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Vanishing order-parameter critical fluctuations of an absorbing-state transition
driven by long-range interactions
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We study the critical behavior of the absorbing-state phase transition depicted by a contact process one-
dimensional model system with power-law decaying interactions. The system dynamical processes include
particle creation at a rate which decays with the distance from the nearest particle as 1/rα . This model displays
an absorbing-state phase transition with critical exponents varying continuously with the interaction exponent α.
Here, we provide a finite-size scaling analysis of the stationary order-parameter density, one of its moment ratio,
its logarithmic derivative, and fluctuations. We also follow the short-time relaxation dynamic of these quantities
to estimate their corresponding dynamical critical exponents. The estimated exponents are shown to be consistent
with the hyperscaling relation. Further, we report an unconventional regime on which the critical order-parameter
fluctuations vanish in the thermodynamic limit.
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I. INTRODUCTION

The fluctuation dissipation theorem [1] is an important tool
in statistical physics that shows a direct relation between the
response of a system in thermal equilibrium to an external
stimulus and its spontaneous fluctuations. The most widely
known relations are that between the heat capacity of a
system and its energy fluctuations as well as the susceptibility
to an external field and the order-parameter fluctuations.
The diverging susceptibility at an equilibrium second-order
transition thus leads to diverging fluctuations, as observed
through the phenomenon of critical opalescence occurring at
the critical point presented by ordinary substances at the end
of the first-order liquid-gas transition line. However, nonequi-
librium phase transitions from an active to an absorbing
state have been a topic of large interest in this field [2–7].
In this class of systems, there is no detailed balance and
the fluctuation-dissipation theorem does not hold, features
that are usually explored in studies of equilibrium phase
transitions. In particular, the behavior of the susceptibility and
order-parameter fluctuations in the vicinity of the transition
are governed by distinct critical exponents [8,9].

A simple example of a model presenting a dynamic
transition into absorbing states is the contact process (CP)
[10]. It is a model that shows competition between two
elementary processes in a spatially distributed population.
Self-replication is permitted and also spontaneous annihilation
of the components. An example is a Markov process in which
each site of a lattice presents two possible states, named active
and inactive. A short lifetime of active sites results in the
whole system being driven to the absorbing state with only
inactive sites. Above a critical lifetime, the system reaches
a stationary active state with a fluctuating finite fraction
of active sites which is the proper order parameter [5–7].
The universality class of the CP is the directed percolation
(DP) class. The DP universality class has been observed
to describe a large class of models presenting a dynamic
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transition into a single absorbing state [2]. Recently, this
universality class was experimentally shown to govern the
phase transition between two topologically different turbulent
states of electrohydrodynamic convection in nematic liquid
crystals [11,12]. In the mean-field regime, the order-parameter
fluctuations develop just a discontinuity at the critical point,
thus implying a vanishing critical exponent. In the contact
process, a spontaneous generation rate acts as the conjugated
field and the susceptibility diverges as the critical point is
approached [8,9]. The standard set of mean-field exponents
are β = ν‖ = 1, ν⊥ = 1/2, γ = 1, and γ ′ = 0, where β is the
order-parameter critical exponent, ν‖ stands for the correlation
time critical exponent, ν⊥ is the correlation length exponent,
γ is the susceptibility exponent, and γ ′ corresponds to the
exponent governing the order-parameter critical fluctuations.
In low dimensions, the mean-field theory does not apply and
the exponents depict significant corrections. For example,
accurate estimates for the critical exponents for the one-
dimensional contact process read β = 0.276, ν‖ = 1.734,
ν⊥ = 1.097, γ = 2.778, and γ ′ = 0.544 [8].

In spite of the robustness of the DP, examples of models
not belonging to the universality class of directed percolation
exist and some are firmly established, as, for example, in
parity-conserving processes in branching and annihilation
random walks [13], the voter universality class appearing
in the model of an order-disorder transition with a Z2

symmetry driven by interfacial noise [14], an absorbing-state
phase transition with a conserved field [15], absorbing-state
transitions in the presence of particle diffusion [16–25], the
diffusive pair contact process [26], and epidemic processes
with long-range interactions [27–32], among others [2–4]. The
presence of long-range interactions usually implies in a set
of critical exponents that continuously depend on the range
of the interactions in nonequilibrium [27–32] as well as in
equilibrium phase transitions [33–36].

