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Temperature in nonequilibrium states and non-Fourier heat conduction

Yuan Dong (��), Bing-Yang Cao (���), and Zeng-Yuan Guo (���)*

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics,
Tsinghua University, Beijing 100084, China

(Received 11 December 2012; published 22 March 2013)

Macroscopic models beyond Fourier’s law for fast-transient heating and heat transport in nanosystems have
been proposed. Consequently, some basic quantities such as entropy and temperature need to be modified. From
the viewpoint of the thermomass theory, we show that in nonequilibrium systems where heat conduction occurs,
the static pressure of thermomass is lower than the total pressure, corresponding to a nonequilibrium temperature
lower than the local-equilibrium temperature. The definition of entropy is also modified since the phonon kinetic
energy conserves the ability to do work. The nonequilibrium temperature based on the thermomass theory is close
to that in the extended irreversible thermodynamics. The microscopic foundation is explored through a phonon
Boltzmann derivation. The higher-order contributions to the distribution function are found to be responsible for
such modification of temperature. Therefore, the thermomass model gives not only non-Fourier conduction law,
but also a physical picture about modified state variables in nonequilibrium states.
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I. INTRODUCTION

It has been experimentally realized that the Fourier’s
law for heat conduction cannot accurately describe the heat
transport in extreme conditions [1–3], e.g. ultra-fast laser
heating [4,5] or heat transport in nanoscale systems including
nanowires [6], nanofilms [7], nanotubes [8–11] and graphene
layers [12]. Macroscopic modifications to Fourier’s law have
been proposed by adding relaxational and nonlocal terms,
such as the Cattaneo-Vernotte (CV) [13–15] and dual phase
lag [16,17] models. Guyer and Krumhansl [18,19] solved
the phonon Boltzmann equation by a linear assumption and
obtained a heat transport model (GK model) with the transient
and nonlocal terms. The nonlocal term, ∇2q, where q is the
heat flux vector, is analogous to the viscous dissipation term
in the Navier-Stokes equation. In this sense, the GK model
and its nonlinear extensions are called phonon hydrodynamic
models [18–24].

Macroscopic models similar to phonon hydrodynamics
have also been proposed based on the extended irreversible
thermodynamics (EIT) [25–34], rational extended thermody-
namics (RET) [35], and thermomass theory [36–44]. The EIT
obtains generalized heat conduction models by introducing
additional state variables, such as heat flux, into the expres-
sion of entropy. As a result the concept of nonequilibrium
temperature, β, is proposed [28–30]. This temperature takes
into account the effects of transient relaxation and deviation
due to heat flux, and the transport equation is in appearance
classical, i.e., q = −κ∇β, where κ is the thermal conductivity.
The RET [35] also derives general constitutive equations
for heat conduction by introducing additional state variables.
The RET uses state variables which are strictly local while
the EIT allows them to be nonlocal [45]. The thermomass
theory [36–44] indicates that the thermal energy is equivalent
to a small amount of mass, called thermomass, according to
Einstein’s mass-energy equivalence relation E = mc2. The
thermomass contributes to the total rest mass of a system,
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and is frame invariant [46,47]. When the body velocity is
much less than the light speed, the motion of the thermomass
can be described by Newton’s law and the frame invariance
holds as in nonrelativistic continuum mechanics. In dielec-
tric bulk materials, the thermomass is represented by the
phonon gas and can be treated as a weighable compressible
fluid. The heat transport is thus regarded as the motion of
phonon gas with a drift velocity, uh. The momentum balance
equation of phonon gas gives a generalized heat transport
model, which agrees with phonon hydrodynamics models.
The nonlocal behaviors predicted by the EIT models agree
with those in the thermomass model in many aspects, and
some characteristic numbers for non-Fourier heat conduction
were postulated by both theories, in analogy with fluid
mechanics [30].

As mentioned above, the nonequilibrium temperature plays
an important role in EIT, where the local-equilibrium hypoth-
esis is said to be too restrictive for nonequilibrium transports.
It is logical because traditionally the temperature defined in
classical thermodynamics has many requirements, such as the
energy equipartition among all degrees of freedom. However,
the extent of nonequilibrium should be further specified for an
explicit physical meaning of the nonequilibrium temperature.
In this paper, we will discuss the nonequilibrium temperature
and its role in non-Fourier heat conduction from the viewpoint
of the thermomass model and phonon Boltzmann equation.
Comparisons among different theories will be carried out
to deepen the understanding of the heat transports and state
variables in nonequilibrium states.

