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We study the minimal thermodynamically consistent model for an adaptive machine that transfers particles
from a higher chemical potential reservoir to a lower one. This model describes essentials of the inhomogeneous
catalysis. It is supposed to function with the maximal current under uncertain chemical potentials: if they change,
the machine tunes its own structure fitting it to the maximal current under new conditions. This adaptation is
possible under two limitations: (i) The degree of freedom that controls the machine’s structure has to have a
stored energy (described via a negative temperature). The origin of this result is traced back to the Le Chatelier
principle. (ii) The machine has to malfunction at a constant environment due to structural fluctuations, whose
relative magnitude is controlled solely by the stored energy. We argue that several features of the adaptive machine
are similar to those of living organisms (energy storage, aging).
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I. INTRODUCTION

Adaptation is one of the paradigms of biology and complex
systems theory, but its investigations [1–5] rarely start from the
first principles of thermal physics (instead, they proceed with
mathematical [3] or qualitative approaches [4,5]). Hence not
much is known about the physical costs of adaptation. Besides
its fundamental importance, this question is relevant due to
increasing interest in smart (self-controlling) materials [6]
and due to miniaturization of technologies that make external
control impossible or obsolete.

Consider a machine that transports matter with the maximal
current allowed by external constraints. This optimal function-
ing will be seen to demand a good fit between its structure
and external environment (making the machine somewhat
similar to an organism). For exploiting such a machine in
an uncertain environment one can control it externally, or
design a specific direct interaction between the environment
and the structure. Here we explore the most interesting
possibility: upon environmental changes, the machine tunes
its own structure so as to work optimally under the new
environment. Such a machine is adaptive without external
control. Ordinary macroscopic machines are not adaptive
in this sense: their structure is either predetermined or is
controlled externally. This is why the laws of thermodynamics
focus on the impossibility of achieving certain tasks via
external fields without feedback [7].1

1Feedback control, where the action of external fields takes into
account some information on the system’s state, is also a traditional
subject of thermodynamics [8–11]. However, in the majority of papers
on this subject people are interested by the usage of feedback in
extracting more work or in reducing the entropy [10,11], two original
intentions of the Maxwell’s demon [8] (see, however, [9]). Moreover,
the feedback is typically described externally, i.e., without making
the controller an integral part of the described setup. In contrast, we
are interested here by the feedback processes that maintain a maximal
current on the face of environmental changes, and we describe the
controller explicitly.

But small machines are able to alter their own structure.
In certain enzymes and ion channels the functional part
(performing the catalysis) couples to the conformational part
that in its turn back-reacts on the functional part [12,13].
Structure-function interaction exists also in inhomogeneous
catalysis [14]. It modifies the catalyst’s structure and changes
the catalytic current.

Our purpose is to understand thermodynamic limits of adap-
tation via the minimal model of a structure-adaptive machine
transporting particles from one reservoir to another. We choose
this model for three reasons. First, it realizes the simplest
and most fundamental machinelike function (catching and
releasing); hence its understanding can influence the design
of future adaptive machines. Second, the model adequately
describes the essentials of inhomogeneous catalysis. Third,
this is a step towards studying more complex systems of
biochemical catalysis, which evolved to increase their current
[1,2]. Our personal motivation of studying adaptive machines
is a belief that these nonliving systems may demonstrate
certain key features of living organisms.

Here is a brief description of the adaptive machine to be
elaborated below. For an environment with given chemical
potentials, our model machine transports particles from the
higher chemical potential to the lower one and does so with
the maximal current (or speed) once its structure (energies of
its states) fits that particular environment. Upon changing the
chemical potentials the functional part tunes the structure so
that the machine functions with the maximal current under
new conditions. We study thermodynamical costs of this
adaptation. (We focus on changes of chemical potentials, since
the chemical potential difference is the driving force of the
particle transport.)

This work is organized as follows. The next two sections
define the main ingredients of the model. Section IV defines the
concept of adaptation, as applied to our situation. Sections IV
and V identify the main thermodynamic costs of adaptation.
Section VI discusses certain alternative setups of adaptation,
e.g., when the controlling degree of freedom is allowed to sense
directly the uncertain environment. The last section summa-
rizes our work. Here we also discuss how the thermodynamic
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FIG. 1. The global scheme of the model. Two-level system F
transfers particles from a reservoir with chemical potential μL to that
with μR. The controller S tunes the energy difference �E of F and
interacts with a bath at temperature 1/θ .

costs of adaptation relate to basic characteristics of aging and
energy storage known for living organisms. The paper has five
Appendices.

II. MODEL: FUNCTIONAL DEGREE OF FREEDOM

Our model has two degrees of freedom: functional and
structural; see Fig. 1. They couple to each other forming
together an autonomous system. First we shall discuss the
dynamics of the functional degree of freedom F assuming that
the structural degree of freedom is fixed.

A. Definition of F

F is a simple model for a trap (or adsorption center). It has
two states Fi (i = 1,2): an empty state F1 whose energy is E1

and a filled state F2 with one particle and energy E2. Hence
each state has energy Ei and carries Ni particles (i = 1,2):
N2 = 1 and N1 = 0; see Fig. 2. Without coupling to external
reservoir(s), F will stay indefinitely in one of its states, since
the energy and the particle number are conserved. Hence any
change between the states of F is driven externally.

Let us first assume that F interacts with an equilibrium
reservoir at chemical potential μ and temperature T = 1
(this value of temperature is chosen conventionally, since

FIG. 2. Two states of the functional degree of freedom F; see
Secs. II A and II B. The state F1 (F2) is empty (filled with one particle)
and has energy E1 (E2). The particle in F2 can move to one of the
reservoirs (L or R) causing transition F2 → F1. The reverse transition
F1 → F2 is due to catching a particle from one of the reservoirs. The
mechanism of transporting particles from L to R is that a particle
comes from L and then jumps to R; see (15).

temperature gradients will not play any role in our study).
The stationary (time-independent) probabilities p̄

[eq]
i of Fi

(i = 1,2) have the grand-canonical (equilibrium) Gibbsian
form [15,16] 2

p̄
[eq]
i ∝ e−Ei+μNi . (1)

The relaxation of F towards its equilibrium state (1) can be
described by the master equation [16]

ṗi ≡ dpi/dt =
∑

j

[ρijpj − ρjipi], i,j = 1,2, (2)

where pi (p1 + p2 = 1) is the probability of Fi and ρi �=j is the
transition rate Fj → Fi . Since the bath is in equilibrium, ρi �=j

hold the detailed balance condition,

ρ12 = e(E2−E1)−μ(N2−N1)ρ21 = e�E−μρ21, (3)

�E ≡ E2 − E1. (4)

Equation (3) ensures that the stationary state of (2) coincides
with (1).

