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Paths in the minimally weighted path model are incompatible with Schramm-Loewner evolution
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We study numerically the geometrical properties of minimally weighted paths that appear in the minimally
weighted path (MWP) model on two-dimensional lattices assuming a combination of periodic and free boundary
conditions (BCs). Each realization of the disorder consists of a random fraction (1 − ρ) of bonds with unit
strength and a fraction ρ of bond strengths drawn from a Gaussian distribution with zero mean and unit width.
For each such sample, a path is forced to span the lattice along the direction with the free BCs. The path and
a set of negatively weighted loops form a ground state. A ground state on such a lattice can be determined
performing a nontrivial transformation of the original graph and applying sophisticated matching algorithms.
Here we examine whether the geometrical properties of the paths are in accordance with the predictions
of the Schramm-Loewner evolution (SLE). Measuring the fractal dimension, considering the winding angle
statistics, and reviewing Schramm’s left passage formula indicate that the paths cannot be described in terms
of SLE.

DOI: 10.1103/PhysRevE.87.032142 PACS number(s): 64.60.ah, 75.40.Mg, 02.60.Pn, 68.35.Rh

I. INTRODUCTION

The statistical properties of lattice-path models on graphs,
often equipped with quenched disorder, have experienced
much attention during the last decades. Such paths can be
as simple as the boundaries of percolation clusters [1] or
domain walls in planar Ising systems [2]. Beyond this, they
have proven to be useful to describe more complex line-like
quantities as, e.g., linear polymers in disordered media [3–6],
vortices in high Tc superconductivity [7,8], cosmic strings
in the early universe [9–11], and domain-wall excitations in
disordered systems such as 2d spin glasses [12,13] and the
2d solid-on-solid model [14]. So as to analyze the statistical
properties of these lattice path models, geometric observables
and scaling concepts similar to those used in percolation
theory [1,15] or other string-bearing models [16,17] are often
applicable. Recently, the question of which of these path
models can be described in terms of the Schramm-Loewner
evolution (SLE) [18–21] has attracted much attention.

Basic problems like polymers and domain walls in Ising
systems can be treated numerically by standard approaches
[1,22]. For more complex models this is not straightforward.
Nevertheless, the precise computation of these paths can
often be formulated in terms of a combinatorial optimization
problem and hence might allow for the application of exact op-
timization algorithms developed in computer science [23,24].

In this article we study paths in the minimally weighted
path (MWP) model [25], which is related to a similar model
called “negative-weight percolation” in previous publications.
The basis of this model is given by a weighted, undirected,
d-dimensional lattice graph with side length L where the
weights are assigned to the edges taken from a distribution that
allows for the values of either sign. For a given realization of
the disorder, a configuration consisting of one path, spanning
the lattice along the direction of the free boundaries (the
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path extremities are forced to lie on the free boundaries), and
possibly a set of loops, i.e., closed paths, can be found such
that the loops and the path do not intersect one another and
the total sum of the weights assigned to the edges which build
up this configuration attains an exact minimum. The fraction
of negatively weighted edges can be controlled by a tunable
disorder parameter ρ that gives rise to qualitatively different
ground states as depicted in Fig. 1.

As presented here, the MWP problem is a theoretical model
of intrinsic interest. As an example that makes use of the
statement of the MWP problem, an agent can be imagined
that travels on a graph. While traversing an edge, the agent
either needs to pay some resource (signified by a positive edge
weight) or is able to harvest some resource (signified by a
negative edge weight). To gain as many resources as possible,
the path or loops obtained in the context of the MWP problem
serve as a guide to find optimal routes.

The problem of detecting the exact minimum-weight
configuration for a given realization of the disorder becomes
solvable through a mapping of the original graph to the
minimum-weight perfect-matching optimization problem as
outlined in Sec. II. This mapping allows for applying exact
polynomial-time-running algorithms, thus large instances can
be solved. Note that the same mapping and algorithms can be
used in the context of finding ground-state spin configurations
for the planar triangular random-bond Ising model since this
problem is equivalent to the MWP problem on a planar
honeycomb lattice [26,27].