II. TEMPERATURE IN NONEQUILIBRIUM
STATES DEFINED BY EIT

The nonequilibrium temperature is a key concept in the
framework of EIT, which preserves the compatibility of non-
Fourier heat transport with thermodynamics [25–34]. The heat
transport equation in classical theory is Fourier’s law,

q = −κ∇T , (1)
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where κ is the thermal conductivity. Consider a uniform
condensed body and assume that the internal energy depends
on the temperature only and the thermophysical properties
(ρ, CV ) are constant. Combining Eq. (1) with the energy
conservation equation,

∂e

∂t
= ρCV

∂T

∂t
= −∇ · q, (2)

we get a parabolic evolution equation for temperature,

∂T

∂t
= κ

ρCV

∇2T , (3)

where ρ is the density and CV is the specific heat. This
equation implies that a sudden temperature perturbation is
instantly felt everywhere in a material, which cannot be true
since the information spreads in a finite speed. Thus the
transport equation has been re-formed, for instance, as the
Cattaneo-Vernotte (CV) model [13–15],

τ
∂q
∂t

+ q = −κ∇T , (4)

where τ is the relaxation time. The CV model leads to a
hyperbolic evolution equation,

τ
∂2T

∂t2
+ ∂T

∂t
= κ

ρCV

∇2T , (5)

with a propagation speed of heat waves, (κ/ρCV τ )1/2. The
predicted wavelike behavior of heat is partly verified by the
experiments in low temperature solids [48,49]. Other transport
models with relaxation terms are also proposed, such as the
dual phase lag model [16,17], to characterize more precisely
the transports in fast-transient cases. Jou et al. [25–34] have
checked the thermodynamic compatibility of Eq. (4), and
found that the classical expression for entropy can decrease in a
relaxation process to equilibrium in an isolated system, which
violates the second law. To mend this paradox, a modified
expression for entropy is derived, containing the contribution
not only of internal energy but also the square of heat flux,

sEIT (e,q) = seq (e) − 1

2

τ

κT 2
q · q, (6)

and the entropy production is

σ s
EIT = 1

κT 2
q · q, (7)

which keeps semipositive definite for heat waves. The nonequi-
librium temperature, θ , is derived since the expression for
entropy is modified,

θ−1 =
(

∂s

∂e

)
v,q

= T −1
eq − 1

2

∂
(
τ
/
κT 2

eq

)
∂e

q · q, (8)

where the subscript v,q means the derivative is made at
constant volume and heat flux. In the Debye model for phonons
it is easy to show that the coefficients of q · q in the second
term are positive so that θ is lower than the local-equilibrium
temperature Teq. The subscript “eq” is added to T to stress that
it is defined in an equilibrium system, i.e., with all transport
fluxes, such as q, stagnated. Assuming that τ is independent

of Teq, we get

θ = 1

T −1
eq + τ

/
κCV T 3

eqq · q

= Teq
[
1 − τ

/
ρκCV T 2

eqq · q + o(q2)
]
. (9)

EIT predicts that the thermodynamic equilibrium is not
maintained for two systems, with the same Teq, but different
q, meaning θ takes the place of Teq in the zeroth law of
thermodynamics [25]. The difference between Teq and θ is
small in most cases, because τ is very small. For CO2 at 300 K
and 0.1 atm, with a heat flux of 109 W/m2, the difference
T − θ is 9.6 × 10−2 K [27].

Note that the extended entropy, Eq. (6), is defined based
on the relaxational transport laws, Eq. (4). But the deviation
of entropy and temperature for nonequilibrium states may
also exist for steady situations, where Eq. (4) reduces to the
Fourier’s law. For instance, the Gedanken experiment [25,27]
indicates that the thermometer actually gives the nonequilib-
rium temperature, which deviates from the local-equilibrium
one with a steady heat flux passing through the perpendicular
direction. The nonequilibrium molecular dynamics calculation
[50] and the theoretical study on forced oscillators [34]
reveal that the kinetic (or equipartition) temperature can be
significantly different from the operational temperature (the
criteria of thermodynamic equilibrium in measurements) in
nonequilibrium steady states, where the entropy should also
be revisited. Therefore, the nonequilibrium temperature should
have a physical essence independent of whether the transport
processes are transient or not. In the following sections, we will
discuss the effect of transport equations on the nonequilibrium
temperature based on the thermomass model.

