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The transverse-field Ising models with random exchange interactions in finite dimensions are investigated by
means of a real-space renormalization-group method. The scheme yields the exact values of the critical point and
critical exponent ν in one dimension and some previous results in the case of random ferromagnetic interactions
are reproduced in two and three dimensions. We apply the scheme to spin glasses in transverse fields in two and
three dimensions, which have not been analyzed very extensively. The phase diagrams and the critical exponent
ν are obtained and evidence for the existence of an infinite-randomness fixed point in these models is found.
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I. INTRODUCTION

Random quantum spin systems have produced fruitful
physics beyond our expectations. One of the turning points
that opened the door to this exciting topic was the introduction
of random impurities by McCoy and Wu [1] to the two-
dimensional classical Ising model. The way they introduced
the random impurities may seem to be artificial, but using
the transfer matrix method, one finds a natural quantum
spin system equivalent to the McCoy-Wu model: the random
transverse-field Ising spin chain. After the work by McCoy
and Wu, a detailed analysis of the corresponding quantum
system revealed interesting and peculiar features of random
quantum spin chains [2], which are characterized by a so-called
infinite-randomness fixed point [3].

Critical phenomena in several low-dimensional random
quantum spin systems are considered to be controlled by
infinite-randomness fixed points in the renormalization-group
picture [4]. As a random system with an infinite-randomness
fixed point is coarse grained, the width of distributions
grows indefinitely for the logarithms of the parameters in the
renormalized Hamiltonian. In other words, the randomness
is infinitely amplified. The fixed point represents broad
distributions of physical quantities. As a consequence, rare
regions in the system, which are usually expected not to affect
macroscopic properties, influence some of the behavior of the
system. Average values of physical quantities in fact show
differences from typical ones. In addition, a characteristic time
scale is also influenced and the dynamical critical exponent
becomes infinity.

Such behavior was discovered in the random transverse-
field Ising spin chain through an analytical study [2]. The
same method has been applied to higher dimensions [5–11] and
the same properties have been found consequently in higher-
dimensional random ferromagnets. There is, however, another
report with a conflicting result [12] in higher dimensions
and hence further investigations are necessary to resolve the
controversy.

The quantum spin-glass model is a particularly important
issue among random quantum spin systems since the properties
of critical phenomena in the model have not been clarified
very well. Although the quantum spin-glass model has been
presumed to have an infinite-randomness fixed point based
on an analogy with the random ferromagnet model [5], the

method of the strong-disorder renormalization group [4] has
not successfully settled the issue so far, which is used in
most current activities in random quantum spin systems. In
contrast, other numerical estimates [13,14] have indicated
results against the conjecture, but the system size used in these
studies might be too small.

In the present paper we study the nature of critical
phenomena in the random transverse-field Ising models, more
specifically, the random ferromagnetic Ising models and the
Ising spin glasses in transverse fields in one, two, and three
dimensions, with a method of the real-space renormalization
group developed for the nonrandom models [15]. Although
this method is a variant of the block-spin transformation, a
crude approximation in general, our method yields accurate
estimates of the critical exponent ν in nonrandom systems [15].
We apply it to models with randomness in this paper. The
one-dimensional model with randomness has been studied
with the same strategy as our scheme [16]. The present
study covers higher-dimensional cases, spin-glass models in
particular.

A special emphasis is placed on resolving the problem
of whether or not the infinite-randomness fixed point exists
in these models. Indeed, we have found infinite-randomness
fixed points in these models. The critical exponent ν for the
correlation length has been calculated and its values for the
random ferromagnetic Ising model and the Ising spin glass
in transverse fields have been found to be very close to each
other. This result suggests that the Ising spin glass in transverse
fields might belong to the same universality class as the random
ferromagnetic Ising model in transverse fields.

We do not calculate critical exponents other than ν in
the present paper since our method has not yielded accurate
values of the other exponents (for example, η) in nonrandom
systems [15]. Also, there are exponents peculiar to the
random systems (for example, ψ [3]) for which we have
not established a method to calculate in our framework. We
therefore concentrate on the existence of infinite-randomness
fixed points and the exponent ν in this paper. It is to be noted
that ν is a representative exponent of infinite-randomness fixed
points.

In Sec. II we introduce the real-space renormalization-
group scheme for the random transverse-field Ising chain
after a short review of the model. Some previous results
are correctly reproduced under the scheme. In particular, the
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existence of the infinite-randomness fixed point is verified.
Our method is generalized to higher spatial dimensions in
Secs. III and IV, where the random ferromagnetic Ising models
in transverse fields and Ising spin glasses in transverse fields
are investigated. Our study is concluded in Sec. V.

II. ONE DIMENSION

A. Random transverse-field Ising spin chain

Let us recall a few previous results [2,17] related to the
random transverse-field Ising chain

H = −
N∑

i=1

Jiσ
z
i σ z

i+1 −
N∑

i=1

�iσ
x
i , (1)

where σα
i denotes the α component of the Pauli matrix on site

i. The boundary condition is periodic σi = σi+N , where the
number of spins is N , and we assume that N is even. The
couplings Ji and transverse fields �i are random variables
independently distributed. Without loss of generality, we
restrict random variables to be positive. This model has already
been analyzed in detail [2,17] and in the following section we
reproduce some previously known results with our real-space
renormalization-group approach.

