cutting bonds for the interface,
independently of n. Let us assume that the highest energy
E(max)

n of the system during the above process was reached
in the (generic) configuration I (max)

n , so a barrier of height
En = E(max)

n − E(min)
n has been crossed. Now the interface must

proceed again to the right in order to reverse all the spins of the
next generation n + 1, thus reaching the position I

(min)
n+1 located

on the other four cutting bonds and indicated by the couple of
magenta arches (all the spins in the figure at this stage have
then been reversed). Also, this configuration has an energy
equal to E(min). The topology of the finitely ramified graph
allows the system to attain this configuration by sequentially
reversing parts of generation n of the structure. For instance,
in the Sierpinski gasket, by first reversing another triangle of
generation n, say, the bottom-right one in Fig. 2. This event
is analogous to the one described before. In particular, the
interface in the intermediate position I

(max)
n+1 , depicted by a

dashed magenta line, is analogous to the previous one at I (max)
n

(dotted green arch), except for the presence of an extra part
around certain cutting bonds, which, in the present example,
are indicated by a dashed magenta arch. For low temperatures
the number of these cutting bonds tends to be minimized and
it does not depend on the generation. Denoting by E

(max)
n+1 the

maximum energy reached by the system in the reversal of the
n + 1 generation, one concludes that E

(max)
n+1 = E(max)

n + Ec,
where Ec is the amount of extra energy due to the new part
of interface (the dotted magenta arch in the figure). Writing
Ec = Jnc, where nc is double the number of broken bonds
associated with the energy Ec, for the SG, one has nc = 4. We
recall that in general nc does not depend on n. Then

En+1 	 En + Jnc (13)

or, equivalently, rewriting E in terms of the size Ln of the nth
generation,

E(f Ln) 	 E(Ln) + Jnc. (14)

From this relation, dropping the index n, one has

E 	 Jnc

ln f
ln L. (15)

Inserting this form into the Arrhenius relation (3), we arrive at
an algebraic growth law as in Eq. (5) with

ζ 	 a
J

T
(16)

and

a 	 nc

kB ln f
(17)

032160-4



TOPOLOGICAL REGULATION OF ACTIVATION BARRIERS . . . PHYSICAL REVIEW E 87, 032160 (2013)

at low temperatures. The argument has been developed by
referring to the deterministic SG, but it is expected to hold also
for the TF (with nc = 2) and in general for finitely ramified
deterministic and disordered structures, as for all of them an
arbitrary large part can be disconnected by cutting a finite
number of links.

A similar argument applies to infinitely ramified structures
and it will be schematically illustrated for the SC with the help
of the lower panel of Fig. 2. As for the SG, an interface enters
the portion of the fractal considered from, say, the bottom-left
edge, crossing a region of generation n, passing through a
high-energy position depicted as an arch-shaped dashed green
line. The evolution then proceeds towards the position I (min)

n ,
which in the figure is depicted by a continuous green line
that roughly spans the diagonal of the nth generation. Here
the energy reaches a minimum E(min)

n because the largest
hole available at generation n is crossed, thus minimizing the
number of misaligned spins. Then the domain wall moves
to the next high-energy configuration, depicted as a couple
of dashed arch-shaped blue lines, and then to the minimum
energy position I

(min)
n+1 depicted by a continuous diagonal blue

line. Eventually the magenta configurations are progressively
reached by the interface. Notice that these configurations have
the same energy as the blue ones. It is clear from the figure that
the energies of the blue (or magenta) configurations occupied
at generation n + 1 are double those of the green ones at
generation n. Hence one can write, in place of (14),

E(f Ln) = uE(Ln), (18)

where u = 2 for the SC. Hence, in place of Eq. (15) we find

E(Ln) 	 bJL
df l

n , (19)

where df l = ln u/ ln f is in general the fractal dimension of
the intersection of the fractal structure with a line, that is, the
border of the interface, corresponding to the cut set (e.g., it is
df l = ln 2/ ln 3 for the SC considered in the figure), and from
Eq. (3) we arrive at Eq. (2), with

ψ = df l. (20)

This argument, developed for the SC, is expected again to be
of general validity for all infinitely ramified structures.

