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Diffusion of heat, energy, momentum, and mass in one-dimensional systems
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We study diffusion processes of local fluctuations of heat, energy, momentum, and mass in three paradigmatic
one-dimensional systems. For each system, diffusion processes of four physical quantities are simulated and the
cross correlations between them are investigated. We find that, in all three systems, diffusion processes of energy
and mass can be perfectly expressed as a linear combination of those of heat and momentum, suggesting that
diffusion processes of heat and momentum may represent the heat mode and the sound mode in the hydrodynamic
theory. In addition, the dynamic structure factor, which describes the diffusion behavior of local mass density
fluctuations, is in general insufficient for probing diffusion processes of other quantities because in some cases
there is no correlation between them. We also find that the diffusion behavior of heat can be qualitatively different
from that of energy, and, as a result, previous studies trying to relate heat conduction to energy diffusion should
be revisited.
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I. INTRODUCTION

In recent years, stimulated by the rapid progress in both the-
oretical and experimental studies, the nonequilibrium transport
properties in low-dimensional systems have become a favored
research topic. In principle, based on the linear response
theory [1], these properties can be revealed by studying the
evolution of spontaneous fluctuations in equilibrium systems.
However, in general how a spontaneous fluctuation may evolve
is still an open question. For example, if a local fluctuation
will simply relax until it vanishes or spread (diffuse) into
other parts of the system, and if fluctuations of different
physical quantities may evolve in the same way, are unclear
yet.

To study relaxation processes is of fundamental importance.
The conventional hydrodynamic theory predicts that a pertur-
bation may induce a heat mode and a sound mode [2], hence the
relaxation of a fluctuation may be understood as a combination
of such two types of hydrodynamic modes. However, in recent
decades, it has been found that the linearized hydrodynamic
description may be invalid in low-dimension systems [3–5].
Therefore, it is necessary to investigate, by direct simulations,
the particular properties of the hydrodynamic modes and show
how they manifest themselves in different systems. This kind
of first-hand information can be very helpful for checking the
deviations from the hydrodynamic transport theories and shed
light on how to improve them.

Numerical simulations have special advantages for this aim,
because they are applicable to a large variety of relaxation
processes, many of which are not accessible by present
laboratory experiments. Indeed, among various quantities,
at present only the evolving process of the mass density
fluctuations can be measured in laboratories by inelastic
neutron or x-ray scattering experiments in terms of the
dynamic structure factor. The dynamic structure factor is
defined as the Fourier transform of a spatiotemporal correlation
function of local mass density fluctuations [2]. It can be applied
to probe the information of the interparticle interactions and
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their time evolution, and thus has been widely studied via
theoretical, experimental, and numerical methods [2,6–9].
Therefore, verifying the existence of correlation between the
relaxation processes of a given physical quantity and that of
the local mass density fluctuations has practical importance as
well. If they are correlated and the correlation is made clear
by simulations, then with the existing experimental techniques
the relaxation behavior of the given quantity can be obtained
by measuring the dynamic structure factor. If there is no
correlation, then numerical simulations would be the main
tool to explore the former.

Another instance requiring us to clarify if there is any
correlation between relaxation processes of different quantities
is encountered in the study of heat conduction in low-
dimensional systems [10,11]. Heat conduction is closely
related to the heat relaxation behavior. It is known that the
heat current and the energy current are conceptually different
[12,13], but they may have the same value at nonequilibrium
stationary states [10,14]. In the literature [15–19], sometimes
heat relaxation has been assumed, implicitly, to be the same
as energy relaxation, and the heat conduction properties are
thus deduced based on energy relaxation instead. Given this,
to clarify if heat and energy follow the same relaxation law is
a necessary task.