When the average of transverse fields is much larger
than that of couplings, the system lies in the paramagnetic
phase, that is, the expectation value of σ z is zero. A phase
transition to the ferromagnetic phase takes place at some point
as we reduce the average value of fields. The system, as a
result, obtains a finite expectation value of σ z. The paraferro
transition point has been analytically obtained [17],

N∑
i=1

ln Ji =
N∑

i=1

ln �i, (2)

which includes the nonrandom case [18].
The model has an infinite-randomness fixed point. Critical

phenomena controlled by this fixed point are considerably
different from the conventional ones. One of the characteristic
features appears in the behavior of the correlation length near
the fixed point. There are two kinds of critical exponent ν about
the divergence of the correlation length and the two critical
exponents take different values in the random transverse-field
Ising chain: ν = 2 [2] and νtyp = 1 [19]. The first one ν is
for the (average) correlation length ξ and correctly takes into
account the effects of randomness. The other exponent νtyp

is for the typical correlation length ξtyp, which describes the
typical behavior of the system and does not reflect the influence
of rare events on macroscopic properties. The correlation
length ξ properly describing the effect of rare events in the
random system is defined as the largest length L, where the
probability that all the spins in the block of length L are
correlated, exceeds some finite value [2,20].

In the random transverse-field Ising model, the average
and variance of ln � − ln J play an important role in the
determination of the correlation-length exponent [2]. We now
express the average as 	,

	 = 1

N

N∑
i=1

ln
�i

Ji

. (3)

According to Eq. (2), the phase transition in one dimension
occurs when this average is equal to zero. The system lies
in the paramagnetic phase if 	 > 0 and the system in the
ferromagnetic phase has a negative 	. The average per block
having a length of L is L	. Roughly speaking, in the Gaussian
distribution, for example, the variance of ln � − ln J per block
is LV , where V expresses the variance per spin,

V = 1

N

N∑
i=1

(
ln

�i

Ji

− 	

)2

. (4)

If L	 >
√

LV , most blocks show paramagnetic behavior and
there are few blocks containing perfectly correlated spins.
Otherwise, there is a significant probability that all spins are
correlated in a block. The relation ξ	 ∼ √

ξV is thus a good
estimate for the correlation length. Hence we have

ξ ∼
(

	√
V

)−2

. (5)

The correlation length diverges around the transition point
	 = 0 and we find 	/

√
V to be a proper parameter measuring

the distance from the critical point. In general, including the
case 	c �= 0, we expect the relation between the correlation
length ξ and the critical exponent ν to be represented as

ξ ∼
(

	 − 	c√
V

)−ν

. (6)

The above-mentioned crude estimate suggests ν = 2.
If we measure the distance without variance, which reflects

the effect of rare events, we can associate the typical correlation
length ξtyp with the critical exponent νtyp,

ξtyp ∼ (	 − 	c)−νtyp . (7)

This expression of the exponent νtyp is due to [2], a leading
study on the one-dimensional model. Nevertheless, this is not
a common definition of νtyp. Usually, νtyp is expressed as
ν(1 − ψ) with another exponent ψ describing the relationship
between the length scale and the energy scale [3]. Since we
do not have a method to estimate ψ , we do not calculate νtyp

in the present study other than in the simple one-dimensional
model. In higher-dimensional cases, we mention only whether
the two exponents defined in Eqs. (6) and (7) may have
differences.

B. Real-space renormalization group in one dimension

We develop a real-space renormalization-group procedure
for the random transverse-field Ising model in one dimension
of Eq. (1) at zero temperature [16]. This is a natural gener-
alization of our previous method for the pure transverse-field
Ising model [15,21]. The method is based on the block-spin
transformation preserving the high symmetry of the model. We
can reproduce the exact critical point and critical exponent ν

in the pure transverse-field Ising chain. This fact is in contrast
with standard real-space renormalization-group approaches on
the basis of block-spin transformations for quantum systems,
which have difficulties in quantitatively accurate estimations
(see, e.g., [22–27]).
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FIG. 1. Construction of block spins in one dimension.

We start by dividing the chain into blocks of two spins as
shown in Fig. 1. The Hamiltonian is also split into intrablock
and interblock parts

H intra
i = −J2i−1σ

z
2i−1σ

z
2i − �2i−1σ

x
2i−1, (8)

H inter
i,i+1 = −J2iσ

z
2iσ

z
2i+1 − �2iσ

x
2i , (9)

where spins 2i − 1 and 2i belong to block i and spin 2i + 1
belongs to block i + 1. The label of block i runs from 1
to N/2. Most importantly, this particular block partition is
suited to preserve the form of the Hamiltonian under the
renormalization-group transformations [15] and is the key for
the success of our calculations.