In conclusion, according to the above discussion, finitely
(SG and TF) and infinitely (SC) ramified fractals represent
typical examples where barriers increase logarithmically and
algebraically with L [Eqs. (4) and (6), respectively] due
to their topological properties. Correspondingly, the growth
law is expected to be a power law (with a temperature-
dependent exponent) or a logarithmic behavior [Eqs. (5) and
(2), respectively]. These behaviors should be observed when
the energy scale kBT associated with temperature fluctuations
is small with respect to the height E of the barriers. Conversely,
for E 
 kBT , the effect of the barriers is negligible. Interfaces
diffuse freely in this case and, in analogy to what is observed on
regular lattices, one expects to observe a power-law behavior
as in Eq. (9), characterized by the temperature-independent
exponent that describes the displacement 〈x2〉 ∝ t1/z of a
random walker on the structure. For a fractal graph having
spectral and fractal dimensions ds and df , respectively, it is
z = 2df /ds [25]. We remark that this same power law is

predicted by approximate theories [26] to be the correct
asymptotic growth law, whereas our arguments indicate that it
can only be preasymptotic.

All these behaviors can be fitted into the crossover scenario
described by Eq. (7) provided z = ds/2df and

�(x) ∝ x1/ζ for finitely ramified graphs
(21)

�(x) ∝ (ln x)1/ψ for infinitely ramified graphs,

with ζ and ψ given in Eqs. (16) and (20). The crossover length
λ is given by the condition

E(λ) 	 kBT . (22)

Using Eqs. (15) and (19), this implies that

λ ∼ exp(kBT ln f/Jnc) for finitely ramified graphs
(23)

λ ∼ (kBT /J )1/df l for infinitely ramified graphs.

IV. NUMERICAL SIMULATIONS

In this section we present the results of numerical simula-
tions of the dynamics of the Ising model after a quench on the
SG, the TF, and the SC. In the simulations we will consider
systems with n = 9, 8, and 6 generations, respectively. With
these choices finite-size effects are not observed in the range
of times considered. The system is prepared in a completely
disordered state where spins are set to σi = ±1 randomly and
independently on each site i, corresponding to an infinite-
temperature equilibrium initial state. The evolution is then
implemented by flipping randomly chosen single spins with
the Metropolis rate (12), where T is the temperature at its
quench value. We always set kB = 1 and J = 1 or, stated
differently, we measure temperature in units of J/kB . We
consider a modified dynamics called no-bulk-flip dynamics,
where spins that are aligned with all the nearest neighbors,
namely, in the bulk of an ordered domain, cannot flip. It
was shown that this dynamics, which has been tested and
used in a number of studies [18,27], does not change the
large-scale properties of the system and improves the speed
of the simulation and the quality of the results. In order to
grasp at least the basic physics inspiring the no-bulk-flip rule
let us recall that in a coarsening system all the large-scale and
long-time properties are uniquely determined by the motion of
the ordered domains walls. Well inside the domains, regions
of spins correlated over a length ξ (T ) can rapidly change sign
over a characteristic time ξ (T )z, where z is the dynamical
exponent. However, since for large times t and T < Tc, ξ (T )
is always negligible with respect to L(t), the flipping of these
thermal islands affects only small-distance and short-time
properties, which are not the universal ones we are interested
in. Further details on this accelerated dynamics can be found
in Refs. [17,27]. For the SG, we study quenches to different
final temperatures in the range T ∈ [0.8 − 3.4]. For T > 3.4
the system very rapidly reaches the disordered equilibrium
state and the coarsening stage cannot be observed. In contrast,
for T < 0.8 the dynamics becomes exceedingly slow to obtain
reliable results with our computational resources. Similarly, for
the TF we consider quenches in the range of final temperatures
T ∈ [0.2 − 3] and for the SC T ∈ [1 − 3].
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On a homogeneous structure, assuming scaling (1), the
equal-time correlation function

G(r; t) = 〈σi(t)σj (t)〉 (24)

depends only on the distance r between i and j . From this the
typical length L(t) is usually extracted, e.g., as the half height
width G(r = L(t); t) = 1/2. Although on a generic graph the
notion of distance is not straightforward, one can reduce its
definition to the usual one along certain directions, as done
in Refs. [18,19]. Proceeding analogously, here we arrive at a
determination of L(t). This quantity is shown in Fig. 3 for
quenches to different final temperatures.