This work is an effort towards filling these gaps. We shall
focus on the evolution of local fluctuations of energy, heat,
momentum, and mass, and pay particular attention to their
correlations. We shall consider three typical one dimensional
(1D) systems as examples to show the system-dependent
relaxation properties. The rest of this paper is organized as
follows: The models to be studied will be described in the
next section, and the method we use to probe the evolution of
local fluctuations will be detailed in Sec. III. The main results
will be provided and discussed in Sec. IV, followed by a brief
summary in the last section.

As we find that most relaxation processes in our study have
characteristics of generalized diffusion—i.e., the correspond-
ing fluctuations do not decay to zero but spread across the
system—in the following we refer to them as diffusion for the
sake of simplicity. For example, by “diffusion of energy” we
mean the evolution process of local energy fluctuations.
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II. MODELS

We study three paradigmatic 1D models that have been
shown very useful for exploring the dynamic implications on
thermodynamic properties: one gas model and two lattice mod-
els. The gas model [18,20–22] is a simplified representative
of 1D fluids which consists of N hard-core point particles
arranged in order in a 1D box of length L with alternative mass
mo for odd-numbered particles and me for even-numbered
particles. The particles travel freely except for elastic collisions
with their nearest neighbors. The two lattice models are
the Fermi-Pasta-Ulam (FPU) model [23] and the lattice φ4

model [24], representing lattices with and without the momen-
tum conserving property, respectively. Their Hamiltonian is

H = ∑
i Hi with Hi = p2

i

2mi
+ 1

2 (xi − xi−1)2 + 1
4 (xi − xi−1)4

for the FPU model and Hi = p2
i

2mi
+ 1

2 (xi − xi−1)2 + 1
4x4

i for

the lattice φ4 model, where Hi , pi , mi , and xi represent,
respectively, the energy, the momentum, the mass, and the
displacement from its equilibrium position of the ith particle.

In our simulations, the system size L is set to be equal to
the particle number N , so that the averaged particle-number

density is unity. The local temperature is defined as Ti ≡ 〈p2
i 〉

kBmi
,

where kB (set to be unity) is the Boltzmann constant and
〈·〉 stands for the ensemble average. For the 1D gas model,
we take mo = 1 for odd-numbered particles and me = 3
for even-numbered particles as in Ref. [18] for the sake of
comparison, and the average energy per particle is unity so
that the system temperature T = 2. For the FPU model and
the lattice φ4 model, all particles have a unit mass and the
system temperature is T = 0.5.

III. METHOD

In the equilibrium state, the diffusion behavior of a physical
quantity can be probed by studying the properly rescaled
spatiotemporal correlation function of its density fluctuations
[19,25,26]. The method given in Ref. [19] will be detailed and
extended to microcanonical systems in the following.

We assume that the systems are microcanonical with
periodic boundary condition and the physical quantity to
be considered, denoted by A, is conserved. The density
distribution function of A is denoted by A(x,t), where x

and t are the space and the time variables, respectively. In
numerical simulations, in order to calculate the spatiotemporal
correlation function of A(x,t), we have to discretize the
space variable. For this aim we divide the space range of a
system into Nb = L

b
bins of equal size b. The total quantity

of A(x,t) in the j th bin is denoted by Aj (t), defined as
Aj (t) ≡ ∫

x∈j th bin A(x,t)dx. The fluctuation of A(x,t) in the
j th bin is thus �Aj (t) ≡ Aj (t) − Ā, where Ā is the ensemble
average of Aj (t). These Nb bins serve as the coarse-grained
space variable.