In a previous study it was shown that the MWP model
features a disorder-driven geometric phase transition [25].
Depending on the disorder parameter, two distinct phases can
be identified: (i) a phase where the loops (if there are any)
are small and the shape of the path is rather straight-lined,
reflecting a self-affine scaling of the path length [cf. Fig. 1(a)]
and (ii) a phase where large loops emerge and the extension
of the horizontal projection of the path is O(L), reflecting a
self-similar scaling of the path length [cf. Fig. 1(c)], i.e., the
path winds around the lattice. If there are many negatively
weighted edges in the lattice, it will become profitable for the
paths to increase in length to include many negative-weighted
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FIG. 1. Illustration of minimum-weight configurations consisting
of loops (gray) and one path (black) in a regular 2D square lattice
of side length L = 64. The boundary conditions are periodic in
horizontal (left-right) direction and free in vertical direction. The
path is forced to connect the middle of the lower boundary to
the upper boundary. The minimum-weight configurations minimize
Eq. (3). For a small value of the disorder parameter ρ = 0.2, the path
crosses the lattice in a rather straight fashion since the path weight
is mainly determined by its length. Increasing the order parameter
to ρ = 0.3413, the path length increases as well and the path takes
advantage of more negative-weighted edges. If the disorder parameter
is increased to ρ = 0.6, the loops and the path will become more
dense.

edges. Hence, it will be beneficial for the paths to take some
“detours,” which will be reflected by the scaling behavior
of the path length. The opposite would be true if all edges
were positively weighted, so an increasing path length would
be payed off by an increasing configurational weight of the
path. Consequently, the path would gather as few edges as
possible to minimize its configurational weight. Furthermore,
the loops could not appear since they would always increase
the weight of the combined path + loops configuration. In
this later limit, the complete problem would be changed to
a standard shortest-path problem as is used to study polymers
in disordered media. Such polymers are never self-similar, but
self-affine. On the other hand, in the limit of large system
sizes in the MWP model, there is a particular value of the
disorder parameter, i.e., the critical point, at which the path
simultaneously spans the lattice along both directions for the
first time [cf. Fig. 1(b)]. For two-dimensional (2D) lattice
graphs, the respective disorder-driven phase transition was in-
vestigated using finite-size scaling analyses and characterized
by a set of critical exponents. It turned out that the exponents
were universal in 2D (different disorder distributions and
lattice geometries were studied). Regarding loops only, the
influence of dilution on the critical properties of the 2D MWP
phenomenon was investigated in a subsequent study [28].
In a further study, the upper critical dimension du of the
MWP model was searched for by performing simulations
on hyper-cubic lattice graphs in dimensions d = 2 through
7 [29] and evidence was found for an upper critical dimension
du = 6. In contrast to that, another upper critical dimension
dDPL

u = 3 was determined for densely packed loops which
appear if the disorder parameter is far above the critical point
that indicates the phase transition [30]. Only recently, the
mean-field behavior of the MWP model was investigated on
a random graph with fixed connectivity [31]. By means of
numerical simulations as well as an analytic approach (using
the replica symmetric cavity method for a related polymer
problem), the location of the phase transition and the values
of the critical exponents were determined.

Here we study the geometrical properties of MWPs con-
necting opposite (free) boundaries in the 2D MWP model at
the critical point. To be more precise, we find the answer to the
question whether these paths belong to the particular family of
planar curves that can be described in terms of SLE [18–20].
The (chordal) SLE formulation describes a self-avoiding curve
γt (“time” t ∈ R+) in the upper half plane H, which is
equivalent to any other simply connected planar domain by
conformal invariance. The curve γt grows dynamically from
the origin to infinity with time t . A conformal mapping gt (z)
(z ∈ C corresponding to the 2D plane) maps the complement
of the set consisting of γt plus all points that are not reachable
from infinity without crossing γt , i.e., the hull, to the upper
half plane at each infinitesimal time step. Thus, the boundary
between the reachable and unreachable points is mapped on
the real axis and gt (z) maps the growing tip successively to a
real point at . As a consequence, at moves continuously on the
real axis during the growing process. Then the time-evolution
of gt (z) satisfies an ordinary differential equation, also referred
to as a Loewner equation

dgt (z)

dt
= 2

gt (z) − at

. (1)

If at is proportional to a one-dimensional Brownian motion√
κBt , which is a stochastic Markov process, the resulting

curve will be conformal invariant [32] and the evolution will
be referred to as SLE. Consequently, an ensemble of curves that
can be described in terms of SLE is characterized and classified
by just one parameter, the so-called diffusion constant κ . In
the last decade, a lot of physical systems have been studied in
the context of SLE.

To name but a few, boundaries of vorticity clusters in
2D turbulence (κ = 6) [33], spin cluster boundaries in the
Ising model at the critical temperature (κ = 3) [34], and
critical percolation (κ = 6) [35] fall into the classification
scheme of SLE. Numerical evidence [36] indicates that also
2D spin-glasses can be described in terms of SLE. A detailed
introduction and many results concerning SLE (in particular
for disordered lattice-models) were published in [37]. In
contrast to the examples mentioned above, it will be shown in
this article that paths in the MWP model cannot be described
by SLE.

The remainder of the presented article is organized as
follows. In Sec. II, we introduce the model in more detail and
outline the algorithm used to compute the minimum-weight
configurations consisting of loops plus one path. In Sec. IV,
we describe two measuring techniques for determining the
diffusion constant and present the results of our numerical
simulations. In Sec. V we conclude with a summary. Note
that an extensive summary of this paper is available at the
papercore database [38].