A first trivial observation is that in the structures considered
in the simulations there is a lower cutoff Lhole of the size of the
holes. Hence, for L(t) < Lhole the fractal nature of the graph
is not revealed and we expect to observe the same behavior
as on a homogeneous lattice. Here Lhole is of the order of the
size of the first generation and, in the cases considered here,
Lhole 	 3. Very early data with L(t) < Lhole, therefore, do not
describe the effect of the fractal structure and we will restrict
the discussion to only L(t) > Lhole.

For all structures considered here, one sees very clearly
a crossover from an early regime L(t) 
 λ, where curves
for different temperatures roughly collapse, to a late stage
with a strongly-temperature-dependent behavior. This is what
one would expect from the picture described in the preceding
sections. According to the discussion of Sec. III, if such a
crossover is described by Eq. (7), a number of predictions can
be done, which we will check in the following.

A. Crossover length

We start from the behavior of the crossover length λ given
in Eq. (23). For the SG, using f = 2 and nc = 4 one has
ln f/Jnc 	 0.17. Using Eq. (23) one concludes that, in the
range of temperatures explored (T ∈ [0.8 − 3.4]), λ can be
varied at most by a factor 1.57. In Fig. 3 (top-left panel)
we have indicated by a dashed horizontal line the value of
λ obtained from Eq. (23) by adjusting the proportionality
constant in such a way that for L(t) > λ only the asymptotic
power-law growth (21) (with ζ �= z) is observed. This can
be done rather precisely for the lowest temperatures. Since
λ can be varied only by the small factor 1.57, it is clear
that even for the highest temperature one cannot obtain
a significative range Lhole < L(t) < λ to clearly determine
the preasymptotic stage, where Eq. (9) should hold with a
temperature-independent exponent z = 2df /ds (this law is
represented by the dashed magenta line). Notice that at the
highest temperatures L(t) grows approximately as in Eq. (9)
but, as will be discussed below, for the different reason that the
asymptotic temperature-dependent exponent ζ approaches the
value z = 2df /ds at high temperatures. A similar situation is
found for the TF (top-right panel). Here the smaller value of nc

(nc = 2) allows λ to vary by a slightly larger factor, i.e., 2.46.
On this structure, then, at variance with the SG, one should
be able to detect the preasymptotic regime Lhole < L(t) < λ

at least for the larger temperatures.
For the SC we have plotted in Fig. 3 (bottom panels) the

crossover length λ obtained from Eq. (23) by using df l =
ln 2/ ln 3 and adjusting the proportionality constant in such a

way that the crossover from an early power law to asymptotic
logarithmic behavior occurs around λ. As shown in Fig. 3, our
estimate of λ fits quite nicely at a semiquantitative level with
the data.

B. Early stage

Next let us consider the first regime for L(t) 
 λ that
should obey the power-law behavior (9) with the temperature-
independent exponent z = 2df /ds . As already discussed
above, this preasymptotic regime is too short to be studied in
the SG. For the TF this should in principle be observed at least
at the largest temperature T = 2.5. However, as can be seen
in Fig. 3, the crossover appears to be very broad, preventing
clear-cut evidence of the preasymptotic behavior also in this
structure.

On the contrary, for the SC at the highest quench temper-
ature T = 3 this stage lasts for more than a decade. Here one
observes the expected power law with exponent z = 2df /ds

(such a law is represented by the dashed magenta line). This
shows that, indeed, in a preasymptotic regime barriers do
not play a relevant role and interfaces perform a random
walk on the graph. Notice also that, as already observed in
Refs. [18,19], an oscillatory behavior is superimposed on a
globally increasing trend. This feature is observed in all the
dynamical regimes and also in the SG and TF. Although the
very limited extent of time that can be reached in simulations
does not allow one to observe more than at most one to
two oscillations, thus preventing any precise analysis, a
semiquantitative inspection of the data clearly suggests that
these might be log-time periodic. This periodicity is observed
in a number of apparently different phenomena, ranging from
fracturing of heterogeneous solids [28] to stock market indexes
[29] and from magnetic systems with a lack of translational
symmetry [30] to phase-separating fluids under shear [31].
This feature is generally associated with the presence of
a discrete scale invariance [32], which in the present case
induces a recurrent trapping of the interfaces when a complete
generation of the fractal has been ordered. The presence of
such log-periodic oscillations has been analytically proven for
a random walker diffusing on these fractal structures [33].