III. NON-FOURIER HEAT CONDUCTION BASED
ON THE THERMOMASS THEORY

The thermomass theory [36–44] was proposed in recent
years based on the Einstein’s mass-energy equivalence rela-
tion. In relativity theory, the rest mass, or proper mass, of a
system composed of free particles is defined as [46,47]

m0,sys =
∑

i

Ei

c2
≈

∑
i

m0,ic
2 + (1/2) m0,iu

2
i

c2
+ o

(
u2

i /c
2
)
,

if
∑

i

m0,iui = 0, (10)

where the subscript i means the ith particle, m0 is the rest
mass, u is the velocity, c is the vacuum light speed, and E is
the energy. Equation (10) shows that the rest mass of a system
contains the kinetic energy, divided by c2, when the terms in
higher orders of u2

i /c
2 are negligible. For a rest condensed

dielectric matter, the rest mass contains the equivalent mass of
the phonon gas, i.e.,

m0,sys =
∑

i

m0,ic
2 + ∫

k
h̄ωdk

c2
+ o

(∫
k

h̄ωdk/c2

)
, (11)

where k is the wave vector, h̄ is the reduced Planck constant,
and w is the frequency of phonons. The sum of the phonon
energy is the internal energy for a condensed dielectric matter.
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Therefore, we can define the phonon gas density as [36–44]

ρh = ρCV T

c2
. (12)

The heat transport is treated as a weighable compressible fluid,
passing through the media with the drift velocity,

uh = q
ρCV T

. (13)

The thermomass theory establishes a picture for heat transport
that it is the motion of phonon gas, which is driven by the
pressure gradient, and impeded by the media, like the motion
of fluid in a porous media. Therefore, the balance equations
for mass and momentum are obtained as in fluid mechanics,

∂ρh

∂t
+ ∇ · (ρhuh) = 0, (14)

ρh
∂uh

∂t
+ (ρhuh · ∇) uh + ∇ph = f h. (15)

Equation (14) is actually the energy conservation. The momen-
tum balance equation, Eq. (15), describes the heat transport.
The phonon gas pressure, ph, is derived for the dielectric
media,

ph = γGρhCV T = γGρ (CV T )2

c2
, (16)

where γG is the Grüneisen parameter. The similar concept is
proposed as the “phonon pressure” in Ref. [51]. Parallel to the
Darcy’s law, the friction force per volume, fh, is proportional
to the flux density,

f h = −χρhuh. (17)

When the acceleration effect is negligible, Eq. (15) reduces
to Fourier’s law. Then the parameter in Eq. (17) is χ =
2γGρC2

V T /κ . Thus, the general heat conduction equation is
derived from Eq. (15),

τTM
∂q
∂t

+ 2 (l · ∇) q − bκ∇T + κ∇T + q = 0, (18)

with

τTM = κ

2γGρC2
V T

, (19a)

l = qκ

2γGCV (ρCV T )2 = uhτTM, (19b)

b = q2

2γGρ2C3
V T 3

= Ma2
h, (19c)

where τTM is the lagging time between the temperature gradient
and the heat flux, and l is a characteristic length of heat trans-
port. Nonlocal behavior appears when l is comparable with the
system size [38]. Mah is the Mach number of phonon gas flow
characterizing the effect of flow compressibility, Mah = uh/vs,
with vs the speed of the second sound, vs = (2γGCV T )1/2. With
a material derivative D/Dt = ∂/∂t + 2(uh∇), Eq. (18) can be
written as

τTM
Dq
Dt

+ q = −κ (1 − b) ∇T , (20)

which can be regarded as an extension of the CV model,
Eq. (4). The main differences between Eqs. (20) and (4) are that
the material derivative replaces the partial derivative, and the

effective conductivity reduces by a parameter 1 − b. The first
modification accounts for the convective part due to the phonon
gas motion in rest solids, which is also adopted by Ref. [30].
If the rigid solid is moving, Christov and Jordan [52] proposed
a material derivative containing the solid media velocity u·∇
to remove the paradox in second-sound propagation. For a
more general expression, Müller and Ruggeri [35] proposed,
based on the 13-momentum distribution for heat conduction
in gases, to replace the time derivative of the heat flux by
∂qi/∂t + qk(∂ui/∂xk) − 2qkWik , which has two additional
terms where ui is the fluid velocity and W is the angular
velocity matrix. The first additional term, qk(∂ui/∂xk), is
from the requirement of objectivity, the so-called Jaumann
derivative. It characterizes the convective effect due to the
fluid motion, which agrees with the thermomass model with
the phonon gas velocity included in ui . The second additional
term, −2qkWik , can be rewritten as −2c2(ρhuh)kWik using
Eqs. (12) and (13) and can be regarded as a Coriolis inertia
term due to the effects of rotation. The second modification is
related to the effective temperature for heat conduction, which
will be further discussed in the following section.