The eigenvalues of H intra
i are degenerate,

ε
(1)
i = ε

(2)
i = −

√
(J2i−1)2 + (�2i−1)2, (10)

ε
(3)
i = ε

(4)
i =

√
(J2i−1)2 + (�2i−1)2. (11)

The corresponding eigenvectors are

|1〉i = a+
i |↑↑〉 + a−

i |↓↑〉, |2〉i = a+
i |↓↓〉 + a−

i |↑↓〉,
(12)

|3〉i = a−
i |↓↓〉 − a+

i |↑↓〉, |4〉i = a−
i |↑↑〉 − a+

i |↓↑〉,
(13)

where

a±
i =

√√√√1

2

(
1 ± J2i−1√

(J2i−1)2 + (�2i−1)2

)
(14)

and {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} is the orthonormal basis in the σ z

basis, i.e., σ z|↑〉 = |↑〉, σ z|↓〉 = −|↓〉.
We next keep the two lowest-lying energy eigenstates

|1〉 and |2〉 and drop the others |3〉 and |4〉 to perform a
coarse graining. This procedure is expected to be effective
for the study of the ground state. We then replace each
block with a single spin representing the |1〉 and |2〉 states.
To this end, we define the projector onto the coarse-grained
system as

P =
N/2⊗
i=1

Pi, (15)

where Pi is the projector

Pi = (|1〉〈1| + |2〉〈2|)i . (16)

The resulting coarse-grained Hamiltonian is PHP. The renor-
malized intrablock Hamiltonian is trivially represented by the
identity operator 1i on block i as

PiH
intra
i Pi = ε

(1)
i 1i . (17)

Terms in the interblock Hamiltonian are projected as

Pi

(
12i−1 ⊗ σ z

2i

)
Pi = σ̃ z

i , (18)

Pi+1
(
σ z

2i+1 ⊗ 12i+2
)
Pi+1 = J2i+1√

(J2i+1)2 + (�2i+1)2
σ̃ z

i+1,

(19)

Pi

(
12i−1 ⊗ σx

2i

)
Pi = �2i−1√

(J2i−1)2 + (�2i−1)2
σ̃ x

i , (20)

where σ̃ α
i is the α component of the Pauli matrix on block i or

new site i in the coarse-grained system.
The renormalized Hamiltonian is consequently expressed

as

PHP =
N/2∑
i=1

ε
(1)
i 1i −

N/2∑
i=1

J̃i σ̃
z
i σ̃ z

i+1 −
N/2∑
i=1

�̃i σ̃
x
i , (21)

with renormalized couplings

J̃i = J2iJ2i+1√
(J2i+1)2 + (�2i+1)2

, (22)

�̃i = �2i−1�2i√
(J2i−1)2 + (�2i−1)2

. (23)

Note that our transformation preserves the form of the
Hamiltonian. In other words, our method does not generate
additional couplings under renormalization. Other choices
of the intrablock and interblock Hamiltonians lead to more
inconvenient transformations that do not preserve the form of
the Hamiltonian.

Let us calculate renormalized 	 to generate the
renormalization-group equation

	̃ = 1

N/2

N/2∑
i=1

ln
�̃i

J̃i

= 2	, (24)

where we have used a property of the periodic boundary
condition �̃N/2+1 = �̃1. The renormalization-group equation
	̃ = 2	 has a fixed point

	c = 0. (25)

This agrees with the exact transition point [17]. Combining
the change of 	 with that of the typical correlation length
ξ̃typ = ξtyp/2 through the scale transformation with the scaling
factor 2, we obtain the critical exponent

νtyp = 1 (26)

under Eq. (7). This is also the exact value [19].
To take atypical effects into account, we have to explore

the change of variance of ln � − ln J through renormaliza-
tion. However, it is difficult to analytically investigate it.
We therefore study the change of variance by numerical
methods.

In numerical calculations, we first prepare a pool containing
N couplings and N transverse fields to construct a chain
having N sites, where N has been chosen to be 106. The pa-
rameters obey the uniform distributions p(J ) = θ (J )θ (1 − J )
and p(�) = 1

�u
θ (�)θ (�u − �), respectively, where if x > 0,

θ (x) = 1, and θ (x) = 0 otherwise. If the upper bound �u of
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FIG. 2. (Color online) Ratio of the square root of the variance of
ln � − ln J after a renormalization to that before the renormalization
in the random transverse-field Ising model in one dimension.

the values of transverse fields is equal to 1, the distributions of
J and � coincide and the system lies at the critical point.

We next perform the renormalization according to Eqs. (22)
and (23) with the periodic boundary condition and the pool is
renewed by generating the renormalized couplings and fields.
Then the size of the system becomes half that of the original
system. To repeat the renormalization on a large system, we
add a copy of all couplings and fields in the renormalized
system to the pool. Consequently, the number of couplings
and fields in the pool is recovered and the couplings and fields
obey a distribution that is identical to that of the pool before
the copies are added. We then reconstruct a chain with the
renormalized parameters in the pool. In other words, we relabel
the parameters to mix originals and copies. It is noted that,
since J̃i and �̃i+1 in the renormalized system share J2i+1 and
�2i+1 [Eqs. (22) and (23)], if J̃i is relabeled as J̃j , �̃i+1 has to
be relabeled as �̃j+1.

Repeating this scheme, we observe the change of the
variance of ln � − ln J . To reduce statistical errors, we run
up to 100 samples. We set the system very close to the
critical point 	c = 0 when the calculation is carried out. More
precisely, the upper bound of fields �u in the initial condition
is set equal to 1, where the distributions of couplings and
fields coincide. Nevertheless, these distributions in practice
have a small difference owing to the finiteness of the number
of couplings and fields.

