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The unusual re-entrant phenomenon is observed in the anisotropic three-state Potts model on a generalized
kagome lattice. By employing the linearized tensor renormalization group method, we find that the re-entrance
can appear in the region not only under a partially ordered phase that is commonly known but also a phase
without a local order parameter, which is found to fall into the universality class of Kosterlitz-Thouless (KT).
The region of the re-entrance depends strongly on the ratios of the next-nearest-neighbor couplings α = J2/|J1|
and β = J3/|J1|. The phase diagrams in the plane of temperature versus β for different α are obtained. Through
massive calculations, it is also disclosed that the quasientanglement entropy can be applied to accurately determine
the KT transition temperature.
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I. INTRODUCTION

Two-dimensional (2D) frustrated classical lattices possess
many interesting physical properties (see, e.g., Refs. [1–8].
One of them is the so-called re-entrant phenomenon [1,3,6,9],
which is defined as the occurrence of a disordered phase
(usually a paramagnetic phase) in the region below an ordered
or a partial ordered phase on the temperature scale. This
disordered phase is called the re-entrant phase that has been
detected experimentally in spin glasses [10] and studied
theoretically in several exactly solvable 2D frustrated Ising
systems on lattices such as the centered square lattice [1],
generalized kagome lattice [3], centered honeycomb lattice [2],
and other three-dimensional lattices [5]. Up to now, the reason
for the occurrence of the re-entrant phase is still under debate.

Some conjectures [1,3,5] have been proposed to understand
the re-entrant phenomenon, in which the essential point is
that the re-entrant phase is probably caused by frustrations
and, in the ground state, there should be at least one partially
ordered phase adjacent to an ordered phase or another partially
ordered phase between which the re-entrant phase can appear
at finite temperature. Above the re-entrant phase, there is
usually a partially ordered phase whose disordered sublattices
supplement the entropy that is lost due to the formation
of the ordered sublattice. In addition, other factors such as
the coordination numbers [5] of the sites on the disordered
sublattice and the freedom of the on-site spin [9] (e.g., the
value of q in the Potts model) may also have effects on the
re-entrant phenomenon.

Alternatively, to explore the incentives of the re-entrant
phenomenon, the q-state Potts model [11] can provide some
clues. The Potts model is the generalization of the Ising model
by extending the on-site freedom from q = 2 to q > 2. The
q-state Potts model does not have exact solutions. For some
lattices such as the piled-up domino model (frustrated Villain
lattice) [9], the Potts model possesses a re-entrant phase that
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could maintain in the region under one partially ordered phase
when 1 � q � 4 (except for q = 2), which indicates that the
occurrence of re-entrant phenomenon is closely related to the
value of q.

In this work, we shall focus on the anisotropic three-state
Potts model on a generalized kagome lattice, as shown in
Fig. 1. This model contains three different couplings: J1 is
the diagonal coupling and is presumed to be ferromagnetic
(F), J2 and J3 are couplings along the vertical and horizontal
directions, respectively, both of which can be either antifer-
romagnetic (AF) or F. For the Ising case (q = 2), there exist
two partial disordered configurations A and B in the ground
states, as shown in Fig. 1. Configuration A corresponds to the
case of J3 < 0 (F) and J2 > 0 (AF), and B indicates the case
of J2, J3>0. The spins on the central site in both cases are in
the free states, therefore the order is defined as a partial order
or a partial disorder. By the exact solution the re-entrant phase
is found between the F phase and the partially ordered phase
with configuration A [3], which is induced by frustrations. It is
interesting to ask whether there is any re-entrant phenomenon
in the present anisotropic three-state Potts model on the
generalized kagome lattice, in which J2 is set to be negative
and J3 positive with J1 = −1 (F). Such a mixed (with AF and
F interactions) Potts model cannot be solved exactly. We shall
perform numerical simulations to obtain the specific heat, sus-
ceptibility, correlation length, and quasientanglement entropy
of the system to determine the phase diagram precisely. It is
discovered that although the thermal fluctuation depresses any
partial order with configuration A and B in the ground state,
our numerical results strongly support that there still exists a
re-entrance but with the Kosterlitz-Thouless (KT) type phase
transition at certain values of J2/|J1| and J3/|J1|. In addition,
it is found that the re-entrance disappears when q > 3.