IV. NONEQUILIBRIUM TEMPERATURE BASED
ON THE THERMOMASS THEORY

It has been realized that the extrapolation of the zeroth
and second laws of thermodynamics to nonequilibrium states
requires careful treatment [25]. Here, we will investigate this
extrapolation based on the thermomass theory, as well as its
consequences on the definition of nonequilibrium temperature.

A. The zeroth law

In classical thermodynamics, the zeroth law gives the
criterion of thermal equilibrium. It makes the temperature a
measurable quantity, and justifies the use of temperature scale.
In EIT theory, the nonequilibrium temperature, θ , instead of T ,
is suggested to be the criterion of thermal equilibrium [25–27].
That means two systems with the same T but different θ will
transfer heat from one to the other. According to Eqs. (8) and
(9), the presence of heat flux will reduce θ in a nonequilibrium
system, making it possible to receive heat flow from an
equilibrium system with the same T .

In the thermomass theory, the heat flow is driven by the
static pressure gradient of phonon gas, ∇ph. The two systems
are in the local thermodynamic equilibrium with the same ph.
For systems with different material properties, namely, density,
specific heat, or Grüneisen parameter, the balance condition
is not simply given by ph, but by the intrinsic phonon gas
pressure as stated in porous hydrodynamics [53]. The intrinsic
pressure is independent of material properties, and is only a
monotonic function of temperature. However, for simplicity
and illustration, we limit our discussion to materials with the
same and constant properties.

For a gas flow, the static pressure is the actual pressure of
the fluid, which is associated not with its motion but with its
state [54]. The total pressure is larger than the static pressure
by the dynamic pressure, which is related to the kinetic energy
of the gas. Since the phonon gas is treated as a compressible
fluid, its static pressure is related to the total pressure or the
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stagnation pressure by the Bernoulli’s equation,

ε
ph

ρh
+ 1

2
u2

h = ε
ph,t

ρh
, (21)

where ε is the specific heat ratio, and equals 2 for phonon gas
since phρ

−2
h = const in adiabatic processes. Since the pressure

of the phonon gas is directly connected with the temperature,
the total pressure is

ph,t = γGρ (CV Tt )2

c2
, (22)

where Tt is the total temperature of the phonon gas. Therefore,
the relation between the static temperature, T , and the total
temperature, Tt, is obtained from Eq. (21),

T = Tt − 1

4

q2

γGCV (ρCV T )2 = Tt − 1

2

τTM

κρCV T
q2. (23)

This agrees with the equation describing the relation between
T and Tt for gas dynamics,

Tt

T
= 1+ε − 1

2
Ma2

h, (24)

with the Mach number defined in Eq. (19c).
Equations (21) and (23) show that during motion the

static pressure of the phonon gas decreases from the stagnant
pressure, making T lower than Tt. Heat transfer occurs between
two points with the same Tt but different T , since T is the
actual criterion of balance. Compared with the EIT statement,
the nonequilibrium temperature, θ , is the static temperature, T ,
while the equilibrium temperature, Teq, is the total temperature,
Tt. It is logical because Teq is supposed to contain the whole
energy of the element, and equal θ when the heat flux is
stagnated. The difference between T and Tt is from the kinetic
energy of the phonon gas. It agrees with the EIT statement that
with a fixed Teq, the nonequilibrium temperature, θ , decreases
with the increase of heat flux. In inviscid gas dynamics, the
stagnation process is reversible. For steady phonon gas flow, if
the reversible transport takes place, namely, fh = 0 in Eq. (15),
we obtain Eq. (21) by a direct integration, which means
a conservation of kinetic and potential energies. However,
Eq. (23) is slightly different from Eq. (9) by a numerical
parameter, 1/2. We will discuss this difference in the next
section.