The diffusion characteristics of A can be captured by the
spatiotemporal correlation function defined as

ρA(�xi,j ,t) ≡ 〈�Aj (t)�Ai(0)〉
〈�Ai(0)�Ai(0)〉 − Cinh, (1)

where �xi,j denotes the displacement from the ith bin to the
j th bin, i.e., �xi,j ≡ (j − i)b. The constant Cinh represents the

inherent correlation resulting from the fact thatA is conserved,
which has nothing to do with the causal correlation and hence
must be deducted [19]. For a microcanonical system we have∑

j �Aj (0) = 0 due to the fact that A is conserved, therefore∑
j �=i �Aj (0)�Ai(0) = −�Ai(0)�Ai(0) and

∑

j �=i

〈�Aj (0)�Ai(0)〉 = −〈�Ai(0)�Ai(0)〉. (2)

As 〈�Aj (0)�Ai(0)〉 is statistically equivalent for all j �= i due
to the homogeneity of space and time, we have

〈�Aj (0)�Ai(0)〉 = − 1

Nb − 1
〈�Ai(0)�Ai(0)〉. (3)

At t = 0, there should be no causal relationship between two
different bins, i.e., ρA(�xi,j ,0) = 0 for i �= j ; we can then
obtain that Cinh = − 1

Nb−1 . Because the inherent correlation
remains unchanged in time, the spatiotemporal correlation
function

ρA(�xi,j ,t) = 〈�Aj (t)�Ai(0)〉
〈�Ai(0)�Ai(0)〉 + 1

Nb − 1
(4)

thus defined can then accurately capture the causal correlation
induced by an initial fluctuation of A in microcanonical
systems. It is slightly different from the spatiotemporal
correlation function defined in canonical systems, in which
the inherent correlation Cinh vanishes [19]. For the sake of
convenience, in the following the notation x will be used to
replace �xi,j without confusion. Because the spatiotemporal
correlation function defined above gives the causal relation
between a local fluctuation and the effects it induces at another
position (with a displacement x) and at a later time (with a time
delay t), it is in essence equivalent to the probability density
function that describes the diffusion process of the fluctuation.

It should be noted that the coarse-grained space variable
we have taken is important for obtaining the correct spa-
tiotemporal correlation function. If the indexes of particles
are used as the space variable, the corresponding correlation
function could be dramatically different, because the indexes
do not reflect the real physical positions of the particles and
thus may cause large position fluctuations [27]. Indeed, as
will be presented in the next section, the 1D gas model’s
spatiotemporal correlation function of energy has a two-peak
structure [see Fig. 1(b)]. But if the indexes of particles are used,
it shows a three-peak structure instead [18,28]. We therefore
emphasize that the coarse-grained space variable is essential
for studying the spatial diffusion, which is exactly our aim
here.

The 1D gas model is efficiently simulated by using the
event-driven algorithm that employs the heap data structure
to identify the collision times [20]. For the FPU model and
the lattice φ4 model, a Runge-Kutta algorithm of 7th to 8th
order is adopted for integrating the motion equations, and
the Andersen thermostat [29] is utilized to thermalize the
system for preparing the equilibrium systems. In calculating
the spatiotemporal correlation functions a periodic boundary
condition is applied and N = 4000 particles are considered,
but we have checked and verified that for larger N the
simulation results remain the same. For all three models the
equilibrium systems are prepared by evolving the systems
for a long enough time (>108 time units of the models)
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FIG. 1. (Color online) The spatiotemporal correlation functions of heat, energy, momentum, and mass, denoted by ρQ(x,t), ρE(x,t),
ρP (x,t), and ρM (x,t), respectively, for the 1D gas model (a)–(d), the FPU model (e)–(h), and the lattice φ4 model (i)–(l) at t = 300.

from properly assigned random states [30], then the system
is evolved in isolation. The size of the ensemble for averaging
is larger than 1010.

IV. RESULTS AND DISCUSSIONS

We probe the diffusion behavior of a given physical quantity
by studying its spatiotemporal correlation function. We are
particularly interested in the diffusion behaviors of heat,
energy, momentum, and mass, whose density functions are
respectively denoted by Q(x,t), E(x,t), P (x,t), and M(x,t),
and the corresponding spatiotemporal correlation functions
are denoted by ρQ(x,t), ρE(x,t), ρP (x,t), and ρM (x,t).
For 1D systems, the heat density function is defined as
Q(x,t) = E(x,t) − (Ē+F̄ )M(x,t)

M̄
[31], where Ē (M̄) and F̄ are,

respectively, the spatially averaged energy (mass) density and
the internal pressure of the system in equilibrium state. In
our simulations, the density functions E(x,t), P (x,t), and
M(x,t) are numerically measured first, based on which Q(x,t)
is obtained as well. Then the corresponding spatiotemporal
correlation functions are evaluated straightforwardly.