Here we will focus on the critical behavior of the long-range
epidemic process, where inactive sites can be activated over
long distances introduced by Ginelli et al. [30]. The evolution
of the model is made by a random sequential updating of the
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states of sites located in a linear closed chain. Each site can be
in an active state (referred as state 1) or in an inactive state (re-
ferred as state 0). These states undergo the following reactions:

1 → 0 with rate 1, (1)

0 → 1 with rate λ/rα, (2)

where λ is the first-neighbors infection rate and r is the distance
to the nearest active site. The presence of a long-range activa-
tion process is an important mechanism that can influence the
critical behavior of systems with absorbing states. Usually,
active and inactive sites mimic healthy and sick individuals.
On long distances, sick individuals may infect healthy ones
at a rate λ/rα . They also recover spontaneously at a unitary
rate. Therefore, a competition between the contamination
process (creation of active sites) and the recovery process
(annihilation of active) takes place. For low infection rates,
the stationary state is characterized by a global extinction of
the epidemics. Above a critical infection rate λc(α) there is a
stable steady-state regime with a fluctuating finite density of
sick individuals (active sites). Near λc(α) the system exhibits
a phase transition with the average density of sick individuals
acting as the order parameter. The model has some connection
with studies of depinning transitions in nonequilibrium wetting
processes because the restricted long-range contact process
presents an analogy with the depinning process [30,31].

Above the critical dimension dc = 4 fluctuations in the
particle densities are irrelevant and the system is well described
by a mean-field approach. For lower dimensions, corrections
to the mean-field picture must be considered [5]. The particular
case of α → ∞ recovers the short-range dynamics of the
standard contact process. For α < 1 the system remains in
the active state for any finite value of the contamination rate
λ. Within a mean-field approach and by numerical simulations
in linear chains, it has been shown that the critical exponents
vary continuously as α decreases, i.e., when the activation
process becomes more long ranged. A proper mean-field
approximation for the one-dimensional long-ranged epidemic
process predicts ν⊥ = β = 1/(α − 1) and ν‖ = 1 for 1 < α <

2. In the intermediate regime of 2 < α < 3 it provides ν⊥ =
2 − α/2 and β = ν‖ = 1, while standard mean-field exponents
for the directed percolation universality class in systems with
short-range interactions ν⊥ = 1/2 and β = ν‖ = 1 hold for
α > 3. Considering the short-time relaxation process of the
order parameter at the critical point, a couple of critical
exponents were numerically estimated [30]. While being
distinct from the mean-field prediction in all ranges of the
interaction exponent α, these followed the predicted trend,
in particular, the continuous variation of the exponents with
α and the divergence of the order-parameter exponent β as
α → 1. Nonequilibrium phase transitions characterized by an
order-parameter exponent β above the unit are quite rare and
may exhibit features not shared by conventional second-order
phase transitions.

In the present work, we advance the study of the critical be-
havior presented by the long-range epidemic process (LREP).
First, we will study the critical behavior in the stationary
regime. We will show that a finite-size scaling analysis of
the order-parameter moment ratio can be used to identify the
critical point, although strong corrections to scaling develop as

α decreases. The size dependence of the order parameter, its
logarithmic derivative, and fluctuations at the critical point
are used to estimate three stationary critical exponents. A
short-time dynamics study is also provided to obtain the
corresponding dynamical exponents of these quantities. In
particular, we will unveil an unconventional regime at which
the critical order-parameter fluctuations vanish as the system
size increases.

The manuscript is organized as follows: In Sec. II we
present the model and describe the main aspects of the
numerical simulation. In Sec. III, we present our results for
the critical behavior based on the finite-size scaling of data
obtained from simulations in linear chains in the stationary
state. In Sec. III, we also report a short time dynamics study
of the critical behavior. Finally, we summarize and discuss our
main results in Sec. IV.