C. Late stage

The next step is the determination of the asymptotic growth
law, namely, the function �, which should behave as in Eq. (21).
For the SG and the TF it is clear that the curves oscillate
around a net power-law behavior, as already observed in
Ref. [18]. This is what was expected for finitely ramified
graphs, according to Eq. (21). Our arguments provide the
prediction (16) and (17) for the low-temperature behavior of ζ .
In order to check this we have plotted 1/ζ against temperature
in the inset of the top panels of Fig. 3. For low T the data
show good agreement with the expected behavior, which is
represented by the dashed blue lines. Notice that, in this case,
there are no fitting parameters since also the value of the
constant a has been inferred.

In the case of the SC, the logarithmic growth of L(t)
forces one to reach much longer times, particularly at low
temperatures, and this in turn increases the computational
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FIG. 3. (Color online) Typical size L(t) (symbols) plotted against time on a log-log plot for an Ising model quenched to different final
temperatures (see legend) on the SG (top-left panel), the TF (top-right panel), and the SC (bottom panels). The bold dashed magenta line in
the top- and bottom-left panels is the expected short-time behavior L(t) ∼ t1/z, with z = 2df /ds , while in the bottom-right panel it represents
the asymptotic logarithmic law L(t) ∼ (ln t)1/ψ , with ψ = df l = ln 2/ ln 3. The horizontal dashed lines represent the crossover length λ. In the
inset of the top panels the exponent 1/ζ , obtained from the data of the main part of the figure, is plotted against T . The dashed blue line is the
prediction (16) and (17).

effort limiting the possibility of a large statistics over many
realizations of the thermal histories. Moreover, the screening
due to the oscillations is more severe. Nevertheless, the data
of the top-right panel of Fig. 3 show quite unambiguously a
crossover to a slower growth law around L(t) 	 λ. According
to our general picture, this should be described by the
logarithmic form of Eq. (21). In order to check this we have
plotted in the bottom-left panel the same data but with an extra
logarithm on the time axis. In this plot the form of Eq. (21) is
a straight line with slope 1/ψ . This is consistent with our data
for L(t) > λ. The numerical results show that the exponent ψ

decreases when T is increased. In the limit of low temperature,
the value of Eq. (20) is predicted. The corresponding law is
represented by a dashed magenta line in the bottom-left panel
of Fig. 3. Here one observes very nice agreement with the data
for the lowest temperature (T = 1), suggesting the correctness
of our argument.

D. Autocorrelation function

Finally, our simulations allow us to comment on the role
of the inhomogeneities in the scaling functions of correlation

functions. We will consider in the following the autocorrelation
function

C(t,tw) = 1

N

N∑
i=1

〈σi(t)σi(tw)〉, (25)

where N is the number of spins in the structure, for which the
scaling form (10) is expected.

As discussed previously, because of the smallness of λ on
the SG and the broad form of the scaling functions in the
TF, the whole crossover pattern can be better detected in the
SC. Hence we concentrate on this structure in the following.
In Fig. 4 we plot the autocorrelation function measured after
different waiting times tw. The top panel refers to the quench to
the highest temperature T = 3, where, according to the data of
Fig. 3, one can access both the preasymptotic regime and the
crossover to the late stage and the role of the second entry of
the scaling function in Eq. (10) can be studied. Interestingly,
the crossover phenomenon is fully displayed in the figure.
Indeed, the two curves for the shortest waiting times (tw = 10
and 20) almost collapse. The small residual dependence on tw,
namely, the fact that the collapse is not perfect, is probably due
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FIG. 4. (Color online) Autocorrelation function C(t,tw) plotted
against L(t)/L(tw) for different values (see legend) of tw . In the top
panel a quench to T = 3 is considered, while in the bottom it is
T = 1.

to the fact that the presence of the crossover is already slightly
felt even at these early times [but we cannot reduce tw further
because of the constraint L(tw) > Lhole]. However, the picture
shows that the separation between these two curves is much
smaller than the one between the following ones, which clearly
indicates a convergence of the data to a limiting master curve
for L(tw) 
 λ. In view of Eq. (10) this means that the second
entry λ/L(tw) is so large that Ĉ[L(t)/L(tw),λ(T )/L(tw)] 	
Ĉ[L(t)/L(tw),∞]. Then, upon increasing L(tw), the second
argument of Ĉ decreases and becomes relevant. Indeed, the
collapse is lost and there is a clear tendency of the curves to
move to larger values, as already noticed in Ref. [18]. This
signals the crossover from the early stage to the late regime.
Finally, for larger values of L(tw) [L(tw)  λ] one has again
a tendency to collapse on a master curve that corresponds to
Ĉ[L(t)/L(tw),0]. This is verified for tw = 1000,2000,4000.