II. MODEL

In this article we study 2D square lattice graphs G = (V,E)
with both rectangular and circular shape. In this section, we
first discuss the model of negative-weight paths for arbitrary
graphs G. Next, we specify the different lattice geometries,
i.e., the types of graphs we consider.
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(a) (b)

FIG. 2. (a) Illustration of a minimum-weight configuration consisting of loops (gray) and one path (black) in the unit disk with a radius of
40. The terminal points of the path are fixed on −1 + 0i and 1 + 0i to ensure that they will be mapped as required by Cayley’s function. All
points which Schramm’s left passage formula is checked for are located on the vertical solid line (deep gray). (b) The same minimum-weight
configuration as in (a) after the conformal mapping by Cayley’s function has been performed, so the path connects the origin to infinity in the
upper half plane. The dashed lines indicate that the lattice is not displayed completely. Due to the mapping, the original, vertical line containing
all checkpoints becomes a semicircle.

A. Model definition

We assign a weight ωij to each edge contained in E. These
weights represent quenched random variables that introduce
disorder to the lattice and are drawn from a distribution
that allows for values of either sign. In the presented article
the edge weights are taken from a “Gauss-like” distribution
characterized by a tunable disorder parameter ρ

P (ω) = (1 − ρ)δ(ω − 1) + ρ exp(−ω2)/
√

2π, 0 � ρ � 1.

(2)

This weight distribution explicitly allows for loops L with
the negative weight given by ωL ≡ ∑

{i,j}∈L ωij . In addition
one path P is forced on the lattice whose endpoints lie on the
horizontal boundaries. One endpoint is fixed at the central node
of the lower boundary, hence, the starting point of the path is
predetermined, and the other end terminates at a site at the top
boundary determined by the optimality criterion given below,
hence, the endpoint of the path is not predetermined. Moreover,
the loops and the path are not allowed to intersect each other,
hence every edge is contained in at most one loop (or path).
Given a realization of the disorder, the exact geometrical
configuration C of loops and one path is determined by the
following criterion: The configurational energy E defined as

E =
∑
L∈C

ωL + ωP (3)

has to be minimized, where ωP denotes the total of all
edge weights belonging to the path. Such minimum-weight
configurations for different values of the disorder parameter
are presented in Fig. 1.

B. Geometries

In principle, one would like to simulate the MWP on
the upper half plane, i.e., on an infinite system, which
is not feasible. Hence, we considered different finite-size
approximations of the upper half plane.

On the one hand, we approximate the upper half plane
directly by constructing a rectangular lattice featuring appro-
priate boundary conditions. The top and bottom boundaries

of a rectangular lattice graphs are chosen to be free and
the left and right ones are periodic, i.e., the considered
lattices are cylindrical. The system size L = Ly denotes
the number of nodes in the vertical direction. As justified
in Sec. IV the number of nodes in the horizontal profile
corresponds to Lx = 4L + 1. Thus the considered graphs
have N = |V | = L(4L + 1) sites i ∈ V and a number of
|E| = (2L − 1)(4L + 1) undirected edges {i,j} ∈ E that join
the adjacent sites i,j ∈ V .

On the other hand, we design a square lattice exhibiting a
circular contour and regard it as unit disk E in the complex
plane. The unit circle can be mapped conformally into the
upper half plane by a simple mapping called the Cayley
function [39]

g : E → H, z �→ i
1 + z

1 − z
. (4)

The mapping provides g(−1) = 0 and g(1) = ∞, thus a curve
in E linking −1 + 0i and 1 + 0i is mapped by g as required.
For a given realization of the disorder, the ground state in the
unit disk and the corresponding ground state in the upper half
plane are illustrated in Fig. 2 to support intuition.

III. ALGORITHM

To get over that “minimum-weight configuration problem”
Eq. (3) we transform the original graph as detailed in [40] to
an appropriate auxiliary graph and detect a minimum-weight
perfect matching (MWPM) [26,41,42] subsequently. Here,
we give a concise description of the algorithmic procedure
illustrated in Fig. 3 for a given realization of the disorder (for
clarity without periodic boundary conditions).

(1) To force a path that satisfies the specified boundary
conditions, two “extra” nodes are added in the following way:
One extra node is linked to the node located in the center of
the lower boundary and the other extra node is connected to all
nodes at the upper boundary [cf. Fig. 3(b)]. All added edges
get zero weight.