A result of the numerical estimate is shown in Fig. 2, where
the ratio of the square root of the variance of ln � − ln J

after a renormalization to that before the renormalization
is plotted. The ratio is always larger than 1, that is, the
distributions of the logarithms of parameters keep broadening.
This fact demonstrates the existence of an infinite-randomness
fixed point in the random transverse-field Ising spin chain.
Furthermore, the ratio reaches a stationary state after several
steps of renormalization. The value of the critical exponent
ν calculated from Eq. (6) also becomes stable accordingly
because the ratio of 	 after a renormalization to that before
the renormalization is constant, 2. Since randomness is strong
when the stationary behavior appears, we expect to extract the
nature of the system near the infinite-randomness fixed point
from this stationary behavior. We therefore estimate the critical

exponent ν with the values in the stationary region as

ν = 2.00(7), (27)

where we have assumed that a renormalized correlation
length is half the original correlation length through the
renormalization of scaling factor 2. This value is in good
agreement with the exact one ν = 2 [2].

Although our real-space renormalization-group procedure
includes approximations, it reproduces the exact critical point
and the exact values of the critical exponents νtyp and ν. Our
simple scheme correctly reflects the physics of the infinite-
randomness behavior, which is one of the most peculiar
features in the random transverse-field Ising spin chain.

III. TWO DIMENSIONS

A. Generalization to the two-dimensional models

We generalize the renormalization-group method to the
two-dimensional transverse-field Ising model with random-
ness on the square lattice. This is also a generalization of the
previous study on the pure model in two dimensions [15] to
the random model. The Hamiltonian is

H = −
∑
〈i,j〉

Jijσ
z
i σ z

j − �
∑

i

σ x
i , (28)

where spins interact with their nearest neighbors 〈i,j 〉. The
key idea consists in performing renormalization-group trans-
formations that preserve the form of the Hamiltonian by a
projective isometry that preserves the bond algebra (i.e., the
algebra realized by the operators σ z

i σ z
j and σx

i ). Using our
experience in one dimension, we divide the lattice into blocks
just as in one dimension (Fig. 3). Furthermore, we combine
the one-dimensional block method in horizontal and vertical
directions to restore the symmetry of the lattice. Specifically,
we iterate the renormalization in two directions: first in the
horizontal direction and then in the vertical direction (Fig. 3).

Now we redefine the coupling constants for the horizontal
direction and the vertical direction to distinguish these two
quantities in this scheme. The coupling constants between the
spin at (i,j ) and the neighboring spin to the right side is Jh(i,j )

and that between the spin at (i,j ) and the neighboring spin to
the upper side is Jv(i,j ), where (i,j ) denotes the location of a
single site on the two-dimensional lattice.

In the first step of the renormalization (in the horizontal
direction) we replace each block with a single spin using the
same procedure as in the one-dimensional case. We have the
relations corresponding to Eqs. (18)–(20),

P̃(i,j )
(
1(2i−1,j ) ⊗ σ z

(2i,j )

)
P̃(i,j ) = σ̃ z

(i,j ), (29)

FIG. 3. Construction of block spins in two dimensions and the
two steps of renormalization in the horizontal direction and then the
vertical direction.
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P̃(i+1,j )
(
σ z

(2i+1,j ) ⊗ 1(2i+2,j )
)
P̃(i+1,j )

= Jh(2i+1,j )√
J 2

h(2i+1,j ) + �2
(2i+1,j )

σ̃ z
(i+1,j ), (30)

P̃(i,j )
(
1(2i−1,j ) ⊗ σx

(2i,j )

)
P̃(i,j ) = �(2i−1,j )√

J 2
h(2i−1,j ) + �2

(2i−1,j )

σ̃ x
(i,j ),

(31)

where P̃(i,j ) denotes the projector onto the state space of the
block spin, namely, the spin at (i,j ) in the renormalized system.
We find that the z component of the spin on the right spot in
a block becomes the z component of the block spin, but the z

component of the spin on the left spot in a block becomes the
z component of the block spin multiplied by Jh/

√
J 2

h + �2.
The renormalized couplings and fields are then written as

J̃h(i,j ) = Jh(2i,j )Jh(2i+1,j )√
J 2

h(2i+1,j ) + �2
(2i+1,j )

, (32)

J̃v(i,j ) = Jh(2i−1,j )√
J 2

h(2i−1,j ) + �2
(2i−1,j )

Jh(2i−1,j+1)√
J 2

h(2i−1,j+1) + �2
(2i−1,j+1)

× Jv(2i−1,j ) + Jv(2i,j ), (33)

�̃(i,j ) = �(2i−1,j )�(2i,j )√
J 2

h(2i−1,j ) + �2
(2i−1,j )

. (34)

In Eq. (33), Jv(2i,j ) is derived from the coupling of two spins
on the right spot in each block and the rest is derived from the
one on the left spot in the blocks.

Next the system is renormalized in the vertical direction
in the same way as the horizontal direction. The coupling
constants and the transverse field are now

˜̃J h(i,j ) = J̃v(i,2j−1)√
J̃ 2

v(i,2j−1) + �̃2
(i,2j−1)

J̃v(i+1,2j−1)√
J̃ 2

v(i+1,2j−1) + �̃2
(i+1,2j−1)

× J̃h(i,2j−1) + J̃h(i,2j ), (35)

˜̃J v(i,j ) = J̃v(i,2j )J̃v(i,2j+1)√
J̃ 2

v(i,2j+1) + �̃2
(i,2j+1)

, (36)

˜̃�(i,j ) = �̃(i,2j−1)�̃(i,2j )√
J̃ 2

v(i,2j−1) + �̃2
(i,2j−1)

. (37)

It is important that our transformations in two dimensions also
do not generate extra terms as in the one-dimensional case
and the form of the Hamiltonian is preserved. In addition, the
lattice structure is preserved.