In order to complete the analysis we consider also the
quench to the lower temperature T = 1. In this case, since
λ is smaller, the limiting curve Ĉ[L(t)/L(tw),0] should be
achieved at earlier tw. Our results are plotted in the bottom
panel of Fig. 4. At this low temperature the autocorrelation

function is strongly oscillating. This is the counterpart of
the periodic modulations already observed in the growth
law. These oscillations hinder somehow the collapse of
the curves. Nevertheless, one observes that already from
such short waiting times as tw = 100 onward the curves
do not show any tendency to move upward, at variance
with the case with T = 3. This can be interpreted as due
to the fact that since λ is much smaller at T = 1, the collapse
on the master curve Ĉ[L(t)/L(tw),0] is already achieved at
these early times. Clearly, since λ is small, the precrossover
collapse on Ĉ[L(t)/L(tw),∞] is not observed here. Notice that
the two master curves Ĉ[L(t)/L(tw),∞] and Ĉ[L(t)/L(tw),0]
in the top panel are very well separated, clearly indicating
the relevance of the second entry in the scaling function of
Eq. (10). The whole behavior of C, which is captured by
the two-parameter scaling (10), shows unambiguously the
relevance of the inhomogeneities, entering through the length
λ, in determining the shape of the scaling functions.

V. CONCLUSION

In this paper we have studied the phase-ordering kinetic
of a ferromagnetic system with a scalar order parameter on
fractal graphs. We have proposed a scaling approach, inspired
by renormalization-group ideas, where a crossover between
distinct dynamical behaviors is induced by the presence
of a length λ introduced by the topological properties of
the graph. The transition between the early and asymptotic
stages is observed when the typical size L(t) of the growing
ordered domains reaches the crossover length λ. In this general
framework, two classes of inhomogeneous substrates can be
defined according to the nature of the activated processes that
set in during the evolution. Specifically, we argue that on
finitely ramified graphs the free-energy barriers encountered
by domains walls grow logarithmically with L(t), whereas
they increase as a power law on all the other structures.
This produces different asymptotic growth laws (power laws
vs logarithmic) and a different dependence of the crossover
length λ on the model parameters. We have tested these ideas
by numerical simulations of the Ising model on two model
structures where, due to their relative simplicity, one can
exhibit explicit predictions for the behavior of L(t) and λ,
which conform very well to the numerical data.

The models studied in this paper can be considered as
simple prototypical systems to understand the more general
and still open problem of phase ordering in inhomogeneous
systems. A natural question is then if (and how) the results
of this article can be extended to more general situations.
For instance, one might wonder if a similar picture holds in
systems where dilution is random instead of being, as in this
paper, deterministic. Following the arguments developed in
Secs. II and III, one realizes that neither the deterministic
character nor the fractal nature is really determinant. Instead,
the fundamental ingredient is whether the position of minimum
energy of interfaces contains a number nc of broken bonds
that is independent of L(t) or if such a number scales with
(some power of) L(t). This in turn is related to fact that
the corresponding graph does not sustain a ferromagnetic
phase (Tc = 0) or it does (Tc > 0), respectively. Extending
this argument to the case of random dilution, we can predict
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an asymptotic logarithmic growth law as in Eq. (2) for the
randomly diluted (bond or site) Ising model with a fraction of
occupied sites (or bonds) p > pc, where pc is the percolation
threshold. Right at p = pc, in contrast, we expect a power-law
growth as in Eq. (5). Notice that, at variance with the fractal
models studied in this article, for randomly diluted systems

one can tune continuously the parameter p that controls the
closeness to the threshold case p = pc. Finally, it would be
interesting to understand if similar concepts can be extended
to interpret a different system where the inhomogeneous
character is not due to dilution but to other agents such as
random coupling constants or spatially varying external fields.
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