(2) Each edge is replaced by two “additional” nodes and
three edges which are arranged in a row as depicted in Fig. 3(c).
Therein, one of the two edges connecting an additional node
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FIG. 3. Illustration of the algorithmic procedure: Illustrated edges
that are not marked by a weight visually carry a zero weight actually
[except in (d) and (e)]. (a) The initial, weighted lattice graph. (b)
Two extra nodes (gray) are added to render a path possible. They are
connected to the lattice boundaries as described in the text. (c) Each
edge is replaced by two nodes (black boxes) and three edges joining
the original nodes and the added nodes in a row. The initial weights
are assigned to one of the added edges (bold edges) that join one
of the original nodes and one extra node. (d) The original nodes are
duplicated preserving their neighbors. Additionally, the duplicated
nodes are interconnected by an added edge carrying a zero weight.
(e) A MWPM is computed: Bold edges are matched and dashed
ones are unmatched. (f) Reconstruction to the initial lattice taking
the MWPM result into account. The thickly denoted path and loop
represent the minimally weighted configuration.

to an original node gets the same weight as the corresponding
edge in the original graph G. The remaining two edges get
zero weight.

(3) Subsequently, the original nodes i ∈ V (i.e., not the two
extra nodes) are “duplicated,” i.e., i → i1,i2, along with all
their incident edges and the corresponding weights. For each
of these pairs of duplicated nodes, one edge {i1,i2} with zero
weight is added that connects the two nodes i1 and i2. The
resulting auxiliary graph G(VA,EA) is illustrated in Fig. 3(d)
without showing the edge weight assignment for reasons of
clarity. Note that while the original graph is symmetric, the
transformed graph is not. This is due to the details of the
mapping procedure and the particular weight assignment we
have chosen. A more extensive description of the mapping (in
terms of minimum-energy domain wall calculations for the 2D
Ising spin glass) can be found in [13].

(4) A MWPM on the auxiliary graph is determined via
exact combinatorial optimization algorithms [43]. A MWPM
is a minimum-weighted subset M of EA, such that each node
contained in VA is met by precisely one edge in M . This is
illustrated in Fig. 3(e), where the solid edges represent M

for the given weight assignment. The dashed edges are not
matched. Due to construction, the auxiliary graph consists of
an even number of nodes and due to the fact that pairs of
duplicated nodes are connected by additional edges (see step
3), it is guaranteed that a perfect matching exists.

(5) Finally it is possible to find a relation between the
matched edges M on GA and a minimally weighted con-
figuration consisting of loops and one path in G by tracing
back the steps of the transformation. As regards this, note
that each edge contained in M that connects an additional
node (square) to a duplicated node (circle) corresponds to
an edge in G that is part of a loop or path, see Fig. 3(f).
More precisely, there are always two such edges in M that
correspond to one loop or path segment on G. All the edges
in M that connect like nodes (i.e., duplicated-duplicated or
additional-additional) carry zero weight and do not contribute
to the minimally weighted configuration and correspondingly
do not belong to loops or to the path in the original graph. Once
such a configuration is found, a depth-first search [40,42] can
be used to identify the path and to determine its geometrical
properties. For the weight assignment illustrated in Fig. 3(a),
the path features ωp = −4 and length � = 3.

It is important to emphasize that the result of the calculation
is a collection C of loops and one path, such that their total
weight, and consequently the configurational energy E , is
minimized. Hence, one obtains a global collective optimum.
This implies that the weight of the resulting path might not
be its absolute minimum: Due to the no-crossing condition,
the loops might affect its precise location. While all the loops
that contribute to C possess a negative weight, the weight of
the path might be positive as well. The set of loops might be
empty, but the addition of the two extra nodes during the first
step of the mapping outlined above ensures that the solution
of the auxiliary minimum-weight perfect matching problem
always yields (at least) a path.

Note that the choice of the weight assignment in step 2 is
not unique, i.e., there are different ways to choose a weight
assignment that all result in equivalent sets of matched edges in
the transformed lattice, corresponding to the minimum-weight
configuration in the original lattice. Some of these weight
assignments result in a more symmetric transformed graph
(see, e.g., [40]). However, this is only a technical issue that
does not affect the result.

IV. RESULTS

As pointed out in the Introduction, we aim at finding an
answer to the question whether paths in the MWP model can
be described in terms of SLE at the critical point, and, if so,
which value of κ characterizes these paths.

The critical point ρc = 0.3413(9) has been estimated in the
same way as in [25] with slightly higher precision. Principally,
SLE curves can be calculated by Eq. (1). This stochastic
differential equation does not provide a unique curve for
a given diffusion constant κ , but provides a set of curves
that exhibits particular properties in a statistical sense. These
properties can be utilized to approach the question whether a
given ensemble of curves is a potential candidate for showing
SLE. Hence, below we are showing the results for different
ways of calculating κ . As mentioned in the Introduction, the
paths in the MWP model turned out to be not consistently
described by SLE, as different value of κ result. Therefore, we
also address the question whether MWP is conformal invariant
right in the next section.
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FIG. 4. Estimation of the fractal dimension df by means of a
simple fit to the power-law data. The data points were obtained by
measuring the averaged path length 〈�〉 on a square lattice scale 4 : 1.
The inset also shows estimation of the fractal dimension obtained by
measuring 〈�〉 on the unit disk (circles) and by considering paths on
the upper half plane (boxes) that have been created on the unit disk
first and mapped [with Eq. (4)] to the upper half plane subsequently.
R describes the number of nodes which discretize the radius of the
unit disk. Note that the upper dataset was shifted vertically for a more
clear presentation. As a matter of fact, the circles and boxes almost
lie on top of each other.

A. Value of κ from fractal dimension

The first property takes the fractal dimension df into
account. The fractal dimension can be defined from the scaling
of the average length 〈�〉 of the paths as a function of the
system size L, according 〈�〉 ∼ Ldf . In the context of SLE
there is a relation between the diffusion constant and the fractal
dimension [44,45]

κ = 8(df − 1), κ � 8. (5)

The fractal dimension is fixed at df = 2 for κ > 8.
We measured the average path length for seven different

system sizes on the rectangular geometry as a function of the
path length. Each data point is generated by means of 12 800
realizations of the disorder. A simple fit to the power-law data
shown in Fig. 4 yields the exponent df = 1.283(2), but due
to our high statistical accuracy, only a mediocre quality of fit.
When restricting the fit to sizes L > 64 the quality of fit is
acceptable, with a result df = 1.288(4) still being compatible
with the result from the full fit. We also tried an estimation by
extrapolation using local effective exponents [46], but since
the number of different system sizes is not large, this results in
a larger error bar, i.e., df = 1.27(9), hence we did not take this
result into account. According to Eq. (5), the estimate with the
best fit quality yields κ = 2.30(4).

To test conformal invariance, we also measured the fractal
dimension of paths on the unit disk and paths that have been
mapped to the upper half plane. As can be seen from Fig. 4
(upper inset), both estimates agree well, df = 1.289(3) and
df = 1.284(4), respectively, and also with the above result.
This provides numerical evidence that conformal invariance is
satisfied in the MWP model.

B. Value of κ from left passage formula

Similar to [14,47–50] we examine the predictions of
Schramm’s left passage formula (SLPF) to obtain a second
estimation for κ . As proven in [51]

Pκ (z) = 1

2
+ 	(4/κ)√

π	((8 − κ)/2κ)

×2F1

[
1

2
,
4

κ
;

3

2
; −

(
x

y

)2
]

x

y
(6)

yields the probability that a curve which can be described in
terms of SLE will pass to the left of a given point z = x + iy in
the upper half plane provided that the curve links the origin to
infinity. 2F1 denotes the Gaussian hypergeometric function and
	 the gamma function. Pκ (z) does not depend on the distance
between the origin and point z. Thus the ratio between Re(z)
and Im(z) can be replaced by a function of an angle. A proper
angle φ ∈ [−π/2,π/2] between the imaginary axis and the
reference point z is located in the origin of the upper half plane
as depicted in Fig. 5(b) [14]. Thus the ratio between x and y is
given by x/y = tan φ. A curve γ will be considered as passing
to the left of a given point z if there exists a continuous path
between z and the positive real axis that does not intersect
γ [52]. To support intuition, Fig. 6 shows the SLPF for a
particular value of κ (at this point the reference to the figure
is only meant to illustrate the general functional form of the
SLPF, the precise value of the parameters ρ and κ and the
results implied by them are discussed below).

Note that Eq. (6) holds in the upper half plane only.
Subsequently we consider two different lattice geometries that
aim to approximate the upper half plane.

First we consider the rectangular lattice shape. To approxi-
mate the upper half plane as accurately as possible, the terminal
points of the paths in the MWP model are chosen as described
in Sec. II. The terminal point located at the central node of the
lower boundary is considered as the origin of the coordinate
system. Furthermore, all considered lattices are on a scale of
4 : 1 to avoid the influence of the finite size in the horizontal
direction. An example of a minimally weighted configuration
in such a lattice is shown in Fig. 5(a) for a lattice of size
257 × 64. Although SLPF applies for all points in the upper
half plane, its predictions are often checked for properly chosen
points only. Aside from κ , Eq. (6) depends on angle φ merely,
thus it is sufficient to consider points located on a semicircle,
whose central point is located in the origin of the upper half
plane. The distance between the center of this semicircle and
every point located on its boundary should be equal. For that
reason and due to the “Manhattan structure” of the underlying
lattice, the semicircle assumes the shape of a triangle as
illustrated in Fig. 5. The path is able to cross the semicircle at
particular points only. The checkpoints we consider to examine
predictions of SLPF are located exactly between these possible
crossing points. Each checkpoint is examined independently
for a given realization of the disorder, i.e., for each given
path. In so doing, for a sufficient large number of samples
Ns , each checkpoint will exhibit a measured left-passage
probability p(φ) ± �P (φ) where �P (φ) is the standard error√

p(φ)[1 − p(φ)]/(Ns − 1) [53]. A comparison between these
measured probabilities p(φ) and the corresponding predictions
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(a) (b)

FIG. 5. (a) Illustration of a minimum-weight configuration consisting of loops (gray) and one path (black) in a lattice of size 257 × 64. Due
to the “Manhattan-structure” of the underlying lattice, the semicircle (R = 32) assumes the shape of a triangle (light gray). The boundaries at
the top and bottom border (dashed) are free and the ones left and right (solid) are periodic. For testing, we also considered the case where also
the left and right boundaries exhibit free boundary conditions. The edge weights are taken from a “Gauss-like” distribution shown in Eq. (2)
featuring ρ = 0.3413. The path is forced to connect the horizontal boundaries as described in the text. The minimum-weight configuration has
to minimize Eq. (3). (b) Sketch of a lattice that approximates the upper half plane to check SLPF predictions at some certain places located
on the semicircle. The checkpoints marked by rhombuses lie on the left and the other ones (crosses) on the right of the path (black). For every
realization of the disorder, the predictions of SLPF are examined independently for each checkpoint. φ states the angle between the ordinate
and considered checkpoints in the upper half plane.

of SLPF provides an estimate for κ . The minimum of the
cumulative squared deviation

fSC(κ) = 1

Nφ

∑
φ∈SC

[
p(φ) − Pκ (φ)

�P (φ)

]2
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 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

p(
φ)

an
d

P κ
(φ

)

φ / π

Δp
(φ

)
Δp

(φ
)

Pκ(φ)
p(φ)

 2

 1

 0

-1

-2

-3

 0.4 0.2-0.4

p(
φ)

 -
 P

κ(
φ)

φ / π

 0.4 0.2-0.4

 3

 2

 1

 0

-1

-2

p(
φ)

 -
 P

κ(
φ)

φ / π

FIG. 6. Comparison between the measured probabilities p(φ) and
the predictions of SLPF Pκ (φ). The left passage probability p(φ)
has been measured for various points on a semicircle (R = 128). φ

denotes the angle that is illustrated in Fig. 5 (right). The computational
simulations have been performed at the critical point in a lattice
of size 1025 × 256 using 51200 realizations of the disorder. The
chosen diffusion constant κ� = 3.343 provides the finest agreement
between Pκ (φ) and p(φ) (cf. Fig. 7). The right bottom inset illustrates
the deviation of the measured left-passage probability from the SLE
predictions. For reason of clarity, merely a few calculated data points
are illustrated. As a matter of fact, p(φ) has been estimated for 257
different values of φ. The upper left inset displays the same deviation
but for the case where the starting point of the path is no fixed,
for the best-fitting value κ free = 2.89(15). The systematic significant
deviations indicate that here the left-passage formula does not hold.

yields the finest agreement between Pκ (φ) and p(φ), where SC

denotes a set containing all possible angles of the considered
checkpoints and Nφ = |SC| is the size of SC. The cumulative
squared deviation as a function of κ is illustrated in Fig. 7 for
a lattice of size 1025 × 256.

In so doing fSC(κ) and its error bar �fSC(κ) have been
calculated for a set of M = 4000 individual values of κ ∈
K , where K = {κ1,κ2, . . . ,κM}. If κ� denotes the diffusion
constant where the squared deviation fSC(κ) is minimal, its
error bar �κ� will be estimated as follows: Defining  =
{κ ∈ K|fSC(κ�) + �fSC(κ�) � fSC(κ) − �fSC(κ)}, one has

 0
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 1500

 2000

 2.6  2.8  3  3.2  3.4  3.6  3.8  4  4.2

f S
C
(κ

)

κ

L = 256

R = 128

ρ = 0.3413

κ  = 3.343 ± 0.065

FIG. 7. The cumulative squared deviation fSC(κ) of the measured
probabilities p(φ) from the corresponding values given by Schramm’s
left passage formula Pκ (φ) as a function of the diffusion constant κ .
The semicircle, which contains the checkpoints, features a radius
R = 128 in a lattice of size 1025 × 256. The simulations (51 200
realizations of the disorder) have been performed at the critical point.
The squared deviation has been calculated for discrete values of κ

between 2.5 and 4.3 with step range 0.001. For reasons of clarity
only a few error bars are displayed. The cumulative squared deviation
yields the finest agreement between p(φ) and Pκ (φ) at κ� = 3.343 ±
0.065.
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FIG. 8. (a) The diffusion constant κ� depending on the ratio
between the lateral extensions of the lattice. The horizontal extension
Lx is varied in length and the radius R of the semicircle is chosen to
be the half of the system size L = Ly. The estimates of the diffusion
constant have been determined at the critical point by means of 51 200
realizations of the disorder. For reasons of clarity, the error bars are not
illustrated. Note that all estimates (except for the shortest horizontal
extensions until 80) are compatible to each other within the error bars.
(b) The diffusion constant κ� depending on the system size L that
denotes the number of nodes in the vertical direction of the lattice.
The horizontal extension is equivalent to 4L + 1. The radius of the
semicircle is chosen to be the half of the system size in every cases.
The estimates of the diffusion constant have been determined at the
critical point by means of 51 200 realizations of the disorder.