The spatiotemporal correlation functions of all three models
at an example time t = 300 are shown in Fig. 1. It can be
seen that the diffusion behavior of the same quantity may
vary from system to system (see, e.g., any row in Fig. 1 for
a comparison) and in the same system different quantities
may have dramatically different diffusion properties as well,
though for some of them, such as energy and momentum in the
gas model, the diffusion behaviors could be the same. Also,
it can be found that except for ρP (x,t) and ρM (x,t) for the
lattice φ4 model, all other spatiotemporal correlation functions
conserve their total volume, i.e.,

∫
ρA(x,t)dx = 1, and we can

identify either one standing center peak, or two moving side
peaks, or the “superposition” of them. In every case where two

side peaks appear, we find that the centers of the side peaks
move outwards at a constant speed. More specifically, the side
peaks move outwards at a speed v = 1.75 in the gas model
and at v = 1.32 in the FPU model. In the lattice φ4 model
where the total momentum is not conserved due to existence
of on-site potentials, we find that ρP (x,t) and ρM (x,t) decay
exponentially and relax to zero rapidly. This is the reason why
in Figs. 1(k) and 1(l) no structure is identified.

We find that both ρM (x,t) and ρE(x,t) can be perfectly
expressed as a linear combination of ρQ(x,t) and ρP (x,t).
Our data show that in the gas model ρM (x,t) = 2

3ρQ(x,t) +
1
3ρP (x,t) and ρE(x,t) = ρP (x,t), while in the FPU model
we have ρM (x,t) = ρP (x,t) and ρE(x,t) = 0.78ρQ(x,t) +
0.22ρP (x,t), and in the lattice φ4 model ρE(x,t) = ρQ(x,t)
and ρM (x,t) = ρP (x,t) = 0.

We conjecture that functions ρQ(x,t) and ρP (x,t) can be
identified with the heat mode and the sound mode, respectively.
Indeed, the function ρQ(x,t) represents the heat mode because
by definition it describes the motion of heat exclusively [31].
The function ρP (x,t) describes the collective motion carrying
the memory of the initial moving directions of the particles.
In both the gas and the FPU models, ρP (x,t) has a bimodal
structure and the peaks move outwards at a constant speed,
hence can be reasonably related to the sound mode. To
make our conjecture more convincing, we study the dynamic
structure factor represented by the function ρM (x,t). In the gas
model, we have measured with high precision the volume of
the center peak (i.e., the area enclosed by the center peak curve
and the abscissa) of the function ρM (x,t), finding it to be 2

3 ,
and that of the two side peaks to be 1

3 [see Fig. 1(d)]; the ratio
of them equals 2, which is unchanged in time and is in perfect
agreement with the Landau-Placzek ratio [32,33] of an ideal
gas. In addition, if we multiply ρM (x,t) by a factor of 3, its
side peaks will overlap with ρP (x,t). Similarly, multiplying
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FIG. 2. (Color online) Rescaled profiles of the spatiotemporal correlation function of heat ρQ(x,t) for all three models. (a)–(b) are for the
gas model with rescaling factor λ = 0.59 obtained via best fitting. In (a) ρQ(x,t)tλ vs x/tλ at three different times are compared and in (b)
ρQ(0,t)tλ vs time is shown. (c)–(f) are the same as (a) and (b) but for the FPU model with rescaling factor λ = 0.60 and the lattice φ4 model
with rescaling factor λ = 0.50 respectively. As a result of rescaling, three curves in (a) and (e) overlap and are indistinguishable. In (c), on each
curve there are two side peaks symmetric with respect to x = 0, which from the center to the two sides are at t = 300, 500, 800, and 1200,
respectively.