Note that our transformations are not local. After the
first step of the renormalization, J̃h(i,j ), J̃v(i+1,j ), and �̃(i+1,j )

share Jh(2i+1,j ) and �(2i+1,j ). Hence J̃h(i,j ), J̃v(i+1,j ), and
�̃(i+1,j ) are correlated with each other. Similarly, J̃h(i,j+1),
J̃v(i+1,j ), and �̃(i+1,j+1) share Jh(2i+1,j+1) and �(2i+1,j+1).
Thus J̃h(i,j ), J̃h(i,j+1), J̃v(i+1,j ), �̃(i+1,j ), and �̃(i+1,j+1) are
correlated with each other. In a column, couplings in the
vertical direction, couplings to the left-hand spin, and fields
are mutually correlated after the horizontal renormalization.
The vertical renormalization, accordingly, makes couplings in

L=2

L=2

FIG. 4. Construction of a cluster (left) for the renormalized
cluster of size L = 2 (right) in two dimensions and two steps of
renormalization of the cluster in the horizontal and vertical directions.

the horizontal direction, couplings to the lower-side spin, and
fields in a row mutually correlate. Consequently, after two
steps of the procedure, no sets of couplings and fields are
independent from the others.

The renormalization-group transformations are numeri-
cally performed as follows. We prepare a pool of couplings J

and fields �. The pool contains N couplings in the horizontal
and vertical directions, respectively, as well as N fields. In
our calculation N is 106. We build a two-dimensional partial
lattice, which we call a cluster hereafter, of couplings and fields
randomly taken from the pool. The cluster is renormalized
according to Eqs. (32)–(37) and we put the renormalized
cluster in a new pool. We prepare the shape of the cluster
before renormalization to obtain a renormalized square cluster
of size L × L. A renormalization process for a cluster in
the case of L = 2, for example, is depicted in Fig. 4. The
scheme, from building a cluster to putting the renormalized
cluster in the new pool, for a square cluster of size L × L is
executed N/L × L times. The new pool is filled by N/L × L

renormalized clusters of size L × L as a result and a single
renormalization-group transformation for the whole system is
completed. In the next renormalization step, we construct new
clusters of the clusters in the pool and repeat the process. In
our calculation L is set equal to 20. The renormalization for
the whole system is repeated 15 times and we run up to 100
samples. The procedure is partially based on the calculation
method by Nobre [28] in which we randomly take couplings
and fields from the pool as often as we make a cluster.

The reason why we use the clusters in our calculation lies
in the nonlocal property of our renormalization-group trans-
formations. Although in one dimension we have rearranged
the labels of couplings and fields to repeat the renormalization
calculations on the large system, we cannot freely do so in two
dimensions because the renormalized parameters are mutually
correlated. It is difficult to fully keep the correlation in the
calculation, but the cluster procedure takes it into account
to a certain extent. We correctly deal with the correlation in
clusters. Although this procedure still ignores the correlation
between the clusters on interfaces, the effect of the surfaces is
expected to be small if L is large.

B. Random ferromagnet in two dimensions

We apply the renormalization-group method to the random
ferromagnetic Ising model in transverse fields in two dimen-
sions. The couplings J in the pool are uniformly distributed,
p(J ) = θ (J )θ (1 − J ), and the initial value of the field � is
fixed to a constant at all sites.
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FIG. 5. (Color online) Ratio of the square root of the variance of
ln � − ln J after a renormalization to that before the renormalization
in the random ferromagnetic Ising model in transverse fields in two
dimensions. The initial transverse field is set equal to 0.920.

We determine the critical point in terms of the parameter
ln � − ln J as in the one-dimensional case. If the average of
ln � − ln J , which is denoted by 	, after 15 renormalization-
group transformations is larger than the initial value of 	,
we conclude the system to be in the paramagnetic phase.
Otherwise, the system is regarded to be in the ferromagnetic
phase. We obtain the critical value of the transverse field
�c = 0.9115(5) as a result. This value is to be compared with
another estimate 0.843 38(2) [9], which is fairly close to our
result in consideration of the simplicity of our idea.

We next observe the change of the variance V of ln � −
ln J . The ratio of

√
V after a renormalization to that before the

renormalization is plotted in Fig. 5. Although the result shows
a difference from the result in one dimension in that the ratio
in the first renormalization is smaller than 1, the ratio is always
larger than 1 after that. We conclude that the two-dimensional
random ferromagnetic Ising model in transverse fields has an
infinite-randomness fixed point. This result is the same as in
the strong-disorder renormalization group [5] and Monte Carlo
simulation [29].