�κ� = max{|κ� − κ||κ ∈ }. This results in κ� = 3.343 ±
0.065. For checking the influence of the boundary conditions,
we performed the same study for the case where the left
and right borders have free boundary conditions, i.e., free
boundary conditions everywhere, and obtained κ� = 3.34 ±
0.08, compatible with the previous result. One also might
wonder whether the result is affected by different lattice-size
effects, which we consider now.

As mentioned above, we design the underlying lattice
on scale of 4 : 1 to approximate the upper half plane. It is
evident from Fig. 8(a) that this ratio is sufficient. We estimate
the diffusion constant using the squared deviation technique
described above for different aspect ratios. In doing so we
fixed the number Ly = L of nodes in the vertical direction
and varied the horizontal extension Lx . It becomes apparent
that the diffusion constant does not vary significantly above
a horizontal extension that is four times bigger than the
vertical extension of the lattice, in particular, all values are
clearly different from the value corresponding to the fractal
dimension. We also consider the probability mass function of
the roughness of the paths in such a lattice, see Fig. 9(a).
It turns out that the horizontal extension of the vast majority
of paths is considerably smaller than the lattice width. Only
a fraction 0.056 of the paths have an extension larger than
Lx/2 and even much less get close to the system size, as is
visible from the figure. Therefore we suppose that the vertical
boundaries have almost no effect on the path shapes.

To receive an impression of the influence of the finite-size
effects, we varied the system size L (using the 4 : 1 aspect
ratio) as depicted in Fig. 8(b). Bear in mind that the system
size L corresponds to the number of nodes in the vertical lattice
direction. It becomes apparent that the diffusion constant
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 3.2
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 1.4
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〈θ
2 〉
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κ° = 2.45(8)

(b)

FIG. 9. (a) Probability mass function of the roughness of the paths
in a lattice of size 1025 × 256. (b) Variance of the winding angle over
the vertical width of the system. The lines indicate the result of the
fit to Eq. (7), yielding κ◦ = 2.45(8). The error bars are smaller than
the symbol size. Both the data in (a) and each data point in (b) were
obtained by considering 50 000 different paths.

estimated by using the squared deviation technique is steady
sufficiently atop L = 128. A further study, which is not
illustrated here, reveals that κ� does not vary significantly for
differently chosen radii of the semicircle.

Thus a good approximation to the upper half plane is
provided by a lattice of size 1025 × 256 in addition to a
semicircle with radius R = 128. So we estimated κ for such a
lattice by examining SLPF predictions. As mentioned above,
the cumulative squared deviation fSC(κ) of p(φ) and Pκ (φ)
at ρc yields κ� = 3.343(65) (cf. Fig. 7). A comparison to the
estimate obtained from Eq. (5) [κ = 2.30(4)] reveals clearly
that both estimates do not agree.

Note that for all our results shown here, the paths are fixed
at the origin of (the approximations of) the upper half plane.
This corresponds, e.g., for the case of checking SLE for critical
ferromagnetic domains to boundary conditions where on the
bottom, the left half of the spins are fixed “up” and the right half
are fixed “down.” We also performed tests for the rectangular
geometry, where we allowed the path to start everywhere on
the lower bottom. For this case, the numerical data fitted the
left-passage formula much worse (see the upper left inset of
Fig. 6). Anyway, for the best fit, we obtained κ free = 2.89(15),
which is also not compatible with the value obtained from the
measurement of the fractal properties in Sec. IV A.

To ensure that this conspicuous distinction does not arise
from the approximation of the upper half plane by designing
a rectangular lattice, we also examine the paths on the unit
disk and check the predictions of SLPF after mapping the unit
disk (and, consequently, the determined ground states) into
the upper half plane, as depicted in Fig. 2. The radius of the
disk is discretized by 128 nodes and the terminal points of the
paths are set as described above [cf. Fig. 2(a)]. Just like before,
the predictions of SLPF are examined merely for checkpoints
located on a semicircle [cf. Fig. 2(b)] in an analogous manner.
Taking 12 800 realizations of the disorder into account, the
diffusion constant κ� = 3.34(14) provides the best match to the
measured left-passage probability. Since this estimation of κ

is equal to the estimation obtained before, it becomes apparent
that the upper half plane has been approximated properly by
the rectangular lattice and the estimate of κ obtained by Eq. (5)
differs significantly from the estimate considering SLPF as an
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actual fact. Consequently, this means that paths in the MWP
model cannot be described in terms of SLE.