II. MODEL AND SIMULATION DETAILS

In what follows, we consider a stochastic dynamical process
taking place at a population of individuals that can be either in
an inactive (uninfected state 0) or in an active (infected state 1)
state. These individuals occupy all sites of a one-dimensional
closed chain and are not allowed to diffuse. Sites in the active
state have a finite lifetime, becoming inactive at a unitary
rate. Inactive sites can be activated through a long-distance
interaction with the nearest neighbor active individual, obeying
the infection rule described by Eq. (2) that assumes an
activation rate λ/rα , with r being the distance to the nearest
active site. Numerically, for the purpose of Monte Carlo
simulations, sites are chosen at random. Whenever the chosen
site is active, it is deactivated with a probability 1/(1 + λ). On
the other hand, an inactive site is activated with probability
(λ/rα)/(1 + λ).

The competition between the contamination process and
the recovery process leads to a transition between an inactive
global state at low infection rates and a stable active state
with a fluctuating density of active sites at high contamination
rates. The presence of a long-range process can influence the
critical behavior of systems with absorbing states. This fact
makes long-range epidemic process an interesting model to
study [30], as deviations from the DP class can be observed. For
small values of α, the critical infection rate for the spreading of
the epidemic is low and one expects the long-range activation
to be the main mechanism responsible for the propagation
of the disease. Increasing α will bring the system to a pure
CP process, since, in this case, the activation process is
effectively driven by the nearest-neighbors sites. In this sense,
the transition in this regime shall present features similar to
the usual DP transition.

In our simulations, we considered chains with L sites
and periodic boundary conditions. At each lattice sweep
(considered as the time unit), we performed the update of
L sites chosen according to a random sequence. In this way,
the same site can be eventually updated more than once in a
given lattice sweep while others may remain unaffected. Since
any finite system eventually becomes trapped in the vacuum
state, we activated an individual chosen at random whenever
the system becomes trapped, i.e., we assumed the vacuum state
as a reflective boundary. This approach has been successfully
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used in the literature and it is able to accurately account for
the critical behavior of the absorbing-state phase transition
after a proper finite-size scaling analysis. In order to identify
the transition between the vacuum and steady active state, we
considered the stationary density of active sites as the order
parameter �(λ,L) = 〈Na(λ,L)〉/L, where 〈Na〉 is the average
number of active sites in the statistically stationary regime.
Therefore, after starting with a random distribution of active
and inactive sites, we disregard the initial L2 lattice sweeps in
order to reach the statistically stationary regime and performed
the average of the density of active sites over 104 distinct
uncorrelated configurations taken at each L lattice sweeps.

III. RESULTS

The order parameter in the vicinity of the critical activation
rate λc for two representative values of the exponent α govern-
ing the range of the long-range interaction is shown in Fig. 1.
Here we considered the estimates for the critical point reported
in Ref. [30]. One can notice a striking difference between the
two cases. For α = 3.0, the order-parameter density has the
usual sigmoid form in the vicinity of the critical point, which
becomes more pronounced as the system size increases, thus
signaling its diverging derivative in the thermodynamic limit as
the transition is approached from the active side. On the other

FIG. 1. Average stationary density of individuals in the active
state in the vicinity of the transition versus the infection rate λ

for distinct lattice sizes. The stationary regime was considered to
be achieved after L2 lattice sweeps. The average was performed
considering 104 distinct configurations taken at each L lattice sweeps.
Data were obtained from simulations with α = 3 (a) and α = 1.5 (b).

FIG. 2. (a) The moment ratio mL(λ) as a function of the infection
rate λ for distinct lattice sizes and α = 3. The scale invariance at
the critical point provides a precise estimate of the critical infection
rate λc. (b) Same calculations for α = 1.5. For such a long-range
contamination process, there are large corrections to scaling. A
finite-size scaling analysis of the crossing points (shown in the inset)
provides the best estimate of the critical contamination rate in the
limit of L → ∞.

hand, the order-parameter density is much smoother in the
vicinity of the transition for α = 1.5. These data point towards
a vanishing derivative of the critical point. This feature is in
agreement with the mean-field prediction and the numerical
simulations [30] of an order-parameter exponent β > 1 for
low values of α.