Without loss of generality we parametrize transition rates
ρ12 and ρ21 as

ρ12 = 1

τ
e

1
2 [�E−μ], ρ21 = 1

τ
e

1
2 [−�E+μ], (5)

where τ is the time scale induced by the interaction with the
reservoir. In (2), τ scales the running time (and hence the
relaxation time), but does not appear in the equilibrium prob-
abilities (1). Microscopic derivations of the master equation
show that τ depends on the features of the reservoir (e.g.,
its energy spectrum), but can also depend on the internal
parameter �Q = �E − μ; see [17] and (25) below. Since
�Q is the heat received or transferred to the reservoir, the
time scale τ has the global minimum at �Q = 0: it takes
longer to transfer a larger amount of heat. This holds for all
physical cases we are aware of.

B. Master equation for two reservoirs

In the equilibrium state (1) all currents nullify; this is the
main message of the equilibrium state and it is ensured by the
detailed balance condition (3) [16].

2In this paper we study distinguishable classical particles, while
discrete energy states have the usual (e.g., in chemical physics)
meaning of deep minima of potential energy. But we stress that the
probability p̄

[eq]
i ∝ e−(Ei+μNi )/T for a n-state system (n may be infi-

nite) interacting with an equilibrium reservoir at temperature T and
chemical potential μ is the general expression for the grand-canonical
equilibrium [15]. Here each state i has energy Ei and the particle
number Ni . For instance, this description applies to indistinguishable
Bose or Fermi particles [15]. We do not consider these cases in the
present article, but for illustrative purposes let us remind how this
formula applies to noninteracting Fermi particles; each particle has
energy levels ε1, . . . ,εM , and not more than one particle can be in
the same energy level. Now the states i can be parametrized via the
filling numbers nk = 0,1 (k = 1, . . . ,M) so that nk is the number of
Fermi particles having the energy εk . Now Ei = E{nk} = ∑M

k=1 εknk ,
Ni = N{nk} = ∑M

k=1 nk and p̄[eq]{nk} = e−(E{nk }+μN{nk })/T /Z, where
Z = ∏M

k=1(1 + e−(εk−μ)/T ) is the statistical sum for Fermi particles.
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We are interested by transport due to a chemical potential
gradient. Hence we assume that F simultaneously couples with
two equilibrium reservoirs (L and R) of energy and particles.3

Their temperatures are equal,

TL = TR = T = 1, (6)

but the chemical potentials are different

μL > μR. (7)

F will transport particles from L to R; see Fig. 2 and (15)
below. Its dynamics is described by a master equation (2), but
now once F couples simultaneously with L and R,

ρij = ρij |L + ρij |R, (8)

where ρij |L and ρij |R are the transition rates driven by separate
reservoirs [19]. Since L and R are in equilibrium, ρij |k satisfy
detailed balance [cf. (3)]

ρ12|k = e�E−μkρ21|k, k = L,R. (9)

As (2) shows, F relaxes in time from any initial probability to
the stationary (but generally nonequilibrium) probability

p̄i = ρij /(ρij + ρji). (10)

If L and R are in mutual equilibrium (μ = μL = μR), p̄i reverts
via (9) to the equilibrium (Gibbs) probability (1). We can apply
the same parametrization as in (5)

ρ12|k = 1

τk
e

1
2 [�E−μk�N], ρ21|k = 1

τk
e

1
2 [−�E+μk�N], (11)

where τk is the time scale of F-k interaction (k = L,R). The
discussion given after (5) now applies to τk in separate.
In particular, τk—as a function of �kQ = �E − μk (heat
received or transferred to the reservoir k)—has the global
minimum at �Qk = 0.

In contrast to the equilibrium situation, now the time scales
τk will generally appear also in the stationary probability (10);
see (18) below.

C. Particle current

1. General definition

Our main target is the particle current: the mean number
of particles entering to F per time unit from the k reservoir.
To find the current, let us note that the time derivative of the
average number of particles

d

dt

∑
i

Nipi =
∑

i

Niṗi =
∑

k=L,R

Jk, (12)

Jk =
∑
ij

Ni[ρij |k pj − ρji|k pi], k = L,R, (13)

3A somewhat more realistic assumption would be that F consists
of two interacting two-level systems F[1] and F[2] so that F[1] (F[2])
couples only with L (R). If the interaction between F[1] and F[2] is
very strong—they are forced to be simultaneously in their up or down
states—we can effectively replace F[1] and F[2] by a single two-level
system that couples simultaneously with two thermal baths; the states,
where F[1] is up while F[2] is down (or vice versa) have too large
energies to be populated.

is a sum JL + JR of two separate contributions. Jk is due
to interaction with the reservoir k, i.e., it is formed by the
transition rates ρij |k coming from the reservoir k. These
transitions rates satisfy the detailed balance with respect to the
reservoir k; see (8), (9). Since the particle number is conserved
during the interaction of F with each reservoir, the contribution
Jk to d

dt

∑
i Nipi coming from the reservoir k is identified with

the current of particles from the reservoir k [11,20].4 Then (12)
expresses the conservation law.5

Equations (2), (13) lead to

Jk = ρ21|k p1 − ρ12|k p2, k = L,R, (14)

where we recalled that N2 = 1 and N1 = 0. It should be
intuitively clear from (14) that Jk is indeed the average
number of particles entering from the reservoir k: ρ21|k p1

is (proportional to) the probability for F to make transition
F1 → F2 induced by the reservoir k (hence F catches a particle
from the reservoir k). From this one subtracts the probability
ρ12|k p2 of the reverse event: the particle leaving from F to the
reservoir k.