This paper is organized as follows. In Sec. II, the model
Hamiltonian and the partition function are defined, and the
tensor network representation of this model is given. In Sec. III,
the specific heat, susceptibility, and the quasientanglement
entropy are calculated, and the KT-type phase transition is
discussed. In Sec. IV, by examining the singularities of the
thermodynamic quantities, the phase diagrams in β − T plane
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FIG. 1. (Color online) The geometric structure (left) and partial
order configurations (right) of the generalized kagome lattice. The
thin blue line represents ferromagnetic coupling J1, the thick solid
line (J3) and dashed black line (J2) could be either ferromagnetic or
antiferromagnetic coupling. The black and red dots in partial order A
and B configurations indicate different directions of the on-site spin
and the centered green site is a free spin.

are presented for α = −1 (α < 0), 0 < α < 1, and α > 1,
respectively, and the re-entrant phenomena are observed.
Finally, a summary is given.

II. MODEL AND PARTITION FUNCTION

The Hamiltonian of the anisotropic q-state Potts model on
the generalized kagome lattice reads

H = J1

∑

〈i,j〉�
δσiσj

+ J2

∑

〈i,j〉⊥
δσiσj

+ J3

∑

〈i,j〉‖
δσiσj

, (1)

where Ji (i = 1,2,3) are coupling constants, δσiσj
is the

Kronecker symbol with σi = 1,2, . . . ,q and 〈〉�,⊥,‖ represents
the nearest-neighbor pairs along the diagonal, vertical, and
parallel directions as shown in Fig. 1. In the following we
shall focus on q = 3. For clarity, we define α = J2/|J1|, and
β = J3/|J1|.

By means of the Trotter-Suzuki decomposition the partition
function of the system can be written as

Z = Tr e−H/T = Tr
∏

e−εh, (2)

h = J1
(
δσσ1 + δσσ2 + δσσ3 + δσσ4

)

+ J2
(
δσ1σ3 + δσ2σ4

) + J3
(
δσ1σ2 + δσ3σ4

)
, (3)

where T is temperature, the Boltzmann’s constant kB is taken
as unity, and ε is the Trotter slice. The relative positions of σi

(i = 1,2,3,4) and σ are illustrated in Fig. 2(a).
To study this present anisotropic three-state Potts model, we

employ the linearized tensor renormalization group (LTRG)
method [12], a recently developed numerical algorithm for cal-
culating the thermodynamic properties of the low-dimensional
quantum lattice systems with high accuracy and efficiency,
which has been successfully applied to a few one-dimensional
quantum spin lattice models [14,15]. In the tensor network
representation of the partition function (Fig. 2), e−εh can be
seen as a fourth-order tensor T as shown in Fig. 2(b), and the
partition function Z can be represented as a tensor network

σ 1 σ 2

σ 3 σ 4

σ
T

σ 1 σ 2

σ 3 σ 4

T

Ta Tbλ

(a)

(c)

(b)

(d)

FIG. 2. (Color online) Tensor network representation in LTRG
calculations of this present system. (a) the cell lattice for tensor
construction; (b) the schematic representation of tensor T; (c) the
tensor network of the partition function; and (d) the matrix product
state [12] obtained by contracting the tensor network in (c).

in Fig. 2(c). During the LTRG calculations, we keep the bond
dimension cutoff Dc of the tensor network at least 60 and the
truncation error is less than 10−7.

III. THERMODYNAMIC QUANTITIES AND
KOSTERLITZ-THOULESS PHASE TRANSITION

The Kosterlitz-Thouless phase transition in the mixed Potts
model [16,17] is characterized by the divergence of the
correlation length ξ near the critical temperature Tc,KT of the
form

ξ ∼ e
const√

T −Tc,KT , (4)

while the specific heat shows no divergence and has a broad
peak near Tc,KT. Below Tc,KT, there is a phase (coined as
the floating phase) with an algebraically decaying correlation
function. Such kind of phase was explained as the resemble of
vortices that are closely bound in pairs in 2D XY models [17].
In the present three-state Potts model, we also found such a
phase and in the following we will follow Ref. [16] to call it
the floating phase.