To estimate the critical exponent ν for the average correla-
tion length, we use the relation

	i+1 − 	i+1
c√

V i+1
= 21/νr

	i − 	i
c√

V i
. (38)

We call νr the running exponent, which is expected to corre-
spond to the critical exponent ν if the system is sufficiently
close to the infinite-randomness fixed point. We have assumed
that the renormalized correlation length ought to be half the
original correlation length through the renormalization with
scaling factor 2. The symbols 	i and V i denote 	 and V

renormalized i times, respectively, and 	i
c means 	 at the

transition point after i times of the renormalization-group
transformation. We regard the average of the values of 	i

for the initial transverse fields � = 0.911 and 0.912 as 	i
c

owing to the uncertainty of our estimation of the transition
point.

The value of 	 at the transition point depends on the
distribution of couplings J . In general, the distribution changes
through the renormalization-group transformations even if the
system lies just on the transition point. Hence the value of 	
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FIG. 6. (Color online) Running exponent νr calculated with
Eq. (38) in the random ferromagnetic Ising model in transverse fields
in two dimensions. The result in the case � = 0.920, where the system
is close to the critical point, has a plateau.

at the transition point after i transformations can be different
from the one in the initial distribution. Moreover, note that the
running exponent νr calculated with Eq. (38) can vary with the
number i of transformations.

Since we estimate the critical exponent ν from the running
exponent νr near an infinite-randomness fixed point, νr should
be calculated near the transition point. However, instabilities
occur if we try to evaluate it by starting too closely to
the transition point due to statistical uncertainties. We thus
evaluate νr with the initial transverse field � = 0.920. The
results are shown in Fig. 6. For comparison, the result of the
case of the initial transverse field � = 1.000 is also plotted
there.

We can find a plateau around 4–7 for the result of � =
0.920, whereas it does not exist in the case of � = 1.000.
This plateau is comparable with the stable behavior in the one-
dimensional case. We interpret it as a sign of the appearance of
a critical phenomenon in our renormalization-group scheme.
The stable behavior in two dimensions does not continue long
owing to the difficulty of keeping the system close to the
critical point due to randomness, whereas we can easily do
so in one dimension because the fixed point in one dimension
is fortunately determined only by the average of ln � − ln J

and is independent of the distribution of J . This means that
in one dimension we have to control only the initial value of
the average to prevent the system from migrating away from
the fixed point. Estimating ν from values of νr on the plateau
(from 4 to 7 on the horizontal axis), we obtain

ν = 1.20(6), (39)

which is consistent with a previous study from a different
approach, namely, the strong-disorder renormalization group
ν = 1.24(2) [9].

Although we do not explicitly estimate the value of νtyp

defined in Eq. (7), which is slightly different from the
conventional definition for the reason mentioned in Sec. II A,
we recognize a difference between the values of ν and νtyp.
Since the variance V of ln � − ln J keeps growing through
the renormalization-group transformations, the change of
(	 − 	c)/

√
V disagrees with that of 	 − 	c. This fact, which
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is one of the characteristics of the infinite-randomness fixed
point, leads to a difference between the two exponents.

C. Spin glass in two dimensions

We next investigate the Ising spin glass in transverse fields,
where the sign of couplings Jij can take both positive and
negative values. In our calculations, Jij is independently
governed by the Gaussian distribution P (Jij ) = exp[−(Jij −
J0)2/2]/

√
2π , where the variance is set equal to 1. We control

the average J0 of the distribution and the uniform transverse
field �.

Let us draw the phase boundaries. Which phase the system
lies in is determined as follows. The paramagnetic phase and
the ordered phase, namely, the ferromagnetic phase and the
spin-glass phase, are distinguished as in the case of the random
ferromagnet. Specifically, if the average of ln � − ln J after 15
renormalization-group transformations is larger than its initial
value, the system is regarded as being in the paramagnetic
phase. Otherwise, the ferromagnetic or spin-glass phase is
realized. The boundary between the ferromagnetic phase and
the spin-glass phase is drawn by the following rule concerning
the value of [J ]2/VJ , where [J ] denotes the average of Jij and
VJ expresses the variance of Jij . We determine that the system
is in the ferromagnetic phase if [J ]2/VJ is larger than 1 after
15 renormalization-group transformations. Otherwise, it is in
the spin-glass phase. We take 30 samples in this calculation.

The resulting phase boundaries are depicted in Fig. 7. The
result is not quantitatively in precise agreement with a previous
study [14] on the transition point along the line J0 = 0 or, more
specifically, �c = 1.183(3) in our result and �c = 0.608(4) in
Ref. [14]. It is nevertheless important that a definite phase
diagram has been obtained, especially with a spin-glass phase,
by the present simple renormalization group with block-spin
transformations. This result implies that our method properly
reflects the effect of frustration, which is one of the most
essential features of spin glasses.

The ratio of
√

V after a renormalization to that before
the renormalization is observed also in this spin-glass model

 0

 2

 4

 6

 0  1  2  3

Γ

J

P

SG

F

0

FIG. 7. (Color online) Phase diagram of the two-dimensional spin
glass in transverse fields. The horizontal axis J0 expresses the average
of the Gaussian distribution of couplings Jij and the vertical axis is
for the magnitude of the transverse field �. The symbols P, SG, and
F denote the paramagnetic, spin-glass, and ferromagnetic phases,
respectively.
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FIG. 8. (Color online) Ratio of the square root of the variance of
ln � − ln J after a renormalization to that before the renormalization
in the two-dimensional spin glass in the transverse field � = 1.195.

and is plotted in Fig. 8, which shows the existence of an
infinite-randomness fixed point in the present system. This
result supports a conjecture about the possible existence of
an infinite-randomness fixed point in spin glasses inferred
indirectly (i.e., without explicit calculations) from the strong-
disorder renormalization-group approach to the random ferro-
magnetic system [5]. Moreover, our result leads to a difference
between the two exponents ν and νtyp in the definition (7), as
in the random ferromagnetic case.