ρM (x,t) by 3
2 , its center peak will overlap with ρQ(x,t). These

facts convincingly suggest that ρQ(x,t) and ρP (x,t) represent
the heat mode and the sound mode. In the FPU model, there
are only two side peaks on ρM (x,t), therefore the ratio of the
area of the center peak to that of the two side peaks is zero,
which is also in agreement with the Landau-Placzek ratio of
this model. The function ρM (x,t) thus represents only the
sound mode. The function ρP (x,t) represents the sound mode
as well, because it is identical to ρM (x,t) as shown in Figs. 1(g)
and 1(h).

As a consequence, diffusion properties of heat and mo-
mentum can characterize all others diffusion processes. Let
us first discuss diffusion of heat by considering ρQ(x,t). We
find that there is an interesting scaling property in ρQ(x,t)
in all three systems, i.e., ρQ(x,t) is invariant upon rescaling
x → tλx so that tλρQ(x,t) = tλ0 ρQ(x0,t0) for x = ( t

t0
)λx0 [see

Figs. 2(a) and 2(e)]. For the gas model and the lattice φ4

model ρQ(x,t) is a unimodal function; the simulation results
suggest that λ = 0.59 for the former and λ = 0.50 for the
latter. Neglecting the decaying side peaks, ρQ(x,t) of the FPU
model has the same scaling invariance property with λ = 0.60
[see Fig. 2(c)]. As ρQ(x,t) conserves its volume, we have
ρQ(x,t)dx = ρQ(x0,t0)dx0, which leads to the result that the
variance of ρQ(x,t) goes in time as 〈x2(t)〉 = 〈x2

0 (t0)〉( t
t0

)2λ;

i.e., a heat fluctuation diffuses in a power law 〈x2(t)〉 ∼ tβ with
the diffusion exponent β = 2λ. Thus, we obtain β = 1.18,
1.20, and 1.00 for the gas model, the FPU model, and the
lattice φ4 model, respectively, indicating that a heat fluctuation
undergoes superdiffusion in the gas model and the FPU model
but normal diffusion in the lattice φ4 model. As mentioned
above, the center peak of ρM (x,t) in the gas model can be
rescaled and overlap perfectly with ρQ(x,t). So can the center
peak of ρE(x,t) in the FPU model and in the φ4 model. To
summarize, these peaks relax in the same manner as that of
ρQ(x,t).

Now let us turn to the sound mode. If ρA(x,t) has two
side peaks moving at a constant speed v and conserving their

volumes, then 〈x2(t)〉 ∼ ∫ vt+�x

vt−�x
(vt)2ρA(x,t)dx ∼ t2, where

�x represents the width of the peaks. Hence all the processes
that involve the sound mode should fall into the class of
ballistic diffusion, including the diffusion processes of energy,
momentum, and mass density in the gas model and in the
FPU model. Particularly, for ρE(x,t) in the FPU model we
have 〈x2(t)〉 ∼ at1.20 + ct2 since ρE(x,t) = 0.78ρQ(x,t) +
0.22ρP (x,t) as mentioned above, where a and c are constants.
Therefore, though the center peak relaxes in a superdiffusive
manner, its asymptotic diffusion behavior will be dominated
by 〈x2(t)〉 ∼ ct2 even if a is much larger than c.

The peaks of ρP (x,t) disperse while moves ballistically.
The dispersion reveals the information of the sound attenu-
ation. Similarly, as for the center peak of ρQ(x,t), we find
that there is also an interesting scaling property of the side
peaks of ρP (x,t), i.e., the side peak, taking the right one
for example, of ρP (x,t) is invariant upon rescaling x̄ → t δx̄,
where x̄ = x − vt (v is the speed of the side peak), so that
t δρP (x̄,t) = t δ0ρP (x̄0,t0) for x̄ = ( t

t0
)δx̄0, where x̄0 = x − vt0.

As shown in Fig. 3 for the gas model and the FPU model,
the simulation results suggest that δ = 0.64 for the former and
δ = 0.50 for the latter.

The above results have some important implications. For
example, they indicate that the dynamic structure factor is not
sufficient to capture all diffusion processes. In the gas model,
as ρM (x,t) = 2

3ρQ(x,t) + 1
3ρP (x,t) and ρE(x,t) = ρP (x,t),

indeed energy and momentum diffusion can be revealed by
the side peaks of ρM (x,t) and heat diffusion can be extracted
from the center peak of ρM (x,t). But in the FPU model,
though the dynamic structure factor may characterize the
momentum diffusion because ρM (x,t) = ρP (x,t), it is useless
for exploring energy and heat diffusion. In the lattice φ4 model,
the function ρM (x,t) does not give any interesting information
[See Fig. 1(l)]. Therefore, it is necessary to investigate the
diffusion behavior of other physical quantities case by case, not
only when they have no correlation with the diffusion behavior
of mass density so that they can not be probed by the dynamic
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FIG. 3. (Color online) Rescaled profiles of the side peaks on the
spatiotemporal correlation function of momentum ρP (x,t) for the
gas model and the FPU model. (a) and (b) are for the gas model with
rescaling factor δ = 0.64 obtained via best fitting. In (a) ρP (x̄,t)t δ vs
x̄/tδ at three different times are compared, where x̄ = x − vt (v is
the speed of the side peak). In (b) ρP (vt,t)t δ vs time is shown. (c) and
(d) are the same as (a) and (b) but for the FPU model with rescaling
factor δ = 0.50. The fact that three curves in (a) and (c) overlap and
are indistinguishable indicates the perfect scaling properties of the
side peaks of ρP (x,t).

structure factor, but also when the correlation exists but we
want to ascertain how to extract the relaxation properties of
other quantities from the dynamic structure factor.

Another important implication is that there is no definite
correlation between diffusion of heat and energy. The results
presented in Fig. 1 also suggest that, in a system, diffusion
behavior of energy can be completely different from that
of heat and hence may not provide any information of the
latter. For example, in the gas model [see Figs. 1(b) and 1(a)],
there are two moving peaks in the spatiotemporal correlation
function of energy ρE(x,t), but there is only one standing peak
in that of heat ρQ(x,t). In the FPU model, though at an early
stage both ρE(x,t) and ρQ(x,t) have a three-peak structure
[see Figs. 1(f) and 1(e)], there is a significant difference
between them: while the former keeps its three-peak structure
throughout, the two side peaks in the latter keep shrinking and

asymptotically ρQ(x,t) becomes unimodal. To scrutinize this
difference, we compare in Fig. 4 the time evolution of ρQ(x,t)
and ρE(x,t). We find in both of them the half-height width of
the side peaks widens as l ∼ t0.50, but their height decays as
h ∼ t−1.31 in ρQ(x,t) rather than h ∼ t−0.50 as in ρE(x,t). As a
result the side peaks of ρE(x,t) keep their volumes unchanged
since lh is time independent, in clear contrast to those of
ρQ(x,t) that keep shrinking as lh ∼ t−0.81. Hence over time
ρQ(x,t) and ρE(x,t) will become qualitatively different. Of all
three models we find that only in the lattice φ4 model are the
diffusion behaviors of energy and heat the same [see Figs. 1(i)
and 1(j)].

These results suggest that the previous studies trying to
establish a universal connection between energy diffusion and
heat conduction [18,19] should be revisited. Conceptually, it is
heat diffusion, rather than energy diffusion, that should and can
be meaningfully related to heat conduction. For 1D momentum
conserving systems, it has been found that generally the heat
conductivity κ diverges in the thermodynamic limit as κ ∼ Lα

with 0.25 � α � 0.5 [10,11,13,20,34–39], and on the other
hand, energy diffuses in time as ∼tβ . Two formulas, α = β − 1
[15] and α = 2 − 2

β
[16], have been proposed to connect the

two exponents α and β universally. But as shown in our gas
model, the energy fluctuations spread ballistically and thus the
diffusion of energy is characterized by β = 2, such that α and
β definitely do not agree with either of the two formulas. In
the FPU model, due to the ballistic behavior of the two side
peaks on ρE(x,t), β will asymptotically saturate at β = 2,
again disobeying the two formulas.

From the hydrodynamic point of view, the reason why there
is no universal connection between energy diffusion and heat
conduction is conceptually easy to understand: the former is
also affected by advection, i.e., the sound mode. This has been
well shown by our simulation results that, in all three models,
the diffusion process of energy can be perfectly expressed as
a linear combination of those of heat and momentum.

V. SUMMARY

The method for calculating the spatiotemporal correlation
functions in microcanonical systems has been shown to be

FIG. 4. (Color online) (a) The spatiotemporal correlation function of heat, ρQ(x,t), for the FPU model. The inset shows the log-log plot of
time dependence of the heights of the center peak (open circles) and the side peaks (open stars). (b) The same as (a) but for the spatiotemporal
correlation function of energy, ρE(x,t), of the FPU model.
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effective in probing the diffusion processes in equilibrium
systems. By this method, the diffusion processes of local
fluctuations of heat, energy, momentum, and mass in three
one-dimensional systems are explored in detail. It is found
that diffusion of energy and mass can be expressed as a linear
combination of ρQ(x,t) and ρP (x,t), which we conjecture
to be representatives of the heat mode and the sound mode,
respectively. There is a scaling in function ρQ(x,t), i.e.,
ρQ(x0,t0) = ( t

t0
)λρQ(( t

t0
)λx0,t), in all three models. For the

lattice φ4 model, λ = 0.5, indicating normal diffusion. For
the gas model and the FPU model, λ = 0.59 and 0.60,
respectively, indicating superdiffusion. The function ρP (x,t)
vanishes in the lattice φ4 model due to the momentum-
nonconserving property. For the gas model and the FPU model,
ρP (x,t) conserves its volume and follows the scaling relation
ρP (x0,t0) = ( t

t0
)δρP (( t

t0
)δx0,t) with v = 1.75, δ = 0.64 in the

gas model (at temperature T = 2) and v = 1.32, δ = 0.50 in
the FPU model.

We have revealed correlations between different diffusion
processes. It is found that the diffusion behaviors of different
physical quantities may be distinctively different, and the
correlations between them could be very complex. The
diffusion behavior of a physical quantity may vary from system
to system, hence they should be studied case by case. Diffusion
of heat, energy, and momentum is correlated with that of mass
density fluctuations in the gas model, which implies that they
can be probed by measuring the dynamic structure factor. In

the two lattice models, the dynamic structure factor provides
no information of heat diffusion.

A particular finding is that diffusion of energy can be
qualitatively different from that of heat, hence a universal
connection may not exist between energy diffusion and heat
conduction (though we conjecture that instead of energy
diffusion, a universal connection may be established between
heat diffusion and heat conduction). This is different from the
relationship between the energy current and the heat current
[12,13], which turns out to be the same [10] at nonequilibrium
stationary state.

We have not studied two- and three-dimensional systems.
In one of our studies [30] it has been shown that the
particle diffusion can be qualitatively different from the
energy diffusion in a two-dimensional gas with Lennard-Jones
interactions, but the relaxation behavior of heat has not been
studied yet. In previous studies heat diffusion has constantly
been assumed to be normal in three-dimensional systems,
including the three-dimensional gases with Lennard-Jones
interactions [40,41]. What we have learned in this work
suggests that it is very necessary to check if this is the case.
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