Now let us first explore the thermodynamic properties
of the generalized kagome Potts model with parameters
α = J2/|J1| = −1 and β = J3/|J1| > 0. The temperature
dependence of the specific heat C for different β is obtained,
as shown in Fig. 3. It is seen that, for β < 1, the specific
heat has sharp peaks at critical temperatures [Fig. 3(a)], which
indicate that the second-order phase transitions may take place
in this case. It can be easily understood that when β < 1 the
ferromagnetic couplings J2 and J1 are dominant, and for a
given β < 1 the system may undergo a phase transition from
ferromagnetic phase to paramagnetic phase, which will also
be confirmed in calculations of magnetization (see Fig. 4). It
is observed that the critical temperature Tc decreases with
increasing β when β < 1. For β > 1, the specific heat
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FIG. 3. (Color online) Temperature dependence of the specific
heat of the anisotropic three-state Potts model on the generalized
kagome lattice with α = −1. (a) β < 1, and (b) β > 1.

shows broad peaks at low temperatures, and no divergence
is found, displaying that no thermodynamic phase transitions
can happen in this case. However, this does not imply that the
topological phase transition such as the KT phase transition is
unlikely. In fact, this is the case, as seen below.

To understand further the thermodynamic behavior of this
model, we come to look at the magnetization per site defined
as

m = 1

N

∑

i

〈σi〉, (5)

where N is the number of lattice sites, and 〈...〉 denotes the
thermal average. Note that in this definition m describes the
mean value of magnetization on each site whose value equals

FIG. 4. (Color online) Temperature dependence of the magne-
tization per site of the anisotropic three-state Potts model on the
generalized kagome lattice with α = −1 and β < 1.

FIG. 5. (Color online) Temperature dependence of the suscepti-
bility of the anisotropic three-state Potts model on the generalized
kagome lattice with α = −1 and β > 1.

5
6 when the lattice is in disordered state. Figure 4 presents
the temperature dependence of magnetization per site at α =
−1 for different β < 1. The sharp changes of m at critical
temperatures can be seen, showing that for a given β < 1
the system indeed has a thermodynamic order-disorder phase
transition with increasing temperature, being consistent with
the results of the specific heat [Fig. 3(a)]. For β > 1, m =
0 at finite temperature, showing that in this case no long-
range order appears. To examine if there is a topological phase
transition in the case of β > 1, we calculated the susceptibility
χ of the system defined by

χ = ∂m

∂h
, (6)

where h is the uniform magnetic field. The results are given
in Fig. 5, where, for different values of β > 1, there appear
singularities (kinks) at certain temperatures, implying that
there might be the occurrence of a kind of nonthermodynamic
phase transition.

To confirm that such topological phase transition is of
the KT type, we investigate whether the correlation length
ξ has the form of Eq. (4). Following the lines introduced in
Ref. [18], we obtained the results of correlation length versus
temperature, as shown in Fig. 6(a). Apparently, when β > 1
near the transition temperature Tc,KT, the correlation length
ξ shows the same behavior as that given in Eq. (4), where
a slight deviation could be modified by increasing the bond
dimension Dc. This result supports that the phase transition
for β > 1 is indeed of the KT type. For β < 1, the correlation
length ξ reveals a distinct behavior from the case of β > 1,
as shown in the inset of Fig. 6(a), being consistent with the
previous observation that the occurrence of phase transition in
the case of β < 1 is thermodynamic. Besides, by fitting the
curve, we obtained the critical exponent ν = 0.820 for β < 1
in this model, which is close to the conjectured value 5

6 [11].
In addition, making use of the diagonal elements of the

diagonal λ matrix in the matrix product state (MPS), shown in
Fig. 2(d), which are obtained by the contraction of the tensor
network in Fig. 2(c), we can define the quasientanglement
entropy following the definition of von Neumann entropy [13]
in one-dimensional quantum lattice systems

SQ = −iλi log λi. (7)
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FIG. 6. (Color online) (a) Correlation length of the anisotropic
three-state Potts model on the generalized kagome lattice with α =
−1 and β > 1, and the inset is for β < 1. (b) Quasientanglement
entropy and susceptibility of this model with β = 1.6.