We next calculate the critical exponent ν for the average
correlation length. We focus on the transition point for J0 = 0.
As in the case of a random ferromagnet, the estimation
is executed slightly away from the actual transition point
� = 1.183(3) to avoid instabilities. Specifically, the initial
transverse field is set equal to � = 1.195. The running
exponent νr calculated in the same way as in the random
ferromagnet is shown in Fig. 9. To compare the critical region
with another case away from criticality, results with the initial
transverse field � = 1.300 are also plotted there. We find a
difference between the two cases that the value of νr for
� = 1.195 reaches a plateau after four transformations and
the value increases again after ten transformations. Since this
behavior corresponds to the plateau in the random ferromagnet,
we accordingly evaluate ν with values in this region (from 4
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FIG. 9. (Color online) Running exponent νr calculated from
Eq. (38) in the two-dimensional spin glass in transverse fields. The
result in the case of � = 1.195, where the system is close to the
critical point, has a plateau.
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(a)

(b)

FIG. 10. Three steps of renormalization in three dimensions in
the (a) regular order and (b) reverse order.

to 9 on the horizontal axis),

ν = 1.21(9). (40)

For comparison, if we use the values in the same region as
in the case of the random ferromagnet (from 4 to 7 on the
horizontal axis), we have ν = 1.19(8).

In addition to having an infinite-randomness fixed point, the
value of ν estimated by our method for the spin glass is in good
agreement with that for the random ferromagnet [Eq. (39)]. Al-
though the quantitative reliability of our method in spin glasses
may not be perfect, as suggested in the determination of phase
boundaries, the above-mentioned agreement may suggest that
the random ferromagnetic Ising model in transverse fields and
the Ising spin glass in transverse fields would belong to the
same universality class.

IV. THREE DIMENSIONS

A. Generalization to the three-dimensional models

Let us next generalize our renormalization-group scheme
to three dimensions. The transformations are iterated in
the horizontal, vertical, and third directions consecutively
(Fig. 10). We define the coupling constants between spin
(i,j,k) and the neighboring spin along the third direction
(i,j,k + 1) as Jt(i,j,k) and similarly for Jh(i,j,k) and Jv(i,j,k) for
the horizontal and vertical directions, respectively.

In the first step of renormalization (in the horizontal
direction) the parameters change as

J̃h(i,j,k) = Jh(2i+1,j,k)Jh(2i+2,j,k)√
J 2

h(2i+2,j,k) + �2
(2i+2,j,k)

, (41)

J̃v(i,j,k) = Jh(2i,j,k)√
J 2

h(2i,j,k) + �2
(2i,j,k)

Jh(2i,j+1,k)√
J 2

h(2i,j+1,k) + �2
(2i,j+1,k)

× Jv(2i,j,k) + Jv(2i+1,j,k), (42)

J̃t(i,j,k) = Jh(2i,j,k)√
J 2

h(2i,j,k) + �2
(2i,j,k)

Jh(2i,j,k+1)√
J 2

h(2i,j,k+1) + �2
(2i,j,k+1)

× Jt(2i,j,k) + Jt(2i+1,j,k), (43)

�̃(i,j,k) = �(2i,j,k)�(2i+1,j,k)√
J 2

h(2i,j,k) + �2
(2i,j,k)

. (44)

Note that the coupling constants of the vertical and third
directions are changed under the same rule. Carrying out
analogous transformations in the vertical direction and then in

the third direction after this first step, we obtain the parameters
of the system renormalized in the three directions.

This scheme, however, yields anomalous results due to
the imbalanced treatment of three directions. As the trans-
formations for three directions are iterated, the magnitude of
coupling constants of the third direction Jt rapidly becomes
small in comparison with those of the other two directions
despite the fact that the original system has no anisotropy. The
scheme thus needs some corrections.

To resolve the anisotropy problem, we further renormalize
the system in the reverse order, along the third, vertical, and
then horizontal directions after the regular order described
above (Fig. 10). This set of six steps, the regular order and
then the reverse order, is regarded as a single transformation
of scaling factor 4. This modified procedure succeeds in
rendering virtually isotropic results. This is the same process
as introduced in the previous study for the nonrandom system
[15].

Numerical calculations are implemented in the same way
as in the two-dimensional case. We generate a pool containing
N couplings in the horizontal, vertical, and third directions,
respectively, and N fields, where N is 106. The cluster method
is used also in three dimensions with the cluster of size
L × L × L and L is set equal to 5. We repeat the (six-step)
renormalization-group transformations five times and 100
samples have been run.

B. Random ferromagnet in three dimensions

We first examine the random ferromagnetic Ising model in
transverse fields on the cubic lattice. The initial distribution
of couplings J in the pool is p(J ) = θ (J )θ (1 − J ), which
is identical to the two-dimensional case. We control the
magnitude of the uniform field � as the initial condition.

