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Thermal conductivity of anharmonic crystals with self-consistent baths:
Analytical computation with discrete time
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We analytically compute the thermal conductivity of anharmonic crystals with self-consistent stochastic
reservoirs. We develop an integral representation for the heat current, assume the approximation of discrete
times, and in a perturbative analysis that is rigorously supported by a convergent cluster expansion compute the
thermal conductivity for a chain with quartic anharmonic on-site potential. In the high anharmonicity regime,
the result for the dependence of the conductivity on temperature is the same as for the system without inner
reservoirs. The presented formalism is quite general and is also valid for inhomogeneous systems in any space
dimension.
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The study of the microscopic mechanism of heat conduction
[1] is an old problem, but it is still a challenge in nonequilib-
rium statistical physics. For a long time, fundamental questions
have been investigated, such as the conditions for Fourier’s
law to hold true [2]; recently, more and more attention has
been devoted to problems regarding the control of the heat
current, for example, the construction of devices such as
thermal diodes [3], transistors [4], and memories [5].

Since the pioneering work of Debye, the usual models
for the description of heat conduction in solids are given by
systems of anharmonic oscillators, which involve extremely
difficult mathematical problems. Consequently, most of the
works are carried out with the aid of numerical techniques
or computer simulations. In the few analytical studies, to
bypass the excessive difficulty some authors make use of toy
models and simplified systems [6], or approximate schemes
[7,8]. However, more accurate analytical investigations are
still highly desirable for both a clear understanding (to resolve
conflicting numerical results and open questions) and hints for
the building of thermal devices with useful properties.

Hybrid models, that is, systems in which the interaction
is a combination of mechanic (determinist) and stochastic
potentials, appear as a candidate for a more amenable
analytical problem, still related to realistic models, with a
precise solution. An important example is the harmonic and the
anharmonic lattice of oscillators with self-consistent stochastic
reservoirs linked to each site. The self-consistent condition
means that, in the steady state, there is no mean heat flow
between each inner reservoir and its linked site. In other words,
the inner reservoirs do not describe real thermal baths as those
given by the baths at the boundaries: They represent only some
residual mechanism of phonon scattering not present in the
deterministic potential. The simpler case, that is, the harmonic
self-consistent chain of oscillators, is an old problem [9]
recently revisited [10]. In such a model, it has been proved that
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the Fourier law holds, the thermal conductivity is a constant
(it does not change with temperature), and the temperature
profile is linear. In Ref. [11] the anharmonic version was
investigated: The existence of a nonequilibrium stationary
state with the self-consistent condition and the boundedness
of a thermal conductivity K(T ) as the size of the system
goes to infinity were proved. There K(T ) was given by a
Green-Kubo formula, but it was not explicitly computed.
Again, the immense difficulty of computations in the nonlinear
problem was stressed in Ref. [11].

In this context, the present work addresses the presentation
of an analytical approach that allows us to compute in detail
the heat flow and the thermal conductivity in lattice systems of
anharmonic oscillators that may describe realistic features of
the heat conduction in solids. We consider these anharmonic
crystals with self-consistent reservoirs, develop an integral
representation for the correlation functions that give the heat
current, and compute the thermal conductivity of the system.
The unique approximation used in the analysis is the replace-
ment of continuous time by discrete time. We perform a per-
turbative computation that is supported by a convergent cluster
expansion; the approach is quite general: It works also for inho-
mogeneous systems and the integral formalism follows for the
space dimension (probably requiring, however, a different per-
turbative analysis). Moreover, our results indicate that at least
in the regime of high anharmonicity, anharmonic chains with
and without inner reservoirs present similar heat conduction.

Let us introduce the model. For simplicity, we consider a
one-dimensional space. Precisely, we take N oscillators with
the Hamiltonian

H (q,p) =
N∑

j=1

⎡
⎣1

2

⎛
⎝p2

j

mj

+ Mjq
2
j +

∑
l �=j

qlJlj qj

⎞
⎠ + λP(qj )

⎤
⎦ ,

where Mj > 0, Jjl = Jlj , and P is the anharmonic on-site
potential, with the dynamics given by

dqj = (pj/mj )dt, dpj = −∂H

∂qj

dt − ζjpjdt + γ
1/2
j dBj ,

(1)
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where Bj are independent Wiener processes, ζj is the coupling
between site j and its reservoir, and γj = 2ζjmjTj , where Tj

is the temperature of the j th bath. We will restrict the analysis
to nearest-neighbor interactions only.

The energy current, i.e., heat flow, inside the system is
given by 〈Fj,j+1〉 ≡ Fj,j+1, where 〈·〉 means the expectation
with respect to the noise distribution and

Fj,j+1 = Jj,j+1(qj − qj+1)

(
pj

2mj

+ pj+1

2mj+1

)
. (2)

Precisely, Fj,j+1 describes the mean heat flow from the j th
to the (j + 1)th site. Given the temperatures T1 and TN at the
boundaries, the self-consistent condition (no mean heat flow
between an inner reservoir and its site in the steady state) is
reached with the choice of T2,T3, . . . ,TN−1 such that

F1,2 = F2,3 = · · · = FN−1,N . (3)

In order to make clear the usefulness of the approach to be
presented here, we recall some previous results and show the
difficulty of the investigation in the specific case of crystals of
anharmonic oscillators with self-consistent reservoirs. In our
initial works [12], inspired by the Feynman-Kac formula, we
develop an integral formalism with a Gaussian measure related
to the harmonic potential part. The formalism works well for
the simpler harmonic models and allows us to describe the
nontrivial behavior of systems with alternating masses [13]
and the absence of rectification in general graded harmonic
chains [14]. However, the derivation of the anharmonic
model features by starting from this Gaussian measure (i.e.,
from the harmonic interaction) seems to be impracticable.
Hence, to make profitable the integral formalism, in Ref. [15]
we proposed some modifications involving uncontrolled ap-
proximations, e.g., the replacement of instantaneous value
of q(t) and p(t) by their mean values 〈q(t)〉 and 〈p(t)〉
(a kind of mean field approximation) and the replacement
of the measure evolving in time by the stationary measure.
It is interesting to note that such approximations work
very well for the simpler case of harmonic models (where
the existence of rigorous results allow a comparison; see
Ref. [15]). Moreover, for the anharmonic systems, such an
approximate scheme was useful enough to give us some
qualitative understanding of the onset of thermal rectification
in graded models (with the result extended and confirmed for
different models in other works [16,17]) and the occurrence
of negative differential thermal resistance. However, given the
uncontrolled changes introduced in the formalism, it is clear
that a more precise approach is still necessary. Thus, in the
present work, we assume one approximation (discrete time)
and by performing rigorous procedures develop an alternative
approach as described in detail.

For simplicity, we restrict the analysis to one-dimensional
homogeneous systems (λj = λ, Mj = M , etc.) with particle
mass m = 1. We stress, however, that similar procedures
follow the investigation of inhomogeneous models.

For clarity and to give an essentially self-contained de-
scription of our method, the expressions (4) and (10), already
derived in previous works, are repeated below. We introduce
the notation of the phase-space vector ϕ = (q,p), with 2N

coordinates. The dynamics becomes

ϕ̇ = −Aϕ − λP ′(ϕ) + ση, (4)

where A = A0 + J and σ are 2N × 2N matrices

A0 =
(

0 −I

M̃ 	

)
, J =

(
0 0
J 0

)
, σ =

(
0 0
0

√
2	T

)
,

where I is the unit N × N matrix; J is the N × N matrix
for the interparticle interaction Jlj ; and M̃, 	, and T are
diagonal N × N matrices M̃j l = Mjδjl , 	jl = ζj δjl , and
Tj l = Tjδjl . Here η are independent white noises; P ′(ϕ)
is a 2N × 1 matrix with P ′(ϕ)j = 0 for j = 1, . . . ,N and
P ′(ϕ)i = dP(ϕi−N )/dφi−N for i = N + 1, . . . ,2N . In what
follows we use the following index notation: i for index values
in the set [N + 1,N + 2, . . . ,2N ], j for values in the set
[1,2, . . . ,N], and k for values in [1,2, . . . ,2N ]. We omit the
sum over repeated indices.

To derive the integral representation for the heat current
(given by two-point correlation functions) we start from the
decoupled harmonic system, i.e., with J = 0 and λ = 0, as in
our previous works. The solution of the dynamical equation
with J = 0 and λ = 0 is the Ornstein-Uhlenbeck Gaussian
process

φ(t) = e−tA0
φ(0) +

∫ t

0
ds e−(t−s)A0

ση(s), (5)

where, for the simple case of φ(0) = 0, the covariance of the
process is given by

〈φ(t)φ(s)〉0 ≡ C(t,s) =
{

e−(t−s)A0C(s,s), t � s

C(t,t)e−(s−t)A0†
, t � s,

(6)

C(t,t) =
∫ t

0
ds e−sA0

σ 2e−sA0†
. (7)

As t → ∞ we have a convergence to the Gaussian distribution
with covariance

C =
∫ ∞

0
ds e−sA0

σ 2e−sA0† =
(
T M−1 0

0 T

)
, (8)

where T is a diagonal N × N matrix with Tj,j ′ = Tjδj,j ′ .
Now we obtain a preliminary integral representation for

the correlation functions of the complete process with the
interparticle interaction J and the anharmonic potential by
using the Cameron-Martin-Girsanov theorem, which describes
a relation between the correlations for the complete and the
decoupled harmonic processes. Precisely, for the two-point
function we have

〈ϕu1 (t)ϕu2 (t)〉 =
∫

φu1 (t)φu2 (t)Z(t)dμC, (9)

where

Z(t) = exp

(∫ t

0
u dB − 1

2

∫ t

0
u2ds

)
,

γ
1/2
i ui(s) = −Ji,j φj (s) − λP ′(φi−N )(s).

For the parameters γi , Ti , etc., we have γi ≡ γi−N, . . .. After
simple manipulations (using the dynamical equation for φ to
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replace dB), we get

Z(t) = exp

(
−

∫ t

0

[
φj (s)J †

jiγ
−1
i dφi(s) + γ −1

i λP ′(φi−N (s))dφi(s)
] −

∫ t

0
ds

[
φj (s)J †

jiγ
−1
i A0

ikφk(s) (10)

+ γ −1
i λP ′(φi−N (s))A0

ikφk(s) + 1

2
φj ′(s)J †

j ′iγ
−1
i Jij φj (s) + 1

2
γ −1

i λ2[P ′(φi−N (s))]2 + γ −1
i λP ′(φi−N (s))Jij φj (s)

])
.

Before carrying out an analysis that differs from that in
our previous works, let us first note that it is possible to
rewrite the integrals with dφ above as integrals in ds with
functions of φ (by turning to the equations of dynamics and
using Itô’s calculus [12]), but we would still stay with a
formalism involving a Gaussian measure coming from the
harmonic interaction. Hence, recalling hints from field theory,
to proceed we introduce an ultraviolet cutoff, precisely, we
take discrete times t = 0,1, . . . ,τ − 1,τ . As our interest is
related to properties of the steady state reached as τ → ∞,
we believe that the absence of short times will not introduce
considerable changes. Functionally, it is similar to averaging
over the dynamical variables over only short times instead
of using the average over the whole process (which is the
approximation assumed in a previous work [15]). We believe
that this ultraviolet cutoff is appropriate since, by considering
the power spectra of hydrodynamic currents in the model, it
is found that the lower frequencies dominate the transport on
a large scale (the scale of the whole chain). An interesting
related discussion is presented in Ref. [18]. Moreover, now
in a space-time lattice, it is possible to join anharmonic
terms to the Gaussian measure in order to get a different
measure (an anharmonic single spin distribution) suitable
for the problem. The important physical consequence of the
replacement of the initial Gaussian measure by an anharmonic
one in the integral formalism must be recalled: It means
that, in the following perturbative analysis, we will start from
the correct point, namely, from the core of the anharmonic
interaction, not from the harmonic potential (related to the
Gaussian measure) whose properties are completely different
from those associated with the complete system. Thus, in what
follows,

t ∈ {0,1, . . . ,τ − 1,τ }, dφ(t) = φ(t + 1) − φ(t).

We recall that, for these chains of oscillators with an-
harmonic on-site potential, one expects that the thermal
conductivity remains finite as the inner reservoirs are turned

off, in opposition to the harmonic chain where Fourier’s law
does not hold in the absence of the inner reservoirs. The
behavior of the system as we make smaller and smaller
the inner reservoirs is a difficult problem (although very
interesting) and it will not be considered in the present work.
Thus, in what follows, for simplicity we take the coupling
constant between the site and reservoir as ζj = 1.

From the expressions (6)–(8) for the covariance C of the
quadratic measure above, it follows that

exp(−tA0) = e−t(ζ/2) cosh(tρ)

×
{(

I 0
0 I

)
+ tanh(tρ)

ρ

(
ζ

2 I

−M − ζ

2

)}
, (11)

where ρ = [(ζ/2)2 − M]1/2. We also note that

C(t,s) = exp[−(t − s)A0]C + O{exp[−(t +s)ζ/2]},
(12)

where the effects on the correlation function formula of the
second term on the right-hand side vanish in the limit t → ∞;
C is the covariance as t → ∞ (8). As we take ζ = 1, for ease
of computation we also take M slightly larger than 2. Hence,
considering discrete times, from the expressions above, proper
bounds follow for C−1

k,k′(s,s ′), i.e., for the contribution of the
Gaussian measure

dμC = exp

(
− 1

2

∑
s,s ′

∑
k,k′

φk(s)C−1
k,k′(s,s ′)φk′(s ′)

)

×
∏
k,s

dφk(s)

/
N ,

where N denotes normalization. In particular, the contribution
for C−1

k,k′(s,s ′) coming from terms beyond the next-nearest-
neighbor time interaction is very small and may be discarded.

Finally, with discrete times, the integral representation for
the two-point function (heat current) in a space-time lattice
becomes

〈
ϕu1 (t)ϕu2 (t)

〉 =
∫

φu1 (t)φu2 (t) exp

(
−

∑
s,i,j,...

{
φj (s)J †

jiγ
−1
i φi(s + 1) + γ −1

i λP ′(φi−N (s))φi(s + 1)

+φj (s)J †
jiγ

−1
i Mi−Nφi−N (s) + γ −1

i λP ′(φi−N (s))Mi−Nφi−N (s) + 1

2
φj ′(s)J †

j ′iγ
−1
i Jij φj (s)

+ 1

2
γ −1

i λ2[P ′(φi−N (s))]2 + γ −1
i λP ′(φi−N (s))Jij φj (s) + 1

2
φk(s)C−1

k,k′(s,s ′)φk′(s ′)
}) ∏

s,k

dφk(s)

/
N . (13)
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The integral representation above for the correlation functions
(and thus for the heat current) is the main technical achieve-
ment of the present paper. Now, to carry out the computation,
we take as a measure a properly chosen single spin distribution
(SSD) involving the higher powers of φj and φi ; a perturbative
analysis may be rigorously implemented, supported by a
convergent polymer expansion as described in Ref. [19]. We
stress that the unique approximation used is the assumption of
discrete times. We turn to a concrete example to make clear
the usefulness of our approach.

We consider now, as an example, the investigation of
the chain of oscillators with a weak next-nearest-neighbor
interaction, i.e., Jij �= 0 ⇐⇒ i = (j + N ) ± 1, |Jij |  1,
and quartic anharmonic on-site potential P(φj ) = φ4

j /4. For
simplicity, besides the regimes already considered (ζ = 1,
m = 1, and M = 2 + ε), we still take high anharmonicity and
temperature.

The integral formalism involves sites j ∈ {1,2, . . . ,N} and
i ∈ {N + 1, . . . ,2N} (the index k, as previously stated, runs
over {1, . . . ,2N}). In the SSD, instead of fields in sites j and i

always in separate cells, we join in the same cell the pairs φj (s)
and φi(s + 1) with i = j + N [of course, φj (τ ) and φi(0) do
not have pairs]. Thus our SSD is given by

dν[φj (s),φi=j+N (s + 1)]

= exp

{
− 1

2
λ2γ −1

j φ6
j (s) − 1

2Ti

φ2
i (s + 1)

− γ −1
j λφ3

j (s)φi(s + 1) + · · ·
}
dφj (s)dφi(s + 1)/N,

(14)

where the ellipsis denotes subdominant terms, N is the
normalization, and φ2

i (s + 1) was extracted from (φ,C−1φ).
Essentially, φ2

i and φ6
j rule the computations, i.e., the behavior

of the SSD above. Hence the integral representation for the
two-point function is given as a product of these SSDs (with
cells of sites [j,s] and [i = j + N,s + 1]) and the exponential
of terms involving the weak interaction J , which couples
different cells, and the remaining terms from (φ,C−1φ), which
are also small: For example, for the part involving φj , in the
regime of large anharmonicity, by rescaling the dominant term
λ2φ6

j as φ̃6
j in the SSD, this part will involve φ̃j and powers of

1/λ.
From Eq. (2), to get the heat current in the steady state, we

need to study the averages of ϕi−N (τ )ϕi+1(τ ), ϕi−N (τ )ϕi(τ ),
etc., as τ → ∞. Performing a perturbative computation from
Eq. (13), for small J , large λ, and T it follows that the
main contributions for ϕi−N (τ )ϕi+1(τ ) come from expressions
similar to those below. The first one is given by∫

[φi−N (τ )φi+1(τ )]
[
λγ −1

i+1φ
3
i+1−N (τ − 1)φi+1(τ )

]
∗

× [
λγ −1

i+1φ
3
i+1−N (τ − 1)Ji+1,i−Nφi−N (τ − 1)

]
× [

φi−N (τ − 1)C−1
i−N,i−N (τ − 1,τ )φi−N (τ )

]
dν̃(φ)

∼ c′J
1

λ4/3

T
2/3
i+1

Ti

,

where [·]∗ comes from the cross term in the SSD, dν̃ is the main
part of the SSD (involving φ2

i and φ6
j ), and c′ is a numerical

factor. A second important contribution comes from terms
similar to∫

[φi−N (τ )φi+1(τ )]
[
φi−N (τ − 1)J †

i−N,i+1γ
−1
i+1φi+1(τ )

]
× [

φi−N (τ − 1)C−1
i−N,i−N (τ − 1,τ )φi−N (τ )

]
dν̃(φ)

∼ c′′J
1

λ4/3

1

T
1/3
i

.

Hence, summing up all leading terms (with τ → ∞) and
considering a small difference between Ti+1 and Ti [such that
T α

i+1 − T α
i ≈ αT α−1

i (Ti+1 − Ti)], we get

Fj,j+1 ≈ −c
J 2

λ4/3

1

T
4/3
j

(Tj+1 − Tj ). (15)

Now the computation of the heat current in terms of the
temperatures at the boundaries is straightforward. The self-
consistent condition in the steady state gives

F1,2 = F2,3 = · · · = FN−1,N ≡ F . (16)

These equations, together with Eq. (15), give us

F(CT α
1 ) = T1 − T2,

F(CT α
2 ) = T2 − T3,

...

F(CT α
N−1) = TN−1 − TN.

Summing up the expressions above, we find

F = K (T1 − TN )

N − 1
,

where

K = {
CT α

1 + CT α
2 + · · · + CT α

N−1

}−1
(N − 1),

with C−1 = c J 2

λ4/3 and α = 4/3. If Tj ≈ T , we have the Fourier
law in the chain with thermal conductivity

K ∼ c
J 2

λ4/3T 4/3
. (17)

We must recall that, as is well known, detailed numerical
simulations for a chain of oscillators with quartic anharmonic
on-site potential and reservoirs only at the boundaries lead
to a thermal conductivity K ∼ 1/T 1.35 [20], essentially the
same result described above. This indicates that, at least
in the regime of high anharmonicity, the inner reservoirs
do not play an important rule. In other words, the models
of anharmonic oscillators with self-consistent reservoirs and
anharmonic oscillators with reservoirs only at the boundaries
have similar heat conduction and thus we may use this hybrid
model for further investigations of realistic features of the heat
problem.

To conclude, we stress that the approach described here is
quite general. For example, the integral formalism is valid in
any space dimension, although, as is well known from equilib-
rium statistical physics (where similar integral representations
appear in several problems), the polymer expansion in the
perturbative analysis will require different arrangements for
different dimensions. Moreover, our integral formalism is also
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suitable for the investigation of inhomogeneous models, that
is, it may be useful in detailed analytical studies of thermal
rectification and other properties of the heat current.

The authors thank the referee for several comments that
improved the presentation of the paper. This work was partially
supported by CNPq (Brazil).
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