Actually, the MPS obtained by contracting the tensor network
is equivalent to the ground state of its corresponding quantum
1D model [19]. The singular point of the quasientanglement
entropy, which corresponds to the phase transition in quantum
1D models can be applied to determine Tc or Tc,KT for
the 2D classical lattice. The temperature dependence of the
quasientanglement entropy SQ at β = 1.6 is calculated, as
presented in Fig. 6(b), where a sharp peak of SQ is seen at
the temperature that is the same as the temperature at which
the susceptibility exhibits a singularity. It appears that the
quasientanglement entropy defined by Eq. (7) can be employed
to detect the KT phase transition.

IV. RE-ENTRANT PHENOMENA AND PHASE DIAGRAMS

The KT phase transition implies the quenching of the partial
order below Tc,KT that further supports the disordered ground
state when β > 1 owing to the large degeneracies in the
ground state and the strong fluctuations in the Potts model.
Under Tc,KT, the floating phase is very sensitive to external
perturbations. Figure 7(a) gives the induced m by a tiny field
(∼ 10−3) for β = 1.6, where one may see that m increases
fast with increasing the small field, showing the character of
the floating phase. The inset of Fig. 7(a) demonstrates that m

decreases with temperature in a small field, and at a certain
temperature, it has a rapid drop to the value of 5/6, indicating
again that the system is in the floating state.

From the above discussions, we come to conclude that the
anisotropic three-state Potts model on the generalized kagome
lattice for β > 1 has the topological phase transition of the
KT type. An interesting question then arises: can a re-entrant
phase exist under a phase without a partial order through the
KT transition? Let us answer this question below.

FIG. 7. (Color online) (a) The magnetization versus small mag-
netic field at temperature T/|J1| = 0.32. The inset is the magneti-
zation versus temperature in a small field h = 10−3. Here β = 1.6.
(b) Temperature dependence of m in the re-entrance region.

To search for the re-entrant region, we would collect the
information from the specific heat, susceptibility, and the
quasientanglement entropy to determine the phase diagrams.
We first begin with α = −1 and take β as the variable.
In calculations we determined the critical temperature of
ferromagnetic phase transition by means of the peak of
the specific heat and the KT phase transition temperature
according to the peak of the quasientanglement entropy.
By performing a large-scale calculations, we found that the
parameter range of β where the re-entrant phenomenon occurs
is in between [0.94,1], and in this small region the system is
most frustrated. Figure 7(b) gives the temperature dependence
of magnetization for α = −1 and β = 0.95, and it can be seen
that with increasing temperature the magnetization decreases
sharply to the value of 5/6, and after experiencing a flat change,
then increases remarkably, suggesting that there should be two
phase transitions in this case, namely, one from F state to
paramagnetic (P) state, and another from P state to floating
state. Such transitions can also be clearly seen from the
susceptibility, as shown in Fig. 8, where the temperature
dependence of the susceptibility is presented for β = 0.952 and
α = −1. There are two peaks: the first peak at Tc,f ≈ 0.136
corresponds to the phase transition from F to P phase; and the
second peak at the critical temperature Tc,xi ≈ 0.140 indicates
the phase transition from P to X phase. The inset of Fig. 8
gives the temperature dependence of the quasi-entanglement
entropy, where three peaks are observed: the two peaks at
the critical temperatures 0.136 and 0.140 are too close to be

FIG. 8. (Color online) Temperature dependence of the suscepti-
bility of the anisotropic three-state Potts model on the generalized
kagome lattice in the re-entrance region. The inset shows the
corresponding quasientanglement entropy.
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FIG. 9. (Color online) The phase diagram of the anisotropic three-
state Potts model on the generalized kagome lattice with α = −1.
The inset indicates the re-entrant region. F: ferromagnetic phase; P:
paramagnetic phase; X: Floating phase.

visibly separated, which just correspond to the two peaks of
susceptibility, while the third peak occurs at Tc,xf ≈ 0.242,
indicating the phase transition from X phase to P phase.
Therefore, for β = 0.952, with increasing temperature, the
system undergoes phase transitions from P to X to P phase,
which is nothing but the re-entrant phenomenon.