We estimate the transition point by a comparison of
the initial value of 	 and the final value of 	 after five
transformations. The result is � = 1.266(2).

The ratio of the square root of the variance V of ln � − ln J

after a renormalization to that before the renormalization
is plotted in Fig. 11. The stability of the ratio through
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FIG. 11. (Color online) Ratio of the square root of the variance of
ln � − ln J after a renormalization to that before the renormalization
in the random ferromagnetic Ising model in transverse fields in three
dimensions. The initial transverse field is 1.269.
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FIG. 12. (Color online) Running exponent νr calculated by
Eq. (45) in the random ferromagnetic Ising model in transverse fields
in three dimensions.

renormalization is not obvious, but at least the result demon-
strates the existence of an infinite-randomness fixed point.

The critical exponent ν for the average correlation length
is also estimated from the values of the running exponent νr

computed from the relation

	i+1 − 	i+1
c√

V i+1
= 41/νr

	i − 	i
c√

V i
, (45)

where we regard the average of 	i for the initial transverse
fields � = 1.266 and 1.267 as 	i

c. We can find a plateau in
the result of � = 1.269 most clearly near the critical point
(Fig. 12). Evaluating ν from the values of νr on the plateau
(from 2 to 4 on the horizontal axis), we have

ν = 0.92(4), (46)

which is rather close to 0.97(5) of the corresponding result by
the strong-disorder renormalization group [10,11].
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FIG. 13. (Color online) Phase diagram of the three-dimensional
spin glass in transverse fields. The horizontal axis J0 expresses the
average of the Gaussian distribution of couplings Jij and the vertical
axis expresses the magnitude of the transverse field �. The symbols
P, SG, and F denote the paramagnetic, spin-glass, and ferromagnetic
phases, respectively.
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FIG. 14. (Color online) Ratio of the square root of the variance of
ln � − ln J after a renormalization to that before the renormalization
in the three-dimensional spin glass in transverse fields with � =
1.619.

C. Spin glass in three dimensions

Let us apply our renormalization-group scheme to the spin
glass in transverse fields on the cubic lattice. As in the case of
the square lattice, we use the Gaussian distribution P (Jij ) =
exp[−(Jij − J0)2/2]/

√
2π and control the average J0 of the

distribution and the uniform transverse field �.
We first draw phase boundaries under the same rule as

in two dimensions, but phases are determined after five
transformations in three dimensions. The resulting boundaries
are depicted in Fig. 13. It is remarkable that our simple
renormalization-group method verifies the existence of the
spin-glass phase.

Next, critical properties are investigated. Specifically, we
treat the critical point for J0 = 0. The existence of an infinite-
randomness fixed point is confirmed by the observation
of the change of

√
V through the renormalization-group

transformations (Fig. 14). The running exponent νr is also
calculated to obtain the critical exponent ν. We use the average
of 	i for the initial transverse fields � = 1.613 and 1.612 as
	i

c. A plateau is clearly recognized in the result of � = 1.619
(Fig. 15) and we determine ν by the values of νr on the plateau
(from 2 to 4 on the horizontal axis),

ν = 0.94(3). (47)

 0.6

 0.8

 1

 0  2  4  6

ν

renormalization steps

r

FIG. 15. (Color online) Running exponent νr calculated from
Eq. (45) in the three-dimensional spin glass in transverse fields with
� = 1.619.
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This value is close to that of the random ferromagnetic model
in three dimensions [Eq. (46)].

V. CONCLUSION

We have studied the random transverse-field Ising models
in finite dimensions by the real-space renormalization-group
method introduced in previous studies [15,21]. Our method
reproduces exact results for the transition point and critical
exponent ν in one dimension in spite of the existence of
randomness. Moreover, our generalization of the method to
higher dimensions has been shown to be effective not only in
the pure model as shown in Ref. [15], but also in the random
model. In fact, we have obtained the values of the critical
exponent ν in the two- and three-dimensional random ferro-
magnetic Ising models in transverse fields close to those from
the strong-disorder renormalization-group approach [9–11].

Most remarkable results in our study concern two- and
three-dimensional spin glasses in transverse fields. It should
be emphasized that in this study the phase diagrams have been
drawn (qualitatively) for the finite-dimensional spin glasses
in transverse fields by analytical methods. In particular, the
existence of a spin-glass phase has been confirmed. Also, we
have established the existence of infinite-randomness fixed
points from indefinite amplifications of the distribution of
parameters on a logarithmic scale. This observation supports
the conjecture inferred from the case of a random ferromagnet

under the strong-disorder renormalization group [5], but
is in conflict with a relatively old numerical study [14].
Furthermore, the estimated exponent ν in spin glasses in
transverse fields is very close to that of the corresponding
random ferromagnet. Thus one may naturally expect that these
models belong to the same universality class, which is also a
highly nontrivial result. Nevertheless, further investigations
are needed to settle this issue because we have to establish the
quantitative reliability of the method developed here.

The validity of our method is not readily obvious because
it drops higher-energy eigenstates in the block Hamiltoni-
ans. One may nevertheless be allowed to expect that the
consistencies of our results with previous studies, wherever
applicable, would justify our procedures as a method to
extract the essential features of random quantum systems.
It is necessary to establish methods to evaluate other critical
exponents to reinforce the quantitative reliability of the present
method.
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