2. Stationary situation

In the stationary (time-independent) situation J̄L + J̄R =
d
dt

∑
i Nip̄i = 0; see (12), (13). As expected, there is only one

independent current in the stationary situation. Using (10), (14)
we get

J̄L = ρ21|Lρ12|R − ρ12|Lρ21|R
ρ12 + ρ21

. (15)

Equation (15) has a transparent interpretation that explains the
mechanism of the particle transport from L to R; see also Fig. 2
in this context. Indeed, ρ21|L is (proportional to) the probability
that F transits F1 → F2 under influence of L. This means that
the particle in F came from L. Likewise, ρ12|R is the probability
that the particle will leave to R. Hence ρ21|Lρ12|R − ρ12|Lρ21|R
in (15) is (proportional to) the probability that the particle came
from L and leaves to R minus the probability of the reverse
sequence of events.

Equations (2)–(14) imply for the stationary values

J̄L = sinh
[

μL−μR

2

]
τL cosh

[
�E−μR

2

] + τR cosh
[

�E−μL

2

] , (16)

p̄1 = [
1 + e−�E+l+ μL+μR

2
]−1

, p̄2 = 1 − p̄1, (17)

l ≡ ln
[(

τL + τRe
μL−μR

2
)/(

τR + τLe
μL−μR

2
)]

, (18)

where �E is defined in (4). Now J̄L � 0 for μL � μR: the
stationary current is from the higher chemical potential to the
lower one.

4This widely applied identification of the particle current becomes
completely explicit within microscopically derived models of master-
equations; see [17,18] for reviews.

5If there is only one reservoir acting on F, the particle current from
it can be measured simply via the time derivative d

dt

∑
i Nipi of the

average number of particles. This, of course, already implies that the
number of particles is conserved. If there are two or more reservoir
acting on F, the current of particles coming from a specific reservoir
has to be measured via the reservoir.
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Note from (17) that provided that l = 0, the stationary
probability p̄1 of F has a Gibbsian form with the temperature
T = 1 and chemical potential μL+μR

2 ; l = 0 is achieved under
μL = μR (overall equilibrium) or τL = τR. If the latter condi-
tion holds, μL+μR

2 is in between of the chemical potentials of
the reservoirs L and R; hence F is generally not in equilibrium
with them, even when it has a Gibbsian form. The fact of
having a Gibbsian form—that physically means the existence
of a local equilibrium—will be seen below to have important
consequences.

D. Maximization of the particle current

We want to have the largest J̄L for given μL and μR, because
this means the optimal functioning of the matter-transporting
machine. We start with a general premise that the current J̄L

should be finite. This implies from (16) two natural constraints
[T is a constant, k = L,R]:

τk � T , (19)

i.e., time scales cannot be too short. The largest J̄L for given
μL, μR and (19) is obtained when we maximize (16) with all
the three involved parameters τL, τR, �E being independent
under conditions (19),

J̄ ∗
L ≡ max

τk,�E
[J̄L] = 1

T sinh

[
μL − μR

4

]
, (20)

which is reached for the optimal values

τ ∗
L = τ ∗

R = T , �E∗ = μ̄ ≡ (μL + μR)/2. (21)

Equation (20) is gotten as follows. We maximize J̄L over τL

and τR and obtain the first condition in (21). Next we maximize
over �E.

Here are the implications of (20) and (21).
(i) The optimal τ ∗

k are fixed by the constraints. In contrast,
�E∗ depends on the environment (reservoirs). The optimality
condition τL = τR implies l = 0 from (18). Hence the sta-
tionary probabilities p̄i for Fi have the Gibbsian form with
chemical potential (21); see (17) and the discussion after (18).
This consequence of the current maximization is one of the
main causes of our results below.

(ii) The machine performing optimally in one environment
will be suboptimal in another. Indeed, let the parameters be
fixed at their optimal values (21), and the chemical potentials
are slowly changed as

μL → μ′
L, μR → μ′

R, μ′
L > μ′

R, μ̄ → μ̄′ ≡ μ̄ + δ,

(22)

where δ = 1
2 (μ′

L − μL + μ′
R − μR).

The stationary current in the new situation (22) is

J̄L[μ′
L,μ′

R] = J̄ ∗
L [μ′

L,μ′
R]/cosh

[
δ

2

]
, (23)

where J̄ ∗
L [μ′

L,μ′
R] is the optimal current in the new envi-

ronment; see (21), (16). For |δ| � 1 we get J̄L[μ′
L,μ′

R] 	
J̄ ∗

L [μ′
L,μ′

R]: the current becomes suboptimal for any sizable
environmental change. If the chemical potential difference
is conserved, μ′

L − μ′
R ≈ μL − μR, the current will decrease

from its old value: J̄L[μ′
L,μ′

R] 	 J̄ ∗
L [μL,μR].

(iii) The formal reason of this fragility is that the optimal
�E∗ depends on the environment. Its physical reason is that
F has to perform equally well two complementary things: to
bind and release. To illustrate this point, recall that N2 = 1,
N1 = 0 and assume in (21), (11)

τL = τR = T = 1. (24)

Then the binding transition F1 → F2 is driven mainly by
the L reservoir, ρ21|L > ρ21|R, while the releasing transition
F2 → F1 is driven mainly by R: ρ12|R > ρ12|L (this is why
F transports particles from L to R). In the optimal regime
both ρ21|L and ρ12|R should be as large as possible. Hence
they are equal: ρ21|L = ρ12|R = e

1
4 (μL−μR), i.e., F binds and

releases the particle equally well. Now after the environmental
change (22): ρ21|L/ρ12|R = eδ/2. Thus for δ > 0 (δ < 0) the
current is suboptimal, since F binds the particle better (worse)
than releases it.

(iv) Our model relates to inhomogeneous catalysis. Any
catalysis facilitates the spontaneous transfer of reacting
molecules from a higher to a lower chemical potential [21].
During an inhomogeneous catalysis the reactants are bound
strongly to an active center of the catalyzing surface, so
that the reaction can proceed. But the reaction products
should be weakly bound to the center so that they are easily
released making the center ready for a new reaction. This
complementarity between binding and releasing is essential
for any good catalyst, e.g., silver and tungsten are both not
good catalysts for organic molecules: silver binds reactants too
weakly, while tungsten binds the products too strongly [21].

Another situation, where binding and releasing are si-
multaneously important is the oxygen transport by mammal
erythrocytes. They are periodically removed from the blood,
since they cease to perform well one of these functions, e.g.,
they bind oxygen too strongly [22].

(v) Recall that in deriving (20) we assumed that the current
J̄L can be maximized over independent parameters τL, τR,
�E; see also (ii), where this assumption was used implicitly.
While this leads to the largest value of J̄L—in the sense that
any relation between the three parameters can only reduce the
optimal value (20)—it is still possible that τk does depend on
�Qk = �E − μk, e.g., in the activated transport [17]

τk = exp
[
vk + 1

2 |�Qk|
]
, (25)

where vk is the barrier height. We now show that in the linear
regime μL ≈ μR we can recover the same conclusions as above
without assuming that τk does not depend on �Qk.

In the linear regime we put μL = μR = μ̄ everywhere
besides sinh[ μL−μR

2 ] ≈ μL−μR

2 in (16),

J̄L = μL − μR

2[τL(�Q) + τR(�Q)] cosh
[

�E−μ̄

2

] , (26)

where τL and τR are functions of �Q = �E − μ̄ [17]. They
have global minima at �Q = 0 [see our discussion after (5)].
In the linear regime the stationary probabilities of F are
naturally Gibbsian, since l = 0 in (17), (18).

Maximizing (26) over �E we get J̄ ∗
L = μL−μR

2[τL(0)+τR(0)]
reached for �E∗ = μ̄. In the linear regime these agree with
(20). Also, we reproduce the conclusions of (i)–(iv) by keeping
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the dependence of τk on �Q. Note that the changes in (22)
should respect the linear regime: μ′

L − μ′
R ≈ μL − μR ≈ 0.

(vi) We aimed to show that in the linear regime our
conclusions on the current optimality and its fragility apply
more generally. We do not assume the linear regime for
the rest of this paper. Below we set τL = τR = T , because
this maximizes J̄L with all other parameters being fixed. For
technical simplicity we from now on put T = 1 [cf. (24)].

III. STRUCTURAL DEGREE OF FREEDOM

A. Master equation

We discussed in (ii) that the environmental changes (22)
diminish the optimal current. If our machine is supposed to
work in such an uncertain environment, the only possibility to
ensure its optimal functioning is to assume that its structure
S changes and adjusts the energy difference to �E = μ̄′ after
each environmental change μ̄ → μ̄′; see (22). Then the current
is maximal under each environment. To account for structural
changes we thus introduce a controller degree of freedom S,
with states {Sα}Kα=1; see Fig. 3. We shall demand that S is slower
than F and that it does not couple directly to the changing
environment.

Let pα
i and Eα

i be, respectively, the joint probability and
energy of SαFi . Since S does not couple to particle reservoirs
L and R, each state SαFi carries the number of particles Ni

that does not depend on α; see Fig. 3. Hence the S-F coupling
goes only via the energies Eα

i .
The dynamics of S is driven by a thermal bath at a

temperature 1/θ ; see Fig. 1. It will be seen below that
the adaptation makes necessary for the baths of F and S
to be different. Hence we assume that the baths of S and
F are independent, and the general master equation ṗα

i =∑
jγ [Rαγ

ij p
γ

j − R
γα

ji pα
i ] for S + F reduces to

ṗα
i =

∑
j

[
ρα

ijp
α
j − ρα

jip
α
i

] + ε
∑

γ

[
ω

αγ

i p
γ

i − ω
γα

i pα
i

]
,

(27)

FIG. 3. The joint states of functional degree F and the structural
degree S. For simplicity it is assumed that both F and S can have
two separate states (F1,F2 and S1,S2, respectively); recall Fig. 2.
Hence there are four states FiSα (of F + S) with energies Eα

i . The
transitions FiSα → FiSβ , FiSα → Fj Sα take place between states
having one common index; see (27). This is due to the fact that the
reservoirs that drive the transitions are independent from each other.

where ω
αγ

i and ρα
ij = ∑

k=L,R ρα
ij |k are the rates of transitions

FiSγ → FiSα and Fj Sα → FiSα , respectively. ε is the ratio
between the time-scales of F and S. The detailed balance for
ρα

ij |k reads [cf. (11)]

ρα
12|k = e

1
2 (Eα

2 −Eα
1 −μk), ρα

21|k = 1/ρα
12|k, (28)

where in (28) we used the settings (24); recall (vi) in Sec. II D.
The detailed balance condition for ω

αγ

i is written down by
analogy to (11)

ω
αγ

i = e
1
2 B

αγ

i + θ
2 (Eγ

i −Eα
i ), B

αγ

i = B
γα

i , (29)

where B
αγ

i relates to the inverse time scale, and θ is the inverse
temperature of the bath of S [recall (6) in this context].

B. Time-scale separation

It is generally understood that control processes in biology
involve time-scale separations between controlling and func-
tional degrees of freedom; see [25,26] for reviews.6 In line
with this, we assume that S is much slower than F for ε → 0.
One introduces in (27) the conditional probability pi|α defined
via pi|αpα = pα

i , and notes that in ṗα
i = ṗαpi|α + pαṗi|α we

have pαṗi|α = O(1) and ṗαpi|α = O(ε) [23]. Hence ṗi|α and
ṗα decouple

ṗi|α =
∑
j �=i

[
ρα

ijpj |α − ρα
jipi|α

]
, (30)

ṗα = ε
∑

γ

[

αγ pγ − 
γαpα

]
, 
αγ =

∑
i

ω
αγ

i pi|γ .

(31)

Equation (30) describes the evolution of F for short times
when S is fixed in its state Sα . Then F relaxes to its condi-
tional equilibrium p̄1|α = ρα

12
ρα

12+ρα
21

= [1 + e−�Eα+μ̄]−1, where
�Eα = Eα

2 − Eα
1 ; see (10), (17). Since this relaxation happens

faster than S changes, for describing the dynamics of S one
can replace in (31)


αγ → 
̄αγ =
∑

i

ω
αγ

i p̄i|γ . (32)

Then (31) becomes a Markov master equation for S: the future
of S is determined by its own present state only. F influences
S indirectly via the transition rates 
̄αγ .

Since most of the time F is in its stationary situations
corresponding to a fixed Sα , the functioning of the machine is

6The reasons for a widespread applicability of the time-scale
separation are summarized as follows. (i) It allows the reduction
of the complexity of the overall problem by separating (on fast
times) the involved degrees of freedom into statistical (functional)
and mechanical (structural) [25,26]. In particular, this means that the
stability of the fast subsystem is determined under fixed values of the
slow degrees of freedom, a fact that we employ in Sec. IV A. (ii) The
evolution of slow degrees of freedom is robust with respect to those
parameters of the fast subsystem that govern its dynamics, but do not
show up explicitly in the (conditional) stationary probabilities that
determine the effective transition rates of the slow subsystem [25];
see (32) in this context.
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described by the current J̄ α
L in the states Sα and the stationary

probability p̄α of Sα found from (31), (32). This is the main
consequence of the time-scale separation.

Using (17) with l = 0 [see after (31)] we get from (32), (29)


̄αβ


̄βα
= eθ(Eβ

1 −Eα
1 ) 1 + eμ̄−�Eα

1 + eμ̄−�Eβ

× 1 + ebαβ+ θ
2 (�Eβ−�Eα )−�Eβ+μ̄

1 + ebαβ+ θ
2 (�Eα−�Eβ )−�Eα+μ̄

, (33)

�Eα ≡ Eα
2 − Eα

1 , bαβ ≡ (
B

αβ

2 − B
αβ

1

)/
2. (34)

At this stage we need to specify the transition rates ω
αγ

i ,
because on one hand we want to have a nontrivial structure
of S (including the possibility of taking K → ∞), while on
the other hand we want to get p̄α explicitly. We thus choose
to work with the birth-death model for S [16]: the states
{Sα}Kα=1 with energies {Eα

i }Kα=1 form a one-dimensional chain.
In (27)–(31) we allow transitions only between neighboring
states: Sα � Sα+1, α = 1, . . . ,K − 1. Then the stationary
probability of S reads from (31), (32)

p̄α = p̄1
α−1∏
γ=1

(
̄γ+1, γ /
̄γ, γ+1), α = 2, . . . ,K, (35)

where p̄1 is determined from
∑K

α=1 p̄α = 1.

IV. ADAPTATION

A. Definition of adaptation

The intuitive notion of adaptation is that this is a change in
the system compensating environmental effects. The general
definition of adaptation was attempted in literature several
times and led to interesting discussions; see [4,5] for reviews.7

But within general definitions some important aspects of
adaptation are left open, the main being why (let alone how)
the system is going to compensate environmental effects.8 In

7It is sometimes said that the fact of adaptation depends on the
level of description; see [5]. This statement can be illustrated via a
relaxator, a system that relaxes to its final stationary state from a set
of initial states. If the relaxator is perturbed to one of the initial states
it relaxes back to the stationary state. The perturbation is viewed as
an environmental change, which is compensated when the relaxator
goes back to the stationary state. If one stays at the phenomenological
description of the relaxator, calling its relaxation process adaptation
amounts to trivialities. But the things are not anymore trivial if we
take into account that each relaxation is accompanied by a change
of some other quantity, which is hidden in the phenomenological
description, but within a deeper description corresponds, e.g., to the
energy of the reservoir that couples to the relaxator and ensures its
specific behavior. The behavior of this quantity already deserves to
be analyzed from the viewpoint of adaptation.

8The “how” question is also an important one. In this context,
one should distinguish robustness from adaptation. The first concept
includes stability mechanisms that do not lead to structural modi-
fications in the system. These mechanisms are more like shielding
the system from external perturbations. The problem of combining
robustness with efficiency was studied recently in transport models
of cell biophysics [24].

our situation the adaptation is a structural change needed for
compensating parametric environmental uncertainty, which is
detrimental to the machine function: transporting particles
with the maximal current [see (23) and the discussion around].

Let the environment changes as in (22), and μ̄ can assume
any value from a set M. It resides in each of its states with
a fixed μ̄ for a sufficiently long time so that F and S do
have enough time to relax to the stationary probabilities p̄α

and p̄i|α . We require that the machine functions optimally,
J̄L(μ̄) = J̄ ∗

L , in each environment: the probability p̄α of the
structural state with �Eα = μ̄ [see (21), (24)] is maximized
for each μ̄ ∈ M, i.e., the probabilities of all other states are
suppressed in the sense discussed below. The choice between
the optimal structural states is done autonomously: after μ̄

changes from one value to another (or goes back to its older
value), F + S relax to a new stationary regime, where the
structural state with the largest current dominates. Recall that
S does not feel the parameter μ̄ directly, because it does not
interact directly with the particle reservoirs; it feels μ̄ only
indirectly due to interaction with F. Hence the changes of S
are driven by F.

B. Continuum limit

We assume that M is a finite real interval. There should be
a correspondence between {S}Kα=1 and environmental states;
thus to have adaptation for this case we need to make α a
continuous variable x and to take in (33)–(35) the continuum
limit: K → ∞,

Eα+1
i − Eα

i = Ei

(
x + 1

K

)
− Ei(x) = 1

K
∂xEi(x), (36)

bα,α+1 = b

(
x,x + 1

K

)
= b(x) + 1

K
∂yb(x,y)|y=x, (37)

where b(x) = b(x,x) and where the continuous variable x

changes in an interval: x ∈ [L1,L2]. Thus the stationary
probability of S (which is now a probability density due to
the continuum limit) depends on three functions Ei(x) and
b(x). These functions look arbitrary, but we show below that
they are fixed from the adaptation condition.

In the continuum limit the sums over γ in (35) can be
replaced by integrals. As shown in Appendix A, the stationary
probability of S then reads from (35) [A′(x) ≡ ∂xA(x)]

p̄(x) = exp[−�(x)]/Z, (38)

� ′(x) = θf ′(x) + (θ − 1)φ(x)[f ′(x) − E′
1(x)], (39)

f (x) = − ln[ e−E1(x) + e−E2(x)+μ̄ ], (40)

φ(x) = [ eb(x) − 1 ] [ eb(x)+μ̄−E2(x)+E1(x) + 1 ]−1, (41)

where Z in (38) is deduced from
∫ L2

L1
dx p̄(x) = 1. In (40),

f (x) is the free energy of F calculated at a fixed x; see (17) and
[23]. The second term in (39) is due to different temperatures
of S and F (θ �= 1) and the dependence of the times scales of
S on F (b(x) �= 0); see (29), (34).

For adaptation it is necessary that for any μ̄ ∈ M, p̄(x)
in (38) has a unique and sharp maximum at x = x̂(μ̄) with
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[cf. (21), (24)]:

�E(x̂(μ̄)) ≡ E2(x̂(μ̄)) − E1(x̂(μ̄)) = μ̄. (42)

Then x̂(μ̄) will be the most probable value of x. Two conditions
for x̂(μ̄) to be a local maximum of p̄(x) are � ′(x̂(μ̄)) = 0 and
� ′′(x̂(μ̄)) > 0. Working out � ′(x̂(μ̄)) = 0 and using (42) we
get

eb(x̂(μ̄)) − 1

eb(x̂(μ̄)) + 1
= θ

1 − θ

E′
1(x̂(μ̄)) + E′

2(x̂(μ̄))
E′

2(x̂(μ̄)) − E′
1(x̂(μ̄))

. (43)

This relation is supposed to hold for all μ̄ ∈ M, and since
functions E1,2(x) and b(x) do not depend on μ̄—because, in
particular, S does not interact with the particle reservoir—(43)
holds in a dense set of x. Once E1(x), E2(x), and b(x) are
assumed to be smooth functions of x, (43) will hold for all
x ∈ [L1,L2];9 it defines a functional relation between E1(x),
E2(x), and b(x),

eb(x) − 1

eb(x) + 1
= θ

1 − θ

E′
1(x) + E′

2(x)

E′
2(x) − E′

1(x)
. (44)

We now work out � ′′(x) using (44) and put there (42)

� ′′(x̂(μ̄)) = − [�E′(x̂(μ̄))]2

4

[
θ + (1 − θ )

[
eb(x̂(μ̄)) − 1

eb(x̂(μ̄)) + 1

]2]
.

(45)

We need θ < 0, i.e., a negative-temperature state of S;
otherwise x̂(μ̄) is a minimum of p(x̂(μ̄)), not maximum.10

We now set b(x) = 0, because then any θ < 0 will suffice for
adaptation; otherwise, θ has to be smaller than certain negative
value. Equation (44) under b(x) = 0 implies E′

1(x) = −E′
2(x).

We shall see in Sec. V that setting b(x) = 0 appears to be
optimal from the viewpoint of reducing fluctuations of x

around its most probable value. Recall from (34), (37) the
physical meaning of the condition b(x) = 0: the time scale of
S does not depend on the state of F.

We conclude that the adaptation requires a negative tem-
perature θ < 0 for S. This condition holds as well when the
environmental chemical potentials (and hence S) assume a
finite number of values; see Appendix D. After bringing an
explicit example of adaptation, we continue with clarifying the
generality of the θ < 0 condition (Sec. IV D) and its physical
meaning (Sec. IV E).

C. Example

Let us at this point stop the general reasoning and bring an
explicit example of the above construction (38)–(45): Ei(x) =
aix for i = 1,2 is a linear function of x with its slope ai

dependent on i. For a fixed i, Ei(x) as a function of x is a

9The precise statement is that a meromorphic (analytic up to isolated
poles) function can have only isolated zeros; otherwise it is equal to
zero [41]. If we assume that the difference between two sides of (44)
is meromorphic, it is zero on a dense set due to (43) and hence is zero
everywhere.
10Note that �(x) can have other minima and maxima. Our concern

here is the specific minima of �(x)—and maxima of p(x)—that are
given by (42). This condition is necessary for the adaptation.

potential energy. This potential energy is not confining, but it
is not a problem, since we restricted the allowed range of x: x ∈
[L1,L2]. Now requiring a1 = −a2 leads to b(x) = 0; see (38)–
(41), (44). The stationary probability of S reads from (38)–(41)

p̄(x) ∝
(

cosh

[
a2x − μ̄

2

])−|θ |
. (46)

The most probable value of x is μ̄

2a2
, condition (42) is ensured,

and the interval of allowed values of μ̄ is

M = 2a2 × [L1,L2]. (47)

Note that the range M of μ̄ over which the adaptation occurs
is finite and enters into the hardwire of S + F as an a priori
knowledge on the environment. M is finite due to the fact
that S interacts with a negative-temperature bath: if the range
of x is not finite, such an interaction will lead to instability;
see Sec. IV E and [28–30].

D. Le Chatelier principle

Here we argue that the necessary condition θ < 0 for the
adaptation is more general than the above derivation may
suggest. For b(x) = 0 we get from (38)–(41) that �(x) =
θf (x), where f (x) is the free energy of F calculated for a
fixed slow variable x. The joint probability of F + S is then

pi(x) ∝ eθf (x)pi|x, (48)

where pi|x (as a function of i for a fixed x) has a Gibbsian form;
see (17), (21) and recall that in the optimal regime τL = τR.
Equation (48) for pi(x) implies the time-scale separated two-
temperature system, which admits a consistent thermodynamic
description despite the fact that the temperatures of S and F
can be very different [23]. For such a system, the fact that the
adaptation requires θ < 0 is deduced from the generalized Le
Chatelier principle: θ < 0 is necessary so that perturbations of
the chemical potential do not amplify in time; see Appendix B.

E. Negative temperature states

Let us discuss in more detail the features of negative-
temperature states.

(i) They maximize (not minimize) the average energy for a
fixed entropy [28–30].

(ii) They thus store energy: a cyclic external field can extract
work from them [28,29]. Such states are autonomous sources
of work [30].11

(iii) To support θ < 0, S needs to have a bounded phase
space [28–30], as already assumed.12

(iv) Negative temperatures are higher than positive ones,
since heat flows from the lower inverse temperature to the

11Note the difference: a system with a positive temperature can still
produce work (during cyclic action of external field), if it is attached to
a thermal bath at a different temperature; cf. Footnote 13. In contrast,
a negative-temperature system can produce work autonomously,
without external environment. Here the cyclic condition means that
the source of work couples and and then decouples from the system.
12Hence the kinetic energy (which is non-negative and can be

arbitrary large) cannot be a part of those degrees of freedom that
support a negative temperature.
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larger one [28–30]. This implies that the energy stored in
S due to θ < 0 will constantly flow to the bath of F with
the rate proportional to ε [see (31)] tending to dissipate the
stored energy. This current is calculated in Sec. VII D. Due to
assumed ε 	 1, it is smaller than the particle current J̄L in (16).

(v) One should distinguish between population inversion
(there are at least two energy levels such that the higher
energy level is more populated than the lower one) and a
negative-temperature state of a many-level system, where in
every pair of energy levels the higher energy level is more
populated. These two notions are equivalent for a two-level
system, but generally they are different. A pair of energy levels
with population inversion suffices for (necessarily imperfect)
adaptation, if one can restrict S to those levels, i.e., neglect
transitions for higher energy levels; see Appendix D. However,
in that case the adaptation is necessarily imperfect, i.e., there
is no limit, where the probability of the undesired structural
states can be made arbitrary small. We focused in Sec. IV B on
the negative-temperature state of a many-level system, because
it does have a limit, where the adaptation can be made perfect;
see Sec. V below.

(vi) States with population inversion can be prepared by
pumping the system to higher energy levels; see [29] for an
extensive review of these methods. This includes not only
lasers and masers, but also macroscopic magnetic moments,
rotators, dipoles etc [29]. It is also possible to prepare a
population inversion via two weakly coupled systems held
at different positive temperatures [30].13

(vii) Many-body states with a negative temperature are
well known and were experimentally realized for discrete and
localized degrees of freedom such as the spin of nuclei or atoms
[29,32]. One scenario of their realization and observation is
a microcanonic state of a many-spin system in the regime,
where the number of available states decreases with increasing
the energy [32,42]. Negative-temperature states were also
experimentally realized for motional states of cold atoms
[43], where the energy spectrum of the negative-temperature
carrying degrees of freedom is continuous, but bounded
(similar to our example in Sec. IV B).

(viii) There are complex materials held in metastable
states that—without being properly negative-temperature—
behave like negative-temperature states with respect to external
variations [31].

(ix) Living organisms are capable of being autonomous
sources of work (the work is done, e.g., for preventing their
relaxation to equilibrium). Hence they store energy at least
via population inversion.14 This fact is well understood in

13Consider two very weakly coupled two-level systems with energy
level (0,ε1 > 0) and (0,ε2 > 0) held at temperatures T1 = 1

β1
and

T2 = 1
β2

, respectively. The joint system has four energy levels

(0,ε1,ε2,ε1 + ε2) with probabilities ∝(1,e−β1ε1 ,e−β2ε2 ,e−β1ε1−β2ε2 ),
respectively. The levels ε1 and ε2 of the joint system display
population inversion if(ε1 − ε2)(e−β1ε1 − e−β2ε2 ) > 0. If in addition
ε1 and ε2 are far from zero and close to each other, the energy levels
ε1 and ε2 of the joint system can be regarded as decoupled from the
rest of the spectrum (for certain times).
14In living organisms the population inverted states is transferred

from one place to another via ATP [12]. It is an important and open

biological thermodynamics [33–37] and was employed in a
definition of life [36]; see Sec. VII B for more details.

V. FLUCTUATIONS

We return to the stationary probability density p̄(x) of S;
see (38). Assume that the maximum x̂(μ̄) of p̄(x) is unique.
There are local fluctuations around that maximum, since p̄(x)
is not a δ function centered at x̂(μ̄). Thus there are intrinsic
fluctuations of x, and thus of �E(x), even for an environment
with a fixed μ̄. For x ≈ x̂(μ̄), (38) amounts to

p̄(x) ∝ exp
[− 1

2 |� ′′(x̂(μ̄))|(x̂(μ̄) − x)2], (49)

the standard deviation of x is σx = 1/
√|� ′′(x̂)|. We need

to consider fluctuations of �E(x), since F feels x only via
�E(x). If σx is small, the standard deviation of �E(x) around
μ̄ is

σ = |�E′(x̂)|σx = 2/
√

|θ |, (50)

where we used (45); recall that we set b(x) = 0, this is also
optimal from the viewpoint of reducing σ .

Now the only possibility of σ → 0 is to take θ → −∞,
i.e., a vanishing entropy of S due to a large amount of stored
energy. There are two general methods of fighting against
fluctuations: reducing the environmental noise as such (e.g.,
cooling the environment), or putting the system under a strong
confining potential. The second method does not work in our
situation, since it appears that the strong potential cannot be
adaptive.

Thus, the adaptation is generally imperfect, because even
at a fixed environment (for a fixed μ̄), �E will fluctuate on
characteristic times of S. The imperfect adaptation is useful
only if the environmental changes are wide enough; otherwise
the same machine with a fixed optimal structure tuned to the
average environment will have a larger average current. This
point is worked out in Appendix C.

VI. ALTERNATIVE SETUPS OF ADAPTATION

To get the proper perspective on the obtained results we
briefly mention certain extensions of the basic setup.

Above we required that the set M of environmental values
of μ̄ is dense. The same limitations (negative temperature
and structural fluctuations) are obtained when the environment
assumes a finite number of values; see Appendix D. But here
fluctuations are finite even for θ → −∞.

Another setup is to allow S to interact directly with
the uncertain environment [see Appendix E]. This is done
naturally assuming that different states FiSα have different
particle numbers Nα

i . The above limitations are then absent:

question whether also in ATP the energy is stored via population
inversion. Alternatively, the ability of ATP to produce work may be
due to different chemical potentials between ATP and its environment,
which means that ATP is not completely autonomous, it needs an
environment to produce work. McClare argued that the relevant times
of the ATP work-delivery process are such that the coupling with the
environment can be neglected; hence, according to [34], the energy
is stored in ATP via population inversion.
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even the two-state S (in face of a binary environment) can
ensure perfect adaptation in the isothermal situation θ = 1. In
this setup S becomes an external sensor for the machine. (This
is sometimes called a feed-forward scenario of adaptation in
contrast to the previous scenario that works via feedback to
F: environment → F → S → F.) Hence no stored energy is
needed and no fluctuations at the constant environments are
necessarily present. (Fluctuations may still be present due
to various nonidealities.) The drawback of this setup is that
it demands a specific structure-environment interaction that
has to be designed anew for every new environment. Put
differently, the above thermodynamic costs are necessary for
ensuring the autonomous character of the adaptation.

Yet another setup is to relax the optimality condition
demanding instead the stabilization (constancy) of the current
on the face of environmental changes at some suboptimal
value; the above limitations are then also weakened. The
conceptual problem with relaxing the optimality condition is
that then the very adaptation may easily become useless: who
wants to keep a machine that does not function well in any
environment? It is clear however that the practical examples
of adaptation will be rather of this, nonoptimal type, and an
important chapter of the future research on the physics of
adaptation should perhaps focus on understanding the tradeoffs
between optimality and thermodynamic costs.

VII. DISCUSSION

A. Summary

Thus our adaptive machine consists of two parts F and S
(functional and structural degrees of freedom, respectively)
and works as follows; see Figs. 1–3. If the external chemical
potentials are constant in time—and provided that the fluctua-
tions of S around its most probable value can be neglected—the
functional degree of freedom F transports particles with the
maximal current (speed) from the higher chemical potential to
the lower one.

Now let the chemical potentials change. After they settle
in new values, F will transport particles with much smaller
current (speed) than it is allowed under new values of the
chemical potentials [see Sec. II, (ii)]. F will then act on
S, and after a much longer time (much longer because S
is much slower than F) S will feedback on F making the
current again maximal under the new values of the chemical
potentials. For this adaptation process to happen it is necessary
that the structural degree of freedom S has a sizable amount
of stored energy, i.e., its temperature is negative θ < 0. A
negative θ is needed for ensuring that perturbations induced
by changing chemical potentials are not amplified in time. If,
simultaneously, |θ | is sufficiently large, the fluctuations of S
around its most probable value are negligible.

However, because θ is necessarily finite, there are intrinsic
fluctuations of S that sometimes force the current to deviate
from its maximal value even under a constant environment.
The origin of these fluctuations inherently relates to the adap-
tation: it is impossible to prevent fluctuations by confining S via
an external potential, since the latter will spoil the adaptation.

On very long times—which are conceivable, but not directly
seen on this model—the second law will force θ to increase

due to heat exchange with the baths of F [28]. Hence S will
make more errors (fluctuate stronger) even in the constant
environment; see (50). For even a larger θ having a variable
structure S may be useless: fluctuations of S are then so strong
that in the sense of the average current it is better to have
a constant (nonvariable) structure [see Appendix C]. Thus,
adaptation is not always useful.

B. Relations with thermodynamic theory of aging

The functioning of the adaptive machine resembles certain
features of living organisms, in particular, the process of aging
(senescence) that is generally defined as progressive loss of
stability of an organism that increases the probability of its
failure and that arises out of the normal functioning of the
organism [38]. Aging is a complex phenomenon with many
interrelated mechanisms at play; various theories of aging
emphasize different mechanisms [38]. We shall focus on analo-
gies between the functioning of the adaptive machine and the
thermodynamic theory of aging, whose different aspects were
uncovered in [33,37,38]. The theory is one under development,
but it is already recognized in gerontology [37,38]. Since it is
not well known in statistical physics, we shall briefly review the
main postulates of this theory and then outline their similarities
with the adaptive machine studied above.

1. Postulates of the thermodynamic theory of aging

(i) Living organisms are in a nonequilibrium state that is
characterized by a certain amount of stored energy (i.e., energy
related to population inversion) [33,37]; see Sec. IV E. This
stored energy is needed for performing various function, e.g.,
the organism needs it for preventing (doing work against) its
own equilibration [33].

(ii) For simplicity we shall visualize this stored energy as
a negative-temperature reservoir at temperature −|θ | (though
in reality it will most likely have more complex forms not
described by a single negative temperature). The reason
why the nonequilibrium state is characterized by a negative
temperature (or population inversion, but not just an excess
free energy with respect of a given thermal environment) was
already explained in Sec. IV E: the organism should be capable
to perform work autonomously.

(iii) The stored energy is inborn, because the organism
cannot obtain it only from digesting (nonequilibrium) food
[33,37]. Indeed, digestion is a complex process that itself needs
investment of work [33,37]. It is assumed that some amount
of stored energy is contained already in the seed (for plants)
or in the zygote (for mammals) [33,37].15

(iv) During the life of the organism, |θ | monotonically
decreases, due to various functions performed by the organism
(and due to inevitable coupling of the negative-temperature
bath to positive-temperature baths) [33,37]. Aging refers to a

15One of the most cited points on nonequilibrium character of living
organisms belongs to Schrödinger who opined that organisms feed
on negative entropy [40]. This point is questionable for two reasons;
first, it does not recognize the inborn character of the nonequilibrium
(stored energy), second it does not take into account that food contains
mostly energy, not negative entropy [27].
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state, where |θ | is so small that the organism cannot perform
adequately its functions. In particular, controlling systems of
the organism get progressively less stable and less efficient in
responding to signals from functional degrees of freedom. This
point is emphasized in the ontogenetic theory of aging [39].

(v) The free energy provided by food does not increase |θ |,
it is only used for preventing its fast decrease and for extending
the size of the negative-temperature bath, i.e., the amount of
stored energy can increase, with its temperature θ < 0 still
decreasing by its absolute value [33,37]. The situation where
the amount of the stored energy increases corresponds to the
growth of the organism [33,37]. Hence a mature organism
(the one that does not grow anymore) has a limited amount
of resource available for its functional tasks; this point is
fundamental for certain other theories of aging, notably for
the disposable soma theory [38].

2. Relations with the adaptive machine

The above point (i) is basic for the adaptive machine:
the stored energy in the structural degree of freedom S is
needed for the adaptive functioning of the machine (stability
of the maximal current under environmental changes). Also,
the point (ii) is there, since it is only the simplest models of S
that require a single and well-defined negative temperature.

The gradual decay of |θ | and the ensuing instability for the
adaptive machine—to an extent that having a complex, adap-
tive structure is detrimental—resembles the aging process; see
our discussion in Sec. VII A and points (iii) and (iv) above.
Note as well the relation with the ontogenetic theory of aging
that stresses progressive losses in controlling systems of the
organism.

For the adaptive machine the external nonequilibrium
(μL �= μR) environment cannot be used to support the
negative-temperature state of S, we needed to assume a
separate negative-temperature thermal bