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Density dependence of the stress relaxation function of a simple fluid
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We present accurate molecular dynamics calculations of the shear stress relaxation modulus of a simple atomic
fluid over a wide range of densities. The high accuracy of the data enables us to study changes in the functional
form of the shear relaxation modulus, and the properties that are derived from it, as the density is increased from
the ideal gas limit to the upper limit of the fluid range. We show that the shear relaxation modulus of a dilute
atomic fluid can be accurately described with a simple functional form consisting of a Gaussian plus a single
exponential, whereas the dense fluid exhibits a more complicated relaxation function. The infinite-frequency
shear modulus, the zero-shear viscosity, and the zero-shear first normal stress coefficient are calculated from the
stress autocorrelation function. The ratio of the first normal stress coefficient to the viscosity is used to calculate
the viscoelastic relaxation time. While the viscosity and the infinite-frequency shear modulus both increase
monotonically with increasing density, the first normal stress coefficient and the viscoelastic relaxation time both
decrease to a minimum at intermediate densities before increasing again. Our results for the viscosity and the

first normal stress coefficient in the low-density limit both agree well with the predictions of kinetic theory.
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I. INTRODUCTION

At sufficiently high frequencies or shear rates, even simple
atomic fluids are known to exhibit non-Newtonian phenomena,
such as viscoelasticity, shear thinning, shear dilatancy, and
normal stress differences [1]. Linear transport coefficients,
like the zero-shear rate viscosity, characterize the Newtonian
regime, while the shear-rate dependent viscosity and the
first and second normal stress coefficients characterize the
steady-state non-Newtonian behavior at higher shear rate.
Similarly, the Newtonian viscosity can be seen as the low-
frequency limit of the complex frequency dependent viscosity
that characterizes the frequency domain viscoelastic response.
The stress relaxation function is an important property from
which we can calculate these material constants. Its behavior
as the density is increased from the ideal gas limit to the dense
fluid is of great interest, not only because of its importance
in studies of transport phenomena, but also in relation to the
onset of the glass transition and pretransitional signatures of
solidification [2]. It is also desirable to determine whether
the stress relaxation function can be modeled with simple
functional forms over the entire fluid density range. Although
the functional form of the stress relaxation function for several
simple liquids has been studied before at various temperatures
and densities, there have been few comprehensive and sys-
tematic studies of its density dependence for a single system.
A notable exception is the work by Heyes et al. [3,4], whose
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main purpose was to study the behavior of the stress relaxation
function for atomic fluids with steeply repulsive soft sphere
potentials as they approach the hard-sphere limit.

Most studies of the viscoelastic properties of simple fluids
have concentrated on the viscosity, the infinite-frequency shear
modulus, and the Maxwell relaxation time. The first normal
stress coefficient has received much less attention because it is
more difficult to compute. The viscosity is usually calculated
using equilibrium molecular dynamics (EMD) simulations
and the Green-Kubo [5,6] relation that gives the viscosity
in terms of the integral of the stress autocorrelation function
(SACF). The shear relaxation function (often known as the
shear relaxation modulus in the rheology literature) is directly
proportional to the SACF.

The viscoelastic relaxation of simple fluids has been studied
by a number of authors [2,7-12]. Mountain and Zwanzig [9]
studied the density dependence of the Maxwell relaxation time
of a supercritical Lennard-Jones fluid. They found a decrease
in relaxation time with increasing density up to the maximum
density studied, p = 0.7. More recently, Keshavarzi et al. [11]
studied the density and temperature dependence of the infinite-
frequency shear modulus and the Maxwell relaxation time for
purely repulsive soft sphere and Lennard-Jones fluids. They
calculated the infinite-frequency shear modulus numerically
from the equilibrium radial distribution function, using the
relation derived by Zwanzig and Mountain [13]. A minimum
relaxation time was again found around a reduced density of
p ~ 0.7, independent of the temperature. The authors argued
that this is a transition point, below which kinetic momentum
transport dominates and above which the finite memory of the
fluid dominates the flow behavior.
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Little computational work has been done on calculating the
zero-shear rate normal stress coefficients [14], but measure-
ments of these quantities are common in rheological experi-
ments [15-17]. Loose and Hess [18] computed the nonequi-
librium shear viscosity and normal stress coefficients for a
moderately dense Lennard-Jones gas (p = 0.1, T = 2.75)
over a range of shear rates by homogeneous nonequilibrium
molecular dynamics (NEMD). Their data show large statistical
uncertainty for low strain rates, but their results for the shear
rate dependent viscosity and the normal stress coefficients
agree well with kinetic theory as shown in Ref. [19]. Although
their system was a gas of moderate density, its behavior was
well approximated by the ideal gas model because the state
point chosen was close to the Boyle point, where the effects
of attractive and repulsive interactions approximately cancel
each other.

Coleman and Markovitz [20] derived an expression for the
zero-shear rate first normal stress coefficient in terms of the
linear stress relaxation modulus from a continuum theory of
nonlinear viscoelasticity. Their expression is well known and
verified experimentally in polymer rheology [21]. Calculation
of the first normal stress coefficient using their method with
EMD simulations is computationally expensive, even with
modern computers, because it requires stress autocorrelation
function data of extremely high precision. Recently, Daivis
[14,22] used the Coleman-Markovitz method to calculate
the zero-shear normal stress coefficient of a simple liquid.
He also calculated the zero-shear viscosity and first normal
stress coefficient using NEMD by extrapolating the shear-rate
dependent viscosity and first normal stress coefficient to
zero-shear rate, for a range of densities. While the equilibrium
and nonequilibrium calculations of the viscosity agreed in
the limit of zero-shear rate, the values of the first normal
stress coefficient did not. A detailed understanding of this
discrepancy is still lacking, but it is clear that the choice of
thermostat has a strong influence on the values of nonlinear
rheological properties calculated in NEMD simulations [22].

The shear relaxation function completely determines the
linear viscoelastic shear response of a fluid. Enskog kinetic
theory predicts that at low density, the stress autocorrelation
function for a hard-sphere fluid should be a delta function
at zero time due to the impulsive nature of hard-sphere
forces, followed by an approximately single exponential decay
[12]. The delta function results in an infinite value of the
infinite-frequency shear modulus for the hard-sphere fluid
at all densities, whereas the viscosity remains finite. In this
case, the Maxwell relaxation time is zero, which would
seem to imply that the stress relaxes to its steady-state value
instantaneously after the onset of steady shear and that viscous
flow of a hard-sphere fluid is perfectly inelastic. However,
this is clearly not the case, because the kinetic part of the
hard-sphere stress relaxation function has a nonzero relaxation
time, and the overall relaxation of the SACF does not take
place instantaneously. In this sense, the Maxwell time is
a misleading measure of viscoelastic relaxation time. An
alternative definition of the viscoelastic relaxation time, based
on the ratio of the first normal stress coefficient to the viscosity,
does not exhibit this anomaly.

The SACFs found in molecular dynamics simulations of
hard-sphere fluids agree with the Enskog prediction at low
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density, where the kinetic part of the pressure tensor is
dominant and the configurational part is negligible. Gener-
alized kinetic theory [23] and an early mode coupling theory
(MCT) calculation [24] both predict that the tail of the SACF
should decay as ¢ ~3/? due to hydrodynamic effects that only
contribute to the kinetic part of the stress autocorrelation
function. However, the predicted hydrodynamic long-time
tail in the stress autocorrelation function has only ever been
(tentatively) observed by isolating the kinetic part of the stress
autocorrelation function [25]. The total stress autocorrelation
function also includes a configurational part and a cross
term. Both of these exhibit long-time tails of amplitude much
greater than that predicted by the conventional MCT [25].
Extended MCT [26-28] provides a much better prediction of
the SACF behavior at moderate to high density. It predicts
that the configurational and cross terms of the SACF decay as
approximately =3/ at intermediate times, but more rapidly
at very long times. The amplitude of the intermediate time
contribution is enhanced compared to the hydrodynamic tail
predicted by kinetic theory and simple MCT, and its amplitude
grows with increasing density. The existence of this part of the
stress relaxation function, known as the “molasses tail” to
distinguish it from the hydrodynamic long-time tail, is linked
to structural relaxation [2,7] and the glass transition [29].
Although the extended MCT provides predictions of the stress
relaxation function that agree with the results of molecular
dynamics simulations of hard-sphere fluids, it does not result
in a definite functional form that can easily be used to describe
the whole relaxation function.

In this paper, we present results and reasonable empirically
derived fits for the shear relaxation modulus of a simple
atomic fluid over a wide range of densities. The onset of the
molasses tail at high densities is shown to have an influence
on the relaxation time and on the zero-shear normal stress
coefficient of the fluid, whereas properties at low densities
can be predicted well with kinetic theory. Finally, we will
demonstrate the ability of the linear stress relaxation function
obtained by EMD to predict a stress relaxation curve obtained
from simulations of a sheared fluid relaxing to equilibrium.

This paper is organized as follows: Section II gives an
introduction to viscometric functions and how to calculate
them. The simulation details are given in Sec. III. Results are
presented and discussed in Sec. IV. Finally, in Sec. V, our
observations are summarized.

II. THEORY

The rheological behavior of a nonequilibrium fluid can be
described by shear-rate dependent viscometric functions—for
example, shear viscosity
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and the first and second normal stress coefficients [30]

Ny Py — Py

v(y) = y—; == ©)
Ny PP,
() =3 = = 3)
14 14

032155-2



DENSITY DEPENDENCE OF THE STRESS RELAXATION ...

where P denotes the pressure tensor, A7 and A\, the first and
second normal stress differences, and y the shear rate, with
the flow in the x direction and the gradient of the streaming
velocity in y. In the limit of zero-shear rate, the viscosity
converges to the zero-shear viscosity

no = lim n(y), “)
y—0

and the normal stress coefficients can approach values
(typically nonzero) called the zero-shear normal stress
coefficients

Voo = lim Wo(7), =12, 5)
)/*)

The second normal stress coefficient ¥, is far less often
studied than W, because it is often much smaller and thus
more difficult to measure accurately in the case of polymeric
liquids [21]. It is also more difficult to obtain computationally,
because there is currently no known method of obtaining
it from an equilibrium molecular dynamics simulation. In
the present study, we will focus on the first normal stress
coefficient.

The zero-shear rate first normal stress coefficient can be
related to the Deborah number De by

W
De = —2/11/2, (©6)
2no

where 7 is the Newtonian (zero-shear) viscosity and II is
the second scalar invariant of the strain rate tensor S = Vu +
(Vu)T. For shear flow, this expression simplifies to De = yt,
where T = W, ¢/(2np) is a relaxation time of the fluid.

Rather than extracting the viscometric quantities from
nonequilibrium simulations and taking the zero-shear limit,
the first normal stress coefficient can be calculated by evalu-
ating an expression in equilibrium, derived by Coleman and
Markovitz [20],

W= 2/00 tG(t)dt, 7)
0

where G(¢) is the (shear) stress relaxation modulus of a
viscoelastic fluid, which is defined as the stress-strain ratio
at a constant deformation rate. For an isotropic system, the
stress relaxation modulus can be calculated as [14]

v 0s . pOs

G@) = IOkBT<P (1) : P7(0)), ®)
where V is the system volume, kg Boltzmann’s constant, T the
temperature, and the superscript “Os” denotes a traceless and
symmetric tensor, which contains 5 independently fluctuating
quantities. While this formulation is identical to the shear
stress autocorrelation function that is commonly used as the
susceptibility of the Green-Kubo shear viscosity integral, the
tensorial approach is preferred for its enhanced statistics [31].
The pressure tensor is calculated from

N
LS riilis
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where N is the number of atoms in the system, v; is the peculiar

velocity vector, r;; =r; —r;,r = |r;;|,and U ’is the derivative
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of the potential energy function. The first term on the right-
hand side is the kinetic part of the pressure tensor, whereas the
second term is the configurational part.

The SACF of the traceless symmetric pressure tensor for a
dense fluid is known to depend mostly on the configurational
part [32] and thus depends strongly on the interaction potential.
Heyes [33] calculated the dependence of several properties on
the exponent in strongly repulsive potentials. He found that
the infinite-frequency shear modulus increased approximately
linearly with the exponent of the potential. Powles and Heyes
[3] showed that in the hard-sphere limit (i.e., for steeply
repulsive potentials), the shear stress and pressure correlation
functions become simple analytic functions of the temperature
and density. Furthermore, Brakka and Heyes [4] showed how
the stress autocorrelation function depends on the exponent
in strongly repulsive potentials. They showed that the decay
time of the correlation function scales with the exponent of the
interaction potential.

Viscoelastic fluids show a combination of elastic (solid-
like) and viscous (liquid-like) stress response when a defor-
mation is applied. The elastic response is proportional to the
strain y, with the elastic modulus G as the proportionality
constant. The shear viscosity 7 is the proportionality constant
relating the shear stress to the strain rate y. When a viscoelastic
fluid is perturbed, it initially responds only elastically. The lag
of the viscous response is related to the relaxation mechanism
in viscoelastic fluids. In a steady-state (zero-frequency pertur-
bation) flow, the elastic energy is stored during the approach
to steady state. The real part of the shear modulus is zero
for a fluid in the zero-frequency limit [34,35]. On the other
hand, when a fluid is perturbed at very high frequencies, the
elastic constant has a nonzero value. The infinite-frequency
shear modulus G(w — 00) = G*° is a common measure for
the elastic part of the response. This value corresponds to
the initial value of the stress autocorrelation function G* =
G(t = 0) = V(P%(0) : P*(0))/(10kgT) [13,36,37].

Similarly to the first normal stress coefficient [Eq. (7)],
the zero-shear viscosity can be calculated from the stress
relaxation modulus

no = / G, (10)
0

which is the Green-Kubo relation for shear viscosity. Using
Egs. (7) and (10), the viscous relaxation time is given by
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This expression makes no assumptions about the properties
of the fluid or the shape of the relaxation function, apart
from convergence of the relevant integrals. This expression
differs from the definition of the Maxwell relaxation time,
Tn = 1/ G, Which can be written as

Joo G dt
GO

In fact, a hierarchy of relaxation times can be defined, each one

differing in the order of ¢ of the numerator and denominator,

with the ratio remaining of order . The Maxwell time can
therefore be seen as a zeroth-order relaxation time, and the

™™ = (12)
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one defined in Eq. (11) can be seen as a first-order relaxation
time. The highest order relaxation time that can be evaluated
depends on the convergence properties of the integrals. For an
exponential stress relaxation function, the relaxation times of
all orders exist, and they are all equal to the Maxwell time.
However, not all stress relaxation functions are exponential in
time.

The stress relaxation time can also be directly measured
from nonequilibrium simulations in which the fluid relaxes
from a nonequilibrium steady state after the driving field
is switched off. Gao and Weiner [38] observed that the
relaxation of a simple fluid could be described using only
2 exponential modes. The authors performed their simulations
without using a strictly homogeneous algorithm, such as the
SLLOD equations of motion [39,40]. However, their system
is stiff to ensure that the propagation of information is fast,
resulting in only a small inaccuracy in the transient response.
Picu and Weiner [8] showed, for a simple fluid under planar
elongational flow, that the first relaxation mode corresponds to
the distribution of nearest neighbors, while the second mode
is related to the relaxation of anisotropy of the number density
distribution.

Linear viscoelastic theory can be used to predict the
response or shear stress after sudden cessation of steady-
state shear flow (constant nonzero shear rate for ¢ < 0).
The instantaneous shear stress of a viscoelastic fluid after the
cessation of steady shear depends on the full history of the
flow. The most general linear constitutive relation is

Pyx(t)z _/

To calculate the shear stress after the cessation of steady shear,
we can apply a change of the variable of integration — ¢t = s
and use the fact that y(t) = y H(—t), with H the Heaviside
step function:

G —thy@)Hdt'. (13)

Py(t) = —y foo G(s)ds. (14)

Note that this theory applies only in the range of linear stress
responses, such as the shear-stress response to a small shear
rate or the normal stress response in the case of elongational
flows or combinations of shear and elongational flows with
small deformation rates. Normal stress differences in shear
flow, however, are a nonlinear effect and thus not captured
by this linear rheological equation of state. The relaxation
of normal stresses and normal stress differences are briefly
discussed in Sec. IV.

III. SIMULATION DETAILS

We simulate an atomic fluid whose interactions are medi-
ated via a Weeks-Chandler-Andersen (WCA) [41] potential
and the equations of motion are integrated with the Gear
predictor-corrector algorithm with a time step of Az = 0.001
in reduced units. All physical quantities presented are reduced
using the particle mass m, interaction length scale o, and the
potential energy well depth €. These scales are set to unity in
the simulations. All quantities are reduced using the Lennard-
Jones parameters and the mass; length r}; =r;;/o, number

density p* = po3/m, temperature T* = kg T /€, pressure ten-
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sor P* = Po3 /e, strain rate y* = y(mo?/e)'/?, and viscosity
n* = no*(me)~'/2. All presented quantities are reduced and
the asterisk notation will be dropped henceforth.

The equilibrium simulations in this work start from a
lattice containing 4000 atoms. The fluid is equilibrated until a
steady-state is reached. After the equilibration, the calculation
of correlation functions is started, with a maximum lag time
t = 10. We average the correlation function over 6.0 x 107
time steps to gather enough accumulations. Each simulation
in this work is performed at a temperature 7 = 1.0. A Gaussian
isokinetic thermostat [42] is used to control the temperature of
the fluid.

Our relaxation simulations are performed at a density
p = 0.84 and temperature 7 = 1.0. The fluid is sheared at
a constant rate until a steady state is reached, after which point
the driving field is suddenly removed. The nonequilibrium
simulations contain 512 atoms and the data are obtained from
an average over 12 x 10* trajectories. To maintain a constant
temperature, the generated heat needs to be removed from the
system. A configurational thermostat [43,44] is used to control
the temperature during the relaxation to equilibrium.

IV. RESULTS AND DISCUSSION

The infinite-frequency shear modulus, zero-shear normal
stress coefficient, and relaxation time are calculated from the
equilibrium stress autocorrelation function, by applying the
theory presented in Sec. II to our MD simulations.

Figure 1 shows the zero-shear viscosity and zero-shear
first normal stress coefficient for a fluid in equilibrium at
a density p =0.84 and temperature 7 = 1.0. Comparing
both stress relaxation functions illustrates the large amount
of averaging needed for accurate calculations of the zero
shear rate normal stress coefficient. The zero-shear normal
stress coefficient converges to a value within error bars of the
value calculated using the same method by Daivis et al. [22]
(¥1,0 = 0.40 = 0.02) but higher than the values obtained from
extrapolating NEMD results. This discrepancy could be related
to an unknown shear rate dependence of the normal stress
coefficient at extremely low shear rate. However, it seems
more likely that the action of the homogeneous thermostat in
NEMD simulations is responsible for a discontinuous change
in the first normal stress coefficient from the equilibrium value.
As discussed in Ref. [22], there may not be a unique ther-
modynamic temperature for thermostatted NEMD systems,
and the calculation of second-order properties are sensitive
to the thermostatting mechanism used, because the normal
stress differences and the nonequilibrium corrections to the
temperature are both of O(y?).

The relaxation time can be calculated using Eq. (11). Since
the integral of the shear relaxation modulus quickly converges
to a constant value, the relaxation time (not shown here)
converges in a similar way to the zero shear rate first normal
stress coefficient, shown in Fig. 1(b). The viscous relaxation
time obtained at the current state point is 0.098 £ 0.002.

The stress relaxation modulus for a WCA fluid at densities
p =0.08, 0.12, 0.20, 0.28, 0.36, 0.44, 0.52, 0.60, 0.68,
0.76, 0.84. 0.88, and 0.92 is shown in Fig. 2. All of the
curves show the same behavior at small times. The relaxation
modulus has a zero slope at t = 0, which is directly followed
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FIG. 1. (Color online) Shear viscosity and normal stress coefficient. The data are averaged over 6.0 x 107 time steps. The fluid has a density

p = 0.84 and temperature 7 = 1.0.

by a Gaussian-like fast decay. This can be understood by
considering a power series expansion of the autocorrelation
function Cpp(t) = (P*(z) : P*(0)) around ¢ = 0 [45]:

2 . .
Cpp(t) = Cpp(0) — %<P°S<0> : P*(0))

4
41
This expansion has a functional form similar to that of a power
series expansion of a Gaussian function.

At longer times, the decay of the kernel depends strongly
on the density. The rate of decay of the kernel decreases with
the density at low densities p < 0.68, whereas the opposite
trend is observed at higher densities p > 0.68. The different
behavior of the correlation function at high densities is due to
the long-time tail that is observed in the configurational part
of the SACF near the solid-liquid transition.

In the dilute limit, the shape of the shear modulus can be
accurately approximated with the sum of a Gaussian plus an
exponential decay:

(B (0) : P*(0)) + 0(0).  (15)

+

2 2
G(t) ~ G®(Ae™ /) + (1 — A)e™"/™), (16)
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FIG. 2. (Color online) The stress relaxation modulus at different
densities and a temperature 7 = 1.0. Each stress autocorrelation
function is averaged over 6.0 x 107 time steps. G(0) increases
monotonically with increasing density.

where A is a measure of the initial relative magnitude of
the Gaussian mode of relaxation, 112 is the variance of the
Gaussian, and 7, is the relaxation time of the exponentially
decaying mode. Powles and Heyes [3] suggested a fitting
function, for the shear stress and pressure autocorrelation
functions, of the form C(r) o sech(\/ﬁ nt), where n is the
power of the repulsive potential. Since this is an even function
in time, it satisfies the form of the Taylor series expansion
around r = 0, givenin Eq. (15). Furthermore, at long times, this
function approaches an exponential decay, such as predicted
by the Maxwell model. Brarika and Heyes [4] showed later,
for the pressure autocorrelation function, that it is not possible
to represent the steeply repulsive behavior of the relaxation
function by the suggested functional form, and an additional
singular function is required. This makes their fitting function
more complicated than the functional form suggested in
Eq. (16).
Least-squares fits of the shear moduli of a fluid of densities
p =0.08, 0.12, 0.20, and 0.28 are shown in Fig. 3(a) and
the corresponding fitting parameters are given in Table I. The
values for A show an increasing trend with density. This trend
implies that only in the dilute limit will a single exponential
(which is, for example, assumed in a Maxwell model) become
a reasonable approximation of the stress relaxation modulus.
The variance of the Gaussian 1']2 shows no strong density
dependence, even for higher densities. We observe that the
fitted relaxation times of the exponential mode 7, decrease with
increasing density (for dilute fluids). Since the contribution of
the Gaussian decays quickly to zero, the exponential mode
gives a good approximation of the relaxation time of the stress
relaxation modulus at low densities. As the density increases to
p > 0.28, the functional form of the shear modulus is no longer
well described by Eq. (16). At higher densities (o > 0.68), the
shape of the kernel becomes more difficult to describe. The
increasing trend in A at low densities does not continue at
higher densities. Instead, the relative magnitude of the first
mode decreases at high density, while the variance of the
Gaussian mode shows very little dependence on the density. A
long-time tail forms at high densities, which can be assumed
to be an additional mode of relaxation. Fits of the high-density
relaxation modulus are shown in Fig. 3(b). The data, from top
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FIG. 3. (Color online) The shear modulus of a dilute (a) and dense (b) fluid. The dilute fluid is fitted with the sum of a Gaussian and
an exponential; the curves correspond from bottom to top (left of the crossings) to p = 0.08, 0.12, 0.20, and 0.28. The relaxation functions
of dense fluids are fitted with the sum of a Gaussian and two exponentially decaying modes. The curves correspond from bottom to top to

p = 0.68,0.76, 0.84, 0.88, and 0.92.

to bottom, correspond to densities p = 0.92, 0.88, 0.84, 0.76,
and 0.68, respectively. The functional form of the fit is given
by the the sum of a Gaussian and two exponential modes:

G(t)~ Goo(Ae_zz/erz) +Be /™ 4 (1—A— B)e_t/r3),
a7

This functional form results in reasonable fits of the data
corresponding to the highest densities (o = 0.88 and 0.92),
but is less successful when applied to the data for p = 0.84.
Furthermore, neither of the relaxation functions shows a tail
that is proportional to >/ over a large time range. However,
the relaxation function corresponding to p = 0.84 shows an
exponent that is close to —3/2 over a short range of time.
The integral of the shear relaxation modulus results in the
zero shear rate viscosity [Eq. (10)]. Figure 4 shows the shear
viscosities corresponding to the shear moduli shown in Fig. 2.
The data show a similar trend to the simulation results from
Silva et al. [46] for a WCA fluid and the data from Baidakov
et al. [47] and Todd [48] for a Lennard-Jones fluid. The latter
show quantitative differences in the dilute and dense limits.
This disagreement is due to the different interaction potential,
as illustrated by the results of Cappelezzo et al. [49]. They
used a Stokes-Einstein relation to calculate the shear viscosity
of simple fluids at equilibrium. Their data, for a WCA fluid

TABLE 1. Fitting parameters for the dilute and dense stress
relaxation moduli.

P A B T} ) 73
0.08 0.3814 0.0016 1.9538

0.12 0.4778 0.0016 1.2362

0.20 0.5986 0.0016 0.6746

0.28 0.6635 0.0017 0.4281

0.68 0.6218 0.8781 0.0018 0.1270 0.1465
0.76 0.6050 0.7597 0.0018 0.1197 0.1396
0.84 0.5890 0.3978 0.0019 0.1051 0.4666
0.88 0.5785 0.3738 0.0019 0.1016 0.3723
0.92 0.5664 0.3471 0.0019 0.0976 0.3882

at density p = 0.85 and temperature 7 = 1.0, agree well with
the viscosity of our WCA fluid around that density and the
Lennard-Jones fluid shows good agreement with the viscosity
of the Lennard-Jones fluid reported by Baidakov et al. [50].
Furthermore, the authors reported viscosities of a Lennard-
Jones fluid and a WCA fluid at a temperature 7 = 1.5 over
a range of densities. The discrepancy between viscosities of
WCA and LJ fluids at this temperature was consistent with the
behavior in Fig. 4; at low densities the WCA fluid has a higher
viscosity than the Lennard-Jones fluid, but at high densities it is
the other way around. Silva et al. [46] proposed an expression
to relate the viscosity of a dense WCA fluid (p > 0.6) to that
of a Lennard-Jones fluid at the same state point. This relation
is given by

%
nLy =0, +

1
—, 18
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o Kinetic Theory {
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— o
1 / [
O I “k/i‘r‘ L I T T
0 0.2 0.4 0.6 0.8 1

14

FIG. 4. (Color online) The zero-shear viscosity as a function of
density, obtained from EMD simulations at a temperature 7 = 1.0.
The data are compared to the values reported by Silva et al. [46]
for a WCA fluid, the data from Baidakov et al. [47] and Todd [48]
for a Lennard-Jones fluid, and data from Cappelezzo et al. [49] for
Lennard-Jones and WCA fluids. Furthermore, our data are fitted with
two functions and the zero-density shear viscosity is predicted with
kinetic theory.
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where 6y and 6, are fitting parameters. The authors found
6p = 0.9932 and 6, = 0.2778, which means that for a fluid
at temperature 7 = 1.0 we find nry = 1.271 nwca for all
densities p > 0.6. This expression gives a reasonable estimate,
but in practice the ratio between both viscosities depends on the
density as well as the temperature, as shown by the data listed
by Silva et al. [46]. This scaling results in good agreement (not
shown here) between the Lennard-Jones and the WCA data in
Fig. 4.

Rowley and Painter [51] presented a function to describe
the dependence of shear viscosity on density and temperature.
Since we only consider a single temperature here, we can
simplify the model to

d
n(p) = 1(0) exp (Z cip") : (19)

i=1
where d is the degree of the polynomial. The fit, shown in
Fig. 4, shows good agreement for d = 4. The parameters of
the fit are n(0) = 0.1797, C; = —0.6175, C, = 8.2438, C5 =
—8.8141, and C4 = 4.8280. The fit could be simplified further
to a stretched exponential fit [48]. The stretched exponential
function is given by

n(p) = n(0) exp(C1 p<). (20)

The model parameters are fitted as 7(0) = 0.2019, C;| =
3.4478, and C, = 2.1433. This functional form leads to a less
accurate fit than Eq. (19) with d = 4, especially in the dilute
region.

The zero-density limit viscosity 1n(0) = 0.1797 that we
found from the most accurate fit [Eq. (19)] can be compared
to the predicted value from kinetic theory for the zero-density
limit. The theory predicts a zero-shear viscosity given by [19]

no = —, 21
Vv

where p is the hydrostatic pressure and v the collision rate.
The pressure of a dilute fluid is given (in physical units) by

p = pksT, (22)

where p and T are the number density and temperature,
respectively. The collision rate v can be expressed in terms
of the Lennard-Jones parameters

2
v =3pAs, Ay =1.3703,/°5 = 1.938, (23)
m

where the numerical value for A, corresponds to Maxwell
molecules [52], which are softer than WCA atoms. However,
as discussed in Ref. [19], the collision rate for dilute fluids
shows little dependence on the interaction potential used.
Substituting the parameters for our simulations, we find a
viscosity 7(0) = kgT'(3A2)~! = 0.1720. This result is within
5% of the value that we found from the fit of the MD simulation
results. Furthermore, Rowley and Painter [51] have presented
an expression, based on the Chapman-Enskog theory, for
the zero-density shear viscosity of a Lennard-Jones fluid.
Using their expression for a fluid at temperature 7 = 1.0, the
zero-density shear viscosity is 7(0) = 0.1256. This value is
much lower than the WCA data suggest, but more consistent
with the Lennard-Jones data from Baidakov er al. [47].
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FIG. 5. (Color online) The infinite-frequency shear modulus as a
function of density, obtained from EMD simulations at a temperature
T = 1.0. The data are compared to the values reported by Heyes [36]
for a Lennard-Jones fluid at a temperature 7 = 1.06.

The infinite-frequency shear modulus, as a function of
density, is shown in Fig. 5. The interaction potential used to
model the fluid has a strong influence on the value of the
infinite-frequency shear modulus, as mentioned in Sec. II.
In the hard-sphere limit, the modulus goes to infinity for
soft-sphere potentials, as can be understood from the integral
relation given by Zwanzig and Mountain [13]. The nonlinear
relation between pressure and density leads to a strong increase
in G* with increasing density. The modulus approaches zero
in the low-density limit, which means that the elastic response
becomes negligibly small and the fluid has no notable memory.
The infinite-frequency shear moduli for densities p = 0.68,
0.78, and 0.88 are compared to the values reported by Heyes
[36] for a Lennard-Jones fluid at a temperature 7 = 1.06.
Good agreement is found for these values, although an
exact quantitative comparison is not possible since the author
used a different interaction potential and the temperature is
slightly different. However, we note that the Lennard-Jones
and WCA potentials have the same power in the repulsive
part. Furthermore, the shear modulus is known to be only
moderately dependent on temperature [53].

Figure 6 shows the relaxation times, calculated according to
Eq. (11), as well as the Maxwell relaxation time, as a function
of the density. Both measures of relaxation time show the
same qualitative trend. In the dilute regime, the relaxation time

- T L
o TM |

1.5 |

P

FIG. 6. (Color online) Relaxation time as a function of density,
compared to the Maxwell relaxation time.
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FIG. 7. (Color online) First normal stress coefficient as a function
of density, obtained from EMD simulations.

clearly decreases with an increasing density. The low-density
relaxation times are in good agreement with the relaxation time
of the exponential mode, shown in Table I. The relaxation times
reach a minimum towards the dense regime (r = 0.071 and
Ty = 0.073 at p = 0.68) and then increase with density in the
dense regime, due to the formation of the molasses tail.

Figure 7 shows the zero-shear first normal stress coefficient
as a function of the density. The normal stress coefficient and
the slope of the function increase towards the dense and the
dilute extremes, while a minimum is found around p = 0.52.
This remarkable trend was not observed when W, ¢ was found
by extrapolating nonequilibrium simulation data [14].

The larger normal stress coefficients at high densities are
related to the memory effect of the viscoelastic fluid. The trend
of the zero-shear normal stress differences in the dilute regime
can be compared with the prediction from kinetic theory, in a
way similar to that done for the viscosity [Eq. (21)]:

2p  2kT
Violp) = — = —=.
V2 9pA3

(24)
This prediction from kinetic theory shows good agreement
with our simulation data for densities p < 0.52, as shown in
Fig. 8. The slight overprediction can be understood since the
Maxwell molecules are softer than the WCA atoms. The harder

1 A T T S S S ST ST S N ST ST S S T S S
1 ¢ our data
] —Kinetic Theory
0.8+ /,,// -
] ,,,,// -
0.6 e -
0.4 e 2
] /,/
] e
0.2 & -
] o
O ] L L L L L L L L L B L A
0 5 10 15

FIG. 8. (Color online) First normal stress coefficients of a dilute
fluid, compared to kinetic theory.

PHYSICAL REVIEW E 87, 032155 (2013)

—data,
| — =3[ Gt
107X o=y [ GIiHt)dt
1\ --mode 1
10N ---mode 2
. T R —mode 142
| 10’2,: L
107 : : : ~

N
0 0.2 0.4 0.6 0.8 1

FIG. 9. (Color online) In the linear regime (y = 0.1 shown),
the relaxation of shear stress after cessation of steady shear can be
accurately predicted from equilibrium statistical mechanics. The sum
of two exponential relaxation modes also fit the data well (p = 0.84,
T = 1.0). The fitting parameters are C = —0.8041, 7; = 0.0565, and
7, = 0.2482.

WCA potential leads to a slightly larger collision rate, which
results in a lower normal stress coefficient.

We have already shown that at moderate density, the stress
relaxation function is well described by a Gaussian plus two
exponentials. This can be integrated to find the stress response
after the cessation of steady shear flow using Eq. (14). A similar
approach is used by Picu and Weiner [8] to approximate the
stress relaxation of a viscoelastic fluid

Pup(t) = ) Cie ™™, (25)

where each stress component P,g can have different propor-
tionality constants C; and relaxation times t;. The shear stress
relaxation of a simple fluid can be approximated with two
modes [38]. Thus, 4 unknowns (C;, 11, C», 7o) have to be
found to fit the simulation data to a function of the form of
Eq. (25). We can reduce the number of fitting parameters for the
shear stress by substituting C, = P,(0) — C;. Taking P,,(0)
in front of the equation and dropping the subscript of the
constant reads

Py(t) = Py (0)(Ce™ /" (1= C)e™/™).  (26)

The constant C represents the initial weight of the first mode
relative to the second.

In Fig. 9, the relaxation after a sudden cessation of
steady shear flow for y = 0.1 is shown for a dense liquid
at p =0.84 and temperature 7 = 1.0. The relaxation of
shear stress obtained from a NEMD simulation is in good
agreement with the relaxation modulus predicted from linear
viscoelastic theory. This confirms that the linear viscoelastic
theory, presented in Eq. (14), is satisfied. The shear stress is
also predicted by substituting the fit of the shear modulus
of a dense fluid [Eq. (17)] into Eq. (14), with the fitting
parameters reported in Table 1. This integrated fit shows good
agreement with the shear stress at short times, but deviates
at longer times. This may be expected since the fit of the
shear modulus [Fig. 3(b)] showed a slower decay than the
data in this region, which correspond to an overprediction
of the shear stress. Furthermore, both modes of the double
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exponential fit [Eq. (26)], and the combination of the modes
is shown in the figure. The fit is shown to be in good
agreement with the shear stress data, with fitting parameters
C = —0.8041, t; = 0.0565, and 1, = 0.2482. However, two
exponential relaxation functions are not enough to capture
all the mechanisms related to structural relaxation of a dense
liquid, since we have seen that the stress relaxation modulus
shows an initial Gaussian-like shape (Fig. 2), followed by
multiple relaxation modes. Especially at very short times, the
slope of the fit deviates from that of the stress relaxation
function, while the function calculated with Eq. (14) is in
perfect agreement.

The relaxation time obtained from Eq. (11) (r = 0.098) lies
in between the relaxation times of the two fitted exponential
modes. This is because the overall relaxation time is a weighted
average of the spectrum of relaxation modes present in the
fluid. An example to illustrate this point can be given by taking
the time derivative of Eq. (26) and defining a time scale as
7! = Py (0)/ Py (O):

P 1 _(C 1-C
Pa0) 7 (n o ) @7

This results in a different time scale (7, = 0.067) than defined
by Eq. (11). We know that if linear viscoelastic theory is
valid Py,(0) = yG*™ and P,,(0) = yn, where 7 is close to
the Newtonian viscosity. For small enough shear rates, such
that the stress response is a linear function of the shear rate,
the time scale defined in Eq. (27) becomes 1, = 1/ G®™. This
expression is equal to the Maxwell relaxation time that is
often used as the characteristic time in the linear viscoelastic
Maxwell model [54]. This model is based on the assumption
that the relaxation function can be accurately described with a
single exponential. We have shown that this is not the case for
any of the fluid densities studied here.

We now briefly discuss the stress relaxation from a steady
shear flow at a shearrate y = 1.0. Athigh shear rates, the shear
stress is not linearly proportional to the strain rate and linear
viscoelastic theory is expected to break down. Non-Newtonian
phenomena, such as shear thinning, shear dilatancy, and
normal stress differences, are known to occur for shear rates of
this magnitude. Figure 10 confirms that the linear viscoelastic
theory is not a good approximation at this high shear rate.
The shear stress relaxes faster than linear viscoelastic theory
predicts. Furthermore, the linear theory does not account
for the shear thinning that is responsible for the deviation
between the data and the EMD prediction for the shear stress
at t = 0 (the steady-state shear stress before relaxation takes
place). The double exponential fit, with fitting parameters
C = —0.9452, 7y =0.0473, and 1, = 0.2271, is still a good
approximation of the shape. The second relaxation time 1,
is almost equal at both shear rates, while the first relaxation
time 7; is smaller at the high shear rate, corresponding to
a faster stress decay. Furthermore, the first mode is initially
more dominant at high shear rate compared to the lower shear
rate, i.e., larger value for C.

Figure 11 shows the relaxation of the normal stresses
after cessation of steady shear flow at strain rate y = 1.0.
Each of the normal stress components [and thus also the
hydrostatic pressure, defined as p = _%tr(P)] decays as the
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FIG. 10. (Color online) Shear stress relaxing from steady shear
flow at y = 1.0. The data are fitted with a double exponential
curve. The fitting parameters are C = —0.9452, 7; = 0.0473, and
7, = 0.2271.

fluid relaxes to equilibrium. This demonstrates the existence
of stress dilatancy in the system. Furthermore, the normal
stresses are not equal to each other at r = 0, which shows the
presence of normal stress differences (shown in the inset). The
relaxation of the normal stress components is different from
the relaxation of shear stress. They converge to equilibrium
at a lower rate than the shear stress. Furthermore, the normal
stresses converge to each other much faster than they relax to
equilibrium, as shown in the inset. The relaxation of the normal
stress components is fitted with the sum of two exponential
modes. The differences between the fits of normal stress
components agree well with the relaxation of the normal stress
differences. We have observed that these nonlinear transient
effects behave very differently in startup flow, compared to
nondriven relaxation from a nonequilibrium steady state. The
stress response in a startup flow is not shown here; however,
for example in Ref. [1], transient normal stress differences are
shown for atomic shear flow simulations (y = 1.0), performed
at the same state point as our simulations.

FIG. 11. (Color online) Relaxation of the diagonal components
of the pressure tensor and the normal stress differences after a sudden
cessation of steady shear flow (y = 1.0). Att =0, P,, and P,, are
almost identical, while P, is significantly lower. The relaxation of
the normal stresses are fitted with the sum of two exponentials. The
normal stress differences are shown in the inset.
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V. CONCLUSIONS

We have presented very accurate calculations of the shear
stress relaxation modulus of a simple atomic fluid over a wide
range of densities. The zero-shear viscosity, zero-shear first
normal stress coefficient, and relaxation time are calculated
from the appropriate integrals over the stress autocorrelation
function. The accuracy of our data enables us to study the
shape of the relaxation function and the density dependence of
the material functions, and to make a quantitative comparison
between molecular dynamics simulation results and kinetic
theory.

Little is known about the functional form of the relaxation
modulus. We have shown that the shear modulus of a dilute
simple fluid can be accurately fitted with the sum of a Gaussian
and an exponential. The width of the Gaussian shows very
little variation with density, whereas the decay rate of the
exponential term increases with density in the dilute regime.
This leads to a decrease of the relaxation times for densities up
to p = 0.68. At higher densities, the behavior becomes more
complicated, due to the development of a slowly decaying
tail in the shear modulus. This tail leads to an increase of the
relaxation time with density.

We have shown that the zero-shear viscosity and the
infinite-frequency shear modulus increase monotonically with
density. Both density dependencies show good agreement with
data from the literature. Furthermore, the viscosity in the
dilute limit agrees well with the predicted value from kinetic
theory.

The zero-shear first normal stress coefficient shows a
qualitatively similar density dependence to the relaxation
times. The zero-shear first normal stress coefficient decreases
with increasing density at low densities and strongly increases
with density in the dense regime, while a minimum normal
stress coefficient is found around p = 0.52. The decaying trend
in the dilute regime is in good agreement with the prediction

PHYSICAL REVIEW E 87, 032155 (2013)

from kinetic theory. This agreement is a confirmation of the
validity of our MD simulations as well as the theory presented
by Coleman and Markovitz [20]. In the dense region, the
viscoelastic memory effect causes an increase in the normal
stress coefficient towards the solid-liquid transition density.

Linear viscoelastic theory has been applied to predict the
linear relaxation of the stress from a steady-state shear flow.
The prediction made from equilibrium molecular dynamics
results has been compared to MD simulations of a fluid
relaxing from a nonequilibrium steady state. Good agreement
was found for a fluid relaxing from a steady flow at shear
rate y = 0.1, whereas for a shear rate ¥ = 1.0 the shear stress
relaxes faster than the linear theory predicts. Furthermore, the
shear thinning that occurs at a large shear rate is not accounted
for in the linear viscoelastic theory. At both shear rates, the
shear stress can be fitted reasonably well with the sum of
two exponential modes. However, the shape of the relaxation
modulus suggests that the double exponential fit does not
capture the stress relaxation correctly at short times. A more
accurate fit was achieved by accounting for the Gaussian shape
at short times and the tail at longer times.

While the present study is limited to atomic fluids, extend-
ing it to molecular fluids could increase our understanding of
the relaxation behavior of fluids that are more interesting from
an industrial or biological point of view. However, accurate
calculations of the normal stress coefficient for simple fluids
already require a large amount of computation. Due to the
definition of the normal stress coefficient, the computation
required increases dramatically with the maximum lag time
for the SACEF to converge to zero.
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