For one-dimensional steady heat conduction, i.e., q is
constant with time and space, Eq. (20) is simplified as

q = −κ (1 − b) ∇T

= −κ∇
(

T + 1

2

τTM

κρCV T
q2

)
+ o(q2)

= −κ∇Tt + o(q2). (25)

It shows that for large heat flux, the effective conductivity
decreases. Such behavior is attributed to the acceleration of
the phonon gas, which is caused by the reduced pressure and
density due to the friction, like the gas flow in a microtube
[55]. Analyses based on semiempirical temperature also obtain
such a reduction of κ for steady heat conduction [28–30].
In particular, the semiempirical temperature model predicts a

nonlocal behavior by defining [28–30]

β̇= − 1

τ
(β − θ ) + q2

κρCV T
. (26)

The second term on the right-hand side is called nonlocal
because q is proportional to ∇β; q = −κ ∇β. Making a
gradient of Eq. (26) gives

τ
Dq

Dt
+ q= − κ

(
1 − τq2

κρCV T 2

)
∇θ, (27)

which agrees with Eq. (20) and θ is identical to the static
temperature, T . The material derivative D/Dt predicts the
second sound will travel more slowly in the direction of
heat flow than in the opposite direction. The nonlinear term
(1 − τq2/κρCV T 2) on the right-hand side of Eq. (27) origi-
nates from the nonlocal term in Eq. (26) and implies a reduction
in thermal conductivity for higher temperature gradients. In
steady state, β is identical to the total temperature, Tt, while
the relation q = −κ ∇ β agrees with Eq. (25).

B. The second law

From the thermomass viewpoint, the entropy production
during heat transports is due to the dissipation rate of the
mechanical energy of phonon gas, which is the product of
drift velocity and friction force [42,43],

dEh

dt
+ ∇ · JEh = f h · uh = −2γGCV q2

κc2
, (28)

where Eh is the mechanical energy of the phonon gas, which
is the sum of potential and kinetic energies,

Eh = ph + 1
2ρhu

2
h, (29)

and JEh is the flux of Eh. The ratio of the phonon gas energy
over the available energy, namely, exergy, is ξ = 2γGCV T/c2.
Noticing that the entropy production measures the dissipation
rate of the available energy, divided by T , we can derive from
Eq. (28)

σ s
TM = − f h · uh

T ξ
= − 1

T
f h · uh

/ (
2γGCV T

c2

)
= 1

κT 2
q · q,

(30)

which agrees with Eq. (7). The full derivative of entropy
density s should be

ds

dt
= −∇ · J s + σ s

TM = −∇ ·
(

q
T

)
+ σ s

TM

= q
κT 2

· (q + κ∇T ) − ∇ · q
T

, (31)

where J s is the entropy flux. Here the expression of J s is
only for heat conduction problems, and is adequate for most
ordinary materials except multipolar materials as depicted
by Müller [56]. Recently it is also shown that a nonlocal
correction should be made on the entropy flux if the generalized
heat transport equation containing the Laplacian term of heat
flux is adopted, for example, in nanoscale structures [57].
The contribution of such correction to the nonequilibrium
temperature is worth exploration and will be discussed in
further work. The term q + κ∇T in Eq. (31) corresponds to
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∇ph − f h in Eq. (15), which means the difference between
the driving and friction forces, namely, the inertia force. Based
on Eq. (15), we have

q
κT 2

· (q + κ∇T ) = 1

ξ

q

ρCV T 2

(∇ph + f h

)

= − uh

ξT

Dρhuh

Dt
= − τTM

κT 2
q · Dq

Dt
, (32)

where D/Dt is the material derivative. The term − ∇·q/T in
Eq. (31) is connected to the energy balance equation

ρCV

∂Tt

∂t
= −∇ · q, (33)

where Tt is used because q includes both the potential and
kinetic energy flux. The integration of Eq. (31) gives

s = ρCV ln Tt − 1

2

τTM

κT 2
q2 + o(q2). (34)

Equation (34) agrees with Eq. (6), and shows that the con-
tribution of the nonequilibrium temperature to local entropy,
namely the second term in Eq. (34), is proportional to the
kinetic energy of the thermomass,

1

2

τTM

κT 2
q2 = 1

2
ρhu

2
h

/
ξT . (35)

It manifests that the entropy decreases because of the kinetic
energy of phonon gas, which stores the available energy. The
kinetic energy of phonon gas is a local state variable, which
does not depend on the transport process. As long as there is a
heat flux, Eq. (34) is applicable. In ordinary cases the inertia
(acceleration) of the thermomass is negligible compared with
the driving or friction terms and then Eq. (15) reduces to
Fourier’s law. Therefore the magnitude of Eq. (32) is much
less than −∇·q/T, which indicates that the time variation of
the kinetic energy of phonon gas flow is negligible compared
with the time variation of the internal energy. In this case,
the contribution of the kinetic energy to the local entropy still
exists, but vanishes with a time derivative in Eq. (31), and
the entropy production rate, Eq. (30), reduces to the classical
form.

In classical thermodynamics, the internal energy is ex-
pressed by the temperature, e = ρCV T . When the system is
moving, each molecule will have an additional kinetic energy.
In gas dynamics, the internal energy of a gas element is
expressed by a static temperature, not including the kinetic
energy of the gas element. In this sense, the local internal
energy density during heat transport should remove the
contribution of the kinetic energy of the phonon gas. Combined
with Eq. (23), the internal energy is lower than the total energy,
ρCV Tt:

e = ρCV T =ρCV

[
Tt − 1

2

τTM

κρCV T
q2+o(q2)

]
< et. (36)

Recall that the thermomass theory obtains the generalized
entropy, Eq. (34), which can be further derived by inserting

Eq. (23):

s = ρCV ln Tt − 1

2

τTM

κT 2
q2

= ρCV ln

{
Tt

[
1 − 1

2

τTM

ρCV κT 2
q2 + o(q2)

]}

= ln e. (37)

Therefore, the relation between energy and entropy has a
traditional form,

T −1 = ds/de = ds/ρCV dT . (38)

If the classical expression for e is applied, et = ρCV Tt, then
the temperature will be

θ = det/ds = T
dTt

dT
= T

(
1 − 1

2

τTM

κρCV T 2
q2

)

= Tt

(
1 − τTM

κρCV T 2
q2

)
+ o(q2), (39)

which is consistent with Eq. (9). It manifests that the relation
between the temperature, T , and the total temperature, Tt,
is slightly different from that between θEIT and Teq, by a
parameter of 1/2. They are derived from the same expression
of entropy, Eq. (37). The difference comes from the differential
of internal energy, de. In EIT, the internal energy is still
defined by the equilibrium temperature, Teq, containing all
the molecular energies of a system. In thermomass theory, the
internal energy is defined by a static temperature, T , removing
the drift kinetic energy. It is logical since the internal energy,
in other words, the static temperature, should be independent
of motion. Therefore, both the thermomass theory and EIT get
a temperature lower than the equilibrium or total temperature,
with a slight difference in the numerical parameter.

There is another interpretation to nonequilibrium entropy
based on the general entropy production, Eq. (34), by an EIT
approach [27]. Consider a medium element with heat flux q0.
When it is suddenly isolated, the heat flux will experience a
decay process,

τ
∂q

∂t
+ q = 0, (40)

and the entropy approaches the equilibrium value. Equation
(40) is a balance between the inertia and friction forces by
Eq. (15). Therefore, the difference between the nonequilibrium
and equilibrium entropies is

seq − sneq =
∫ ∞

0
σ sdt =

∫ ∞

0

q2
0 exp (−2t/τ )

κT 2
dt = τq2

0

2κT 2
.

(41)

Equation (41) gives the entropy change by dissipating the
whole kinetic energy since the exponential decay of heat
flux, Eq. (40), dissipates the kinetic energy of phonon gas
without changing the potential energy. This shows that we
can obtain the nonequilibrium entropy as a state variable,
Eq. (34), by a transient transport equation, Eq. (40), because
Eq. (41) measures the kinetic energy of phonon gas by a virtual
relaxation to local equilibrium.
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V. A PHONON BOLTZMANN DERIVATION

In dielectric solids, heat conduction laws can be derived
from the phonon Boltzmann equation [18–24,41],

Df (k,x,t) = Cf (k,x,t) , (42)

where f is the distribution function of phonons, k is the wave
vector, and D and C are the drift and collision operators,
respectively. The macroscopic variables, such as internal
energy density E and heat flux q, are obtained by an integral
over the phase space of k,

E =
∑

n

∫
k
h̄ωnf n, (43)

qi =
∑

n

∫
k
h̄ωn ∂ωn

∂ki

f n=
∑

n

∫
k
h̄ωnvnf n, (44)

where n is the index of phonon branches, such as the transversal
acoustic and longitudinal acoustic, v is the group velocity, and
ω is the frequency. The integral is over the whole k space and
then summed over all branches.

Solutions of Eq. (42) are proposed by many researchers,
such as the GK model, which adopts a linear assumption on
the distribution function. Banach and Larecki [23] and Jiaung
and Ho [24] considered higher-order expansions of f and
derived more general governing equations for heat conduction.
These transport equations are called phonon hydrodynamic
models because of the similarity to fluid governing equations.
In a previous paper [41], we showed that the thermomass
transport equation, Eq. (18), can be obtained by a second-order
expansion of distribution function and regarded as a nonlinear
solution of Eq. (42), containing the convective term as in fluid
dynamics.

In equilibrium states, the distribution function of phonons
is the Planck distribution, fE,

fE = 1

exp (h̄ω/kBT ) − 1
, (45)

where kB is the Boltzmann constant. In nonequilibrium steady
states, when there is only normal scattering for phonons, the
quasimomentum of phonon gas is conserved and f is the
displaced Planck distribution, fD,

fD = 1

exp [(h̄ω − h̄k · u) /kBT ] − 1
, (46)

where u is the drift velocity of phonon gas, related to the drift
velocity in the present macroscopic model, u = (3/4)uh, in
a three-dimensional isotropic media. The collision operator
in Eq. (42) contains two mechanisms, namely, the resistive
scattering, with the characteristic time, τR, which tends to relax
f to fE, while the normal scattering, with the characteristic
time, τN, tends to relax f to fD. Therefore, Eq. (42) can be
rewritten as(

∂

∂t
+ vn · ∇

)
f n = f n

E − f n

τR
+ f n

D − f n

τN
, (47)

In general, the relaxation times, τR and τN, are dependent with
the wave vector, k. However, we assume they are constant for
simplicity. Multiplying Eq. (49) by h̄ω and h̄ωvi, respectively

and integrating it in k space yields

∂
∫

k f nh̄ωn

∂t
+

∫
k
vn · ∇f nh̄ωn = 0, (48)

∂
∫

k f nh̄ωnvn
i

∂t
+

∫
k
vn · ∇f nh̄ωnvn

i

=
∫

k

(
f n

E − f n
)
h̄ωnvn

i

τR
+

∫
k

(
f n

D − f n
)
h̄ωnvn

i

τN
. (49)

The collision term vanishes in Eq. (48) since every collision
must keep energy conservative. If f is approximated by a
second-order expansion of fD,

f = fE + ∂fD

∂u

∣∣∣∣
�u=0

�u + 1

2

∂2fD

∂u2

∣∣∣∣
�u=0

(�u)2 + o[(�u)2]

= fE + ∂fE

∂ω
(k · u) + 1

2

∂2fE

∂ω2
(k · u)2 + o[(�u)2]

= fE + f+ + f++ + o[(�u)2], (50)

we get the transport equation by integral of Eq. (49),

∂qi

∂t
+ 15

16
∇j

qiqj

E
+ 1

3
∇i

∫
k
f s

Eh̄ω(vs)2 = − qi

τR
. (51)

The second term on the left-hand side comes from the integral
of f++, and corresponds to the convective term in Eq. (18).

With the distribution function of Eq. (50), regarding that
fE and f++ are even functions in k space while f+ is odd, the
integral of Eq. (48) becomes

∂
∫

k

(
f n

E + f n
++

)
h̄ω

∂t
+

∫
k
vn · ∇f n

+h̄ω = 0. (52)

The first term is traditionally interpreted as the time derivative
of internal energy, and the second term is the divergence of
heat flux. If the internal energy is expressed by T , then the
integral of fE is just a portion of the total energy, namely,∫

k
f n

E h̄ω = ρCV T < ρCV Tt. (53)

The difference between T and Tt is

T = Tt − 1

ρCV

∫
k
f n

++h̄ω. (54)

The second term on the right-hand side of Eq. (54) is
proportional to q2 since it contains the term u2. The integral
in Eq. (54) is∫

k
f n

++h̄ω =
∫

k
h̄ω

1

2

∂2f n
E

∂ω2
(k · u)2 =

∫
k

3u2

(vs)2 h̄ωf n
E . (55)

Guyer and Krumhansl give that the square of vs is related to
the relaxation time and heat conductivity by [19]

1

(vs)2 = τρCV

3κ
, (56)

so Eq. (54) turns out to be

T = Tt − 9

16

τ

κ

q2

ρCV T
+ o(q2), (57)

which is close to the macroscopic derivation, Eq. (23).
Compared with the discussion in Sec. IV B, we find that the

energy conservation relation, Eq. (48), can be interpreted as
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the conservation of total energy, which includes an equilibrium
contribution, from fE, and a nonequilibrium contribution, from
f++. The first part is the real internal energy, while the second
part is actually the kinetic energy of heat, which agrees with
Eq. (33).

The present derivation only focuses on the heat conduction
in dielectric solids, where the thermomass is represented by
the phonon gas. For gases the “thermon” is attached on the
molecules or atoms, for metals it resides on the electron gas,
while for semiconductors it is carried by both phonon and
electron gases. For a more general statistical derivation for the
nonequilibrium temperature in these systems, a possible way
is starting from the non-Fourier heat conduction. Fourier’s law
is mostly based on the linear part of the distribution function
(e.g., molecular velocity distribution, electron state function),
and the non-Fourier heat conduction originates from its higher
orders. The higher orders of distribution function will not only
cause the nonlinearity of the transport function, but also affect
the local state variables. Further investigation is in preparation
and expected to confirm such anticipations.

VI. CONCLUDING REMARKS

The thermodynamic equilibrium refers to either the local
equilibrium or the global equilibrium, corresponding to the
local-equilibrium temperature or the global-equilibrium tem-
perature. The temperature in classical definitions requires an
equilibrium system, which is the global-equilibrium temper-
ature. The heat conduction occurs with temperature gradient,
which is obviously not in global but local equilibrium. Other-
wise, there is no way to define temperature. Thus, the local-
equilibrium temperature should be used in Fourier’s law and
the internal energy. When the system is sufficiently far from the
global equilibrium the non-global-equilibrium contributions
should be taken into consideration. From the viewpoint of
thermomass theory, we show that the driving force of heat
transport is due to the gradient of local-equilibrium pressure,
i.e., the static pressure of phonon gas. The total pressure,
or stagnation pressure, is higher than the static pressure by

a dynamic pressure. The static temperature, T , and total
temperature, Tt, can be obtained through the relation between
the pressure and the temperature. The static temperature, T ,
is the nonequilibrium temperature, θ , defined in EIT, which
is a local-equilibrium state variable independent of phonon
gas motion, and is the actual criterion of balance. The total
temperature, Tt, is the equilibrium temperature, Teq, accounting
for both the potential and kinetic energy in a local element.

In extreme conditions such as the fast-transient heating
or huge heat flux density, Fourier’s law is deviated since
the dynamic effect of phonon gas becomes significant. The
classical entropy production is no longer semipositive definite,
seeming to break the second law. With the difference between
T and Tt considered, we show that the non-Fourier conduction
law in steady states has a similar form to Fourier’s law
expressed by Tt, which agrees with the EIT postulates [28–30].
The effective thermal conductivity is reduced because the
acceleration of phonon gas consumes part of the driving force.
The entropy is overestimated if expressed by Tt, since the extra
available energy is conserved by the dynamic temperature.
With the clarified static temperature, T , the entropy keeps
semipositive in heat waves and its relation to the internal
energy and temperature still holds as 1/T = ∂s/∂e.

A phonon Boltzmann derivation shows that the high-order
terms of distribution function not only give birth to the
convective term in the transport equation but also have an
effect on the expression of the internal energy. It agrees with
the above analysis that the total energy, which is conserved
in transport, can be split into a local-equilibrium part and a
dynamical part by an integral over the phase space of wave
vectors, which further verifies the macroscopic results based
on the thermomass theory.

ACKNOWLEDGMENTS

This work is financially supported by National Natural
Science Foundation of China (Grants No. 51076080 and
No. 51136001) and Tsinghua University Initiative Scientific
Research Program.

[1] L. Onsager, Phys. Rev. 37, 405 (1931).
[2] G. Chen, Phys. Rev. Lett. 86, 2297 (2001).
[3] S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).
[4] B. Stritzker, A. Pospieszczyk, and J. A. Tagle, Phys. Rev. Lett.

47, 356 (1981).
[5] S. Torii and W. J. Yang, Int. J. Heat Mass Transfer 48, 537

(2005).
[6] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl.

Phys. Lett. 83, 2934 (2003).
[7] W. Liu and M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004).
[8] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical

Properties of Carbon Nanotubes (Imperial College Press,
London, 1998).

[9] S. Berber, Y. K. Kwon, and D. Tománek, Phys. Rev. Lett. 84,
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