In order to confirm the accuracy of the critical points
reported in Ref. [30], we computed the stationary order-
parameter moment ratio defined as mL(λ) = 〈N2

a 〉/〈Na〉2.
When considering data from distinct system sizes, this moment
ratio is known to be scale invariant at the absorbing-state phase
transition in the regime of large sizes [9,37]. In Fig. 2 we
report data for the above order-parameter moment ratio for
the same two values of α used in Fig. 1. For α = 3.0 the
data show a quite well-defined crossing point signaling the
scale invariance at the transition. The scale-invariant point is in
excellent agreement with the critical point reported in Ref. [30]
[shown as a legend in Fig. 2(a)]. For α = 1.5 the crossings of
data from distinct sizes are spread over a small, but significant,
region [see Fig. 2(b)]. This feature indicates that corrections
to scaling become more pronounced as the activation process
becomes longer ranged. However, the finite-size scaling plot
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FIG. 3. (a) Finite-size scaling of the order parameter at the critical
point λc = 1.3470(2) for α = 3. From the best fit to a power law, we
estimate the critical exponent ratio β/ν⊥ = 0.27(2). The error bar
includes the error in the estimate of the critical density. (b) The
same for α = 1.5. In this case, the critical contamination rate is
λc = 0.4695(5) and our best estimate provided β/ν⊥ = 0.58(2).

of the crossing points reported as an inset in Fig. 2(b) allows us
to infer the location of the critical point in the thermodynamic
limit. Once again, the agreement with the estimate of Ref. [30]
is excellent. In what follows, we will employ a finite-size and
finite-time scaling analysis of the critical behavior for several
values of α using the set of critical activation rates reported in
such previous study.

We begin by exploring the finite-size scaling behavior
of the statistically stationary order-parameter density at the
critical point. According to the single length scale hypothesis,
the order parameter at the critical point shall scale with the
system size as �(λc,L) ∝ L−β/ν⊥ , where β and ν⊥ are the
order parameter and correlation length critical exponents,
respectively. Further, the derivative of the order-parameter
density at the critical point can be used to give an independent
estimate for ν⊥. Based in the scaling hypothesis that in the
vicinity of the critical point the order-parameter density can
be put in the form

�(λ,L) = L−β/ν⊥f [L1/ν⊥(λ − λc)], (3)

it can be easily verified that the logarithmic derivative of
the order-parameter density at the critical point shall scale
as ∂[ln �(λ,L)]/∂λ|λc

∝ L1/ν⊥ . We illustrate the finite-size
scaling behavior of the order parameter and its logarithmic

FIG. 4. Finite-size scaling of the logarithmic derivative of the
order parameter at the critical point. From the best fit to power laws,
we estimated the correlation length critical exponent ν⊥. For α = 3.0
(a) we obtained ν = 1.14(5) while ν⊥ = 2.25(4) for α = 1.5 (b).

derivative at the critical point in Figs. 3 and 4, respectively,
using the same representative values of the exponent α used
in the previous figures. Both quantities follow very precisely
the scaling hypothesis, even for small values of α. The set of
estimated critical exponents are summarized in Table I.

The reported values of the critical exponent ratio β/ν⊥
suggest that a nonconventional critical behavior develops at

TABLE I. Estimated stationary critical exponents β/ν⊥, 1/ν⊥,
and γ ′/ν⊥ for various values of the exponent α characterizing the
long-distance infection process. The critical infection rate λc were
taken from Ref. [30]. Note that the critical exponent governing
the critical fluctuations of the order parameter γ ′ is negative for
α<̃1.7, thus indicating a regime of vanishing critical fluctuations.
The predicted values of (2β + γ ′)/ν⊥ are also included and shown to
satisfy the hyperscaling relation.

α λc β/ν⊥ ν⊥ γ ′/ν⊥ (2β + γ ′)/ν⊥

1.2 0.205(3) 0.80(5) 3.47(3) −0.51(5) 1.09(15)
1.5 0.4695(5) 0.58(2) 2.25(4) −0.17(2) 0.99(6)
1.8 0.714(1) 0.46(3) 1.73(2) 0.10(2) 1.02(8)
2.0 0.8592(2) 0.39(5) 1.51(2) 0.23(6) 1.01(16)
2.5 1.1492(2) 0.30(3) 1.42(3) 0.41(6) 1.01(12)
3.0 1.3470(2) 0.27(2) 1.14(5) 0.44(2) 0.98(6)
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small values of α. According to the hyperscaling hypothesis,
the order parameter, correlation length, and order-parameter
fluctuation critical exponents shall obey the relation 2β +
γ ′ = dν⊥, where d is the system dimensionality. The order-
parameter fluctuations are defined as

	� = (〈
N2

a

〉 − 〈Na〉2
)
L, (4)

which, in the vicinity of the critical point, scales as δ� ∝
(λ − λc)−γ ′

. In finite systems, the order-parameter fluctuations
at the critical point shall scale as 	�L(λc) ∝ Lγ ′/ν⊥ . In
equilibrium phase transitions, the order-parameter fluctuations
are directly related to the susceptibility to an external ordering
field according to the fluctuation-dissipation theorem. The
divergence of the system susceptibility at a second-order
phase transition thus implies divergent order-parameter critical
fluctuations. Once the fluctuation-dissipation theorem does not
hold for absorbing-state phase transitions, these quantities cap-
ture independent aspects of the transition. For example, while
the standard mean-field exponents for short-ranged contact
processes provides a divergent susceptibility at the critical
point, it predicts γ ′ = 0, representing just a discontinuity in
the order-parameter critical fluctuations.

According to the hyperscaling hypothesis, the values of the
critical exponent ratio β/ν⊥ > 1/2 reported to take place at
low values of α point towards negative values of the exponent
γ ′ governing the order-parameter fluctuations. This feature
means that, in such regime, the order-parameter critical fluctu-
ations vanish in the thermodynamic limit. In order to explicitly
unveil this unconventional critical behavior, we computed the
order-parameter fluctuations in the vicinity of the critical point.
In Fig. 5 we report data from distinct system sizes for the same
two representative values of the exponent α illustrated in the
previous figures. Notice that for α = 3.0 the order-parameter
fluctuations develop a maximum at the critical point whose
height grows with the system size [Fig. 5(a)], thus leading
to the ultimate divergence of the critical fluctuations in the
thermodynamic limit. On the other hand, the order-parameter
fluctuations for α = 1.2 [see Fig. 5(b)] do not show any diverg-
ing peak as the system size grows. Actually, the critical fluctua-
tions indeed decrease with increasing system sizes [see inset in
Fig. 5(b)]. In Fig. 6 we report the finite-size scaling behavior of
the critical order-parameter fluctuations. The data consistently
follow the power-law scaling predicted by the single length
scale hypothesis. Therefore, the numerical simulation results
corroborate the regime of vanishing order-parameter critical
fluctuations anticipated by the hyperscaling relation. The set
of values of the estimated exponent ratio γ ′/ν⊥ is included in
Table I. The independently estimated ratios β/ν⊥ and γ ′/ν⊥
are in agreement with the hyperscaling relation within the
estimated error bars [(2β + γ ′)/ν⊥ = d = 1].

To further evidence the distinct critical behavior exhibited
by the present model in the regimes of large and small
values of α, we followed the relaxation dynamics towards
the statistically stationary state. Starting from a configuration
with all sites in the active state, the time evolution of the
order parameter and its moment ratio and fluctuations can be
used to estimate some dynamical critical exponents. In what
follows, we considered the relaxation process in chains with
L = 2 × 104 sites and averaged the quantities over 104 distinct
runs.

FIG. 5. Order-parameter density fluctuations for several lattice
sizes as a function of the contamination rate λ in the vicinity of the
critical point. The average was performed considering 104 distinct
configurations taken at each L lattice sweeps. (a) α = 3.0 showing
growing critical fluctuations at the critical point as L → ∞. (b) α =
1.2, which does not show any increasing peak as the system size
grows. Near the critical point (see the inset) the critical fluctuations
decrease with increasing system sizes.

The order-parameter density relaxes towards its stationary
value following the dynamic scaling law �(λc,t) ∝ t−β/zν⊥ ,
where z = ν‖/ν⊥. In Fig. 7 we show such time evolution for
distinct values of α. The ultimate saturation of the order-
parameter density is a finite-size effect and results from the
reflecting boundary condition used in our simulations. Notice
that the relaxation becomes faster for small values of α. The
estimated values of the exponent ratio β/zν⊥ are reported in
Table II. The dynamic scaling hypothesis also predicts that the
moment ratio m(λc,t) ∝ t1/z. In Fig. 8 we report the relaxation
of the order-parameter moment ratio. The estimated values
of the dynamic exponent 1/z are also included in Table I.
The increase of 1/z as α → 1 reflects the fast relaxation
dynamics taking place in the regime of very long-ranged
activation process. These two exponents can be used to obtain
an independent estimate of the stationary exponent ratio β/ν⊥
and these agree with the values reported in Table I within the
error bars. The here reported critical exponents are consistent
with those reported in Ref. [30].

The time evolution of the order-parameter fluctuations is
shown in Fig. 9. Dynamical scaling predicts 	�(λc,t) ∝
tγ

′/zν⊥ . Here one can see clearly the striking difference between

032141-5



ARGOLO, QUINTINO, BARROS, AND LYRA PHYSICAL REVIEW E 87, 032141 (2013)

FIG. 6. Finite-size scaling of order-parameter fluctuations at
the critical point. From the best fit to power laws, we estimate
the corresponding critical exponent. (a) α = 3.0 for which we
estimate γ ′/ν⊥ = 0.44(2). (b) α = 1.5 for which we estimate
γ ′/ν⊥ = −0.17(2).

the regimes of short- and long-ranged interactions. The critical
fluctuations grow in time for large values of α. As the
activation process becomes longer ranged, i.e., as α decreases,

FIG. 7. Time evolution of the order parameter at the critical point
for several values of α. The saturation at long times is a finite-size
effect. Here we considered L = 2 × 104 and averaged over 104

copies. Prior to saturation, the dynamic scaling law �(λc,t) ∝ t−β/zν⊥

holds. Estimates of this critical exponent ratio are reported in Table II.

TABLE II. Estimated dynamic critical exponents β/zν⊥, 1/z, and
γ ′/zν⊥ for various values of the exponent α characterizing the long-
distance infection process. We also include the critical infection rate
λc as reported in Ref. [30]. In the regime on which γ ′ < 0 the critical
order-parameter fluctuations decrease in time. (2β + γ ′)/zν⊥ is also
shown and, according to the hyperscaling relation, equals 1/z.

α λc β/zν⊥ 1/z γ ′/zν⊥ (2β + γ ′)/zν⊥

1.2 0.205(3) 2.11(2) 2.81(6) −1.41(3) 2.81(7)
1.5 0.4695(5) 0.88(2) 1.53(4) −0.23(2) 1.53(6)
1.8 0.714(1) 0.46(2) 1.04(4) 0.12(2) 1.04(6)
2.0 0.8592(2) 0.32(2) 0.88(3) 0.22(1) 0.86(5)
2.5 1.1492(2) 0.20(1) 0.70(1) 0.30(1) 0.70(3)
3.0 1.3470(2) 0.17(1) 0.64(1) 0.31(1) 0.65(3)

a crossover to a regime of decreasing fluctuations sets up. The
estimated critical exponent γ ′/zν⊥ are reported in Table II. All
values of the reported exponents are in agreement with those
estimated at the stationary state within the error bars. In Table II
we also include the combined exponent (2β + γ ′)/zν⊥ that,
according to the hyperscaling relation, equals 1/z. Again, the
hyperscaling relation is satisfied within our present numerical
accuracy.

Finally, to have a clearer picture of how the critical behavior
changes as the activation process becomes longer ranged, we
plot in Fig. 10 a set of representative space-time diagrams of
the critical relaxation process. For large values of α, the critical
activation ratio is relatively large because the activation mainly
occurs through short-distance processes. This feature makes
the time evolution slower and sustains a large number of active
sites in the critical statistically stationary regime. On the other
hand, a longer-ranged activation process (small values of α)
requires a lower value of the critical activation ratio above
which the active state can be sustained. Such a small value of
the critical activation ratio thus implies in a faster relaxation.
Further, as the activation process is frequently triggered by
a long-distance process, a small number of active sites are
required to sustain the critical active state, which results in

FIG. 8. Time evolution of the order-parameter moment ratio at
the critical point for several values of α. The dynamic scaling law
m(λc,t) ∝ t1/z holds in the short time regime. Estimates of this critical
exponent ratio are reported in Table II.
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FIG. 9. Time evolution of the order-parameter fluctuations at
the critical point for several values of α. The dynamic scaling law
	�(λc,t) ∝ tγ ′/zν⊥ holds in the short time regime. Estimates of this
critical exponent ratio are reported in Table II. Note that the critical
fluctuations decrease in time for small values of α.

a sparser set of active sites at the critical stationary regime.
Notice that, in the same range of values of the decay exponent
α at which the critical fluctuations vanish, the order-parameter
critical exponent β becomes larger than 1. This implies that
the order-parameter derivative becomes continuous at the tran-
sition, being null both above and below the critical point. The
above features are, ultimately, responsible for the vanishing of
the order-parameter critical fluctuations in this regime.

IV. SUMMARY AND CONCLUSIONS

In summary, we provided an extensive scaling analysis of
the critical behavior of the absorbing-state phase transition
exhibited by a one-dimensional contact process model with
long-distance activation introduced in Ref. [30]. The model
considers that a given site can become active at a rate that
decays as a power law of the distance to the nearest active
site and presents an absorbing-state phase transition whose set
of critical exponents continuously change as a function of the
exponent α governing the decay of the activation process [30].

We explored the single length and time scales hypothesis
to report a set of stationary and dynamical critical exponents
for distinct regimes of the activation process. In particular, we
explored the fact that the absence of detailed balance leading
to the nonvalidity of the fluctuation dissipation theorem for
absorbing-state phase transitions, together with the long-range
character of the interactions, favors the emergence of a
nonconventional second-order phase transition on which the
order-parameter fluctuations vanish at criticality. We have
numerically unveiled that such regime indeed sets up for
small values of α, at which the critical exponent of the
order-parameter fluctuations become negative. The space-
time evolution of the relaxation process provided evidence
for the key role played by the long-range process in this
regime. In the presence of a long-range activation process,
the critical activation rate is rather small and the critical
relaxation process is faster than that taking place when
only short-range interactions are relevant. In this scenario, a
quite sparse active population is able to support the critical
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FIG. 10. Space-time diagrams of the relaxation process at the
critical point for a set of representative values of α. For large values
of α the activation process is mainly short ranged, thus leading to
a slower critical relaxation and a denser active population at the
critical stationary regime. On the other hand, the activation process is
mainly long ranged for small values of α, resulting in a smaller critical
activation rate, faster relaxation dynamics, and a sparser critical active
population.
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active state. In this sense, while equilibrium second-order
transitions always present diverging critical fluctuations, a new
class of nonequilibrium absorbing-state phase transitions with
vanishing critical fluctuations is supported by systems with
long-range interactions.

ACKNOWLEDGMENTS

We thank CAPES, CNPq, and FINEP (Brazilian Research
Agencies) as well as FAPEAL (Alagoas State Research
Agency) for partial financial support.

[1] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[2] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[3] G. Odor, Rev. Mod. Phys. 76, 663 (2004)
[4] S. Lubeck, Int. J. Mod. Phys. B 18, 3977 (2004).
[5] H. Hinrichsen, Physica A 369, 1 (2006).
[6] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in

Lattice Models (Cambridge University Press, Cambridge, 1999).
[7] R. Dickman, in Nonequilibrium Statistical Mechanics in One

Dimension, edited by Privman V. (Cambridge University Press,
Cambridge, 1996).
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