Note that we also compared the measured left-passage
probability p(φ) and the corresponding predictions of SLPF
directly. From Fig. 6 it is evident that p(φ) and P3.343(φ) go
well together at almost all values of φ. Although the paths of
the MWP model do not show SLE properties, the predictions
of P3.343(φ) appear to apply for this model at the critical point.

C. Value of κ from distribution of winding angles

Additionally we obtained a third estimate for κ by studying
the winding angle statistics [54–57]. Therefore, a winding
angle θi is assigned to each edge i along the path. Starting with
edge i = 1 and setting θ1 = 0 (edge 1 touches the midpoint
of the bottom border), the remaining winding angles can be
assigned iteratively by θi+1 = θi + αi , where αi denotes the
turning angle between edge i and i + 1. If the paths at hand
showed SLE, the variance of the distribution of all winding
angles (over all edges of all paths) would scale according to
〈θ2〉 = a + (κ/4) log L, where a is a constant. We measured
the variance for several system sizes from L = 16 to 256, see
Fig. 9(b), and the slope of a simple fit through the data provides
the third estimate κ◦,1st = 2.18(2), but with a poor quality of
the fit (χ2/ndf = 14) due to a slight curvature in the result,
which is notable due to the high accuracy of our data. When
allowing for power-law corrections of the form

〈θ2〉 = a + (κ/4)(log L)(1 + cL−ω) , (7)

we obtained an extremely good quality of fit (χ2/ndf = 0.4) in
κ◦ = 2.45(8) [a = −0.4(1), c = 1.3(1), ω = 0.78(9)], which
is also not quit compatible with the result obtained using
Eq. (5), but not as far away as the other estimates of κ .

To summarize, as it becomes evident from Fig. 6,
Schramm’s left passage formula describes the probability
whether a path in the MWP model passes to the left or right
of any given point in H correctly. Furthermore, the results
obtained by Schramm’s formula do not change when the paths
are mapped conformally invariant from the unit disk to the
upper half plane. Nevertheless, by our results, it has been
excluded that the paths in the MWP model can be described
by SLE, hence either conformal invariance or the Markov
property [18] or both of them are not valid. Since conformal
invariance seems to hold, as shown in Sec. IV A, this might
indicate that the Markov property is not satisfied.

V. CONCLUSION

We examined whether paths in the MWP model fall into
the classification scheme of SLE. To address this question,
we studied their geometrical properties and compare them
to predictions that arise from the SLE theory. First we
determine the fractal dimension df = 1.288(4) by measuring

the average path length as a function of the system size.
The relation κ = 8(df − 1) provides an estimate for the
diffusion constant κ = 2.30(4). To get a second estimate for
κ , we examined Schramm’s left passage formula, which states
the probability that a curve featuring particular boundary
conditions and showing SLE passes to the left of a given
point in the upper half plane. For this purpose we designed
lattices featuring different shapes to approximate the upper half
plane as sufficiently as possible. A comparison between the
predictions of Schramm’s formula and our numerical results
provides the estimate κ� = 3.34(8). Furthermore, we obtained
a third estimate by considering the winding angle statistics:
κ◦ = 2.45(8). Because of the conspicuous distinction between
these estimates of κ , it became apparent that the paths in
the MWP model cannot be described in terms of SLE. We
propose two possible reasons for this failure of SLE for the
MWP. First, the MWP from the center bottom to the top
might be affected by negative loops, which arise due to the
minimality criterion. The edges occupied by these loops are
not available to the MWP. Nevertheless, as is visible from
Fig. 1, these additional loops are small and somehow rare,
hence the effect might be negligible. Note that algorithmically
excluding the loops from the minimization procedure will
make the problem algorithmically hard, i.e., the running time
increases exponentially with the system size, such that only
very small instances can be solved.

Second, the way the MWP is selected refers to a global
minimization criterion, hence it cannot grow locally. Loosely
speaking, the path can afford to cross a region containing
few negative edges if it arrives to a region which exhibits
a high concentration of negative edges as compensation.
This might violate the so-called “Markov property” of SLE
processes [18]. On the other hand, this argument applies only to
single realizations and might be not relevant for the stochastic
ensemble, which is what the SLE property describes. In fact,
the domain walls in T = 0 2D spin glasses are also obtained
by a global optimization procedure, and they seem to obey
SLE. Thus, the reason for the failure of the SLE property for
MWP is still not totally clear to us.
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