The whole phase diagram for α = −1 is depicted in Fig. 9,
where three phases including F, P, and X phases are identified.
One may note that there exists a small region β ∈ [0.94,1]
where the re-entrance occurs, as shown in the inset of Fig. 9.
It can be observed that in this region and with increasing
temperature, the system goes first into the P phase from the
F phase, and then enters into the X phase, and finally goes
into again the P phase. In addition, some further computations
reveal that the region of β for which the re-entrant phenomenon
can appear is proportional to |α| (α < 0) and shrinks to zero
at α = 0 that is just the typical kagome lattice. It is also
worth mentioning that the phase diagram in Fig. 9 is similar to
that of the generalized kagome Ising model [3]. Since in the
three-state Potts model the thermal fluctuations are stronger
than in the Ising model, the phase boundaries in Fig. 9 stand
lower than in the diagram of Ref. [3]. In the latter diagram
the region of the partially ordered state A is replaced by the
floating phase labeled by X.

When 0 < α < 1, there is also a re-entrant property, as
shown in Fig. 10. In the phase diagram with α = 0.25, there
are four phases, including F, P, X, and Y phases, where Y
is also a floating phase appearing in a very small region
when β > 0.8. There exists a re-entrant region between the
F and X phases when β < −24.94. This region, determined
by the same procedure as above, is the same as the generalized
kagome Ising model [3,5], but the critical temperature Tc,f

is lower than that in the Ising case due to strong thermal
fluctuations. It is found that the area of X phase increases
with the value of α in the cost of the decreased scope of the F
phase. It is clear that in the inset of Fig. 10 the ferromagnetic
phase transition temperature Tc,f goes to zero when α increases
close to 1. The finite temperature phase transition from X to P
phase is also of the KT type, and the critical temperature can
be obtained through the calculation of the quasientanglement
entropy or susceptibility.

FIG. 10. (Color online) Phase diagram of the anisotropic three-
state Potts model on the generalized kagome lattice with 0 < α <

1. F: Ferromagnetic; P: Paramagnetic; X and Y: floating phases. The
inset is α dependence of the ferromagnetic phase transition critical
temperature Tc,f .

When α > 1 the F phase disappears, and there will be only
two floating phases X and Y in the phase diagram, as shown
in Fig. 11. In this case, no re-entrant phenomenon occurs. In
addition, the partially ordered state with configuration B in
the Ising model (Ref. [3]) when α, β > 0 is vanished due to
highly thermal fluctuations in the three-state Potts model as in
Fig. 10. Besides, we found through a number of calculations
that when q > 3, the q-state Potts model on the generalized
kagome lattice exhibits no re-entrant property.

V. SUMMARY

To summarize, we have studied the anisotropic three-state
Potts model on the generalized kagome lattice by utilizing
the LTRG method. The phase diagrams in the plane of
temperature versus β for the cases of α < 0, 0 < α < 1, and
α > 1 are obtained. Different phases including ferromagnetic,
paramagnetic, and floating phases are identified. The phase
boundaries are determined by observing the singularities in
the specific heat, magnetization, susceptibility, and quasien-
tanglement entropy. For the two cases of α < 0 and 0 < α < 1,

FIG. 11. (Color online) Phase diagram of the anisotropic three-
state Potts model on the generalized kagome lattice with α > 1. P:
Paramagnetic; X and Y: floating phases.
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the re-entrant phenomena are observed in small regions,
respectively. By studying the behaviors of the correlation
length, we found that the phase transition for β > 1 is of
the KT type, in sharp contrast to the case of β < 1 where the
correlation length has a quite different behavior from that of
β > 1.

By comparing with the generalized kagome Ising model,
where the partially ordered state phases exist, the present three-
state Potts model possesses floating phases X and Y owing to
strong thermal fluctuations. Such floating phases do not have
any local order parameters. Through the present study, we may
remark that the appearance of the re-entrant phenomena in 2D
classical lattices is mainly caused by frustrations as well as

the geometrical structure of the lattices, which has also close
relation with the freedom q of the local spin. Importantly,
the existence of the partially ordered state in the ground
state may not be the necessary condition for the re-entrant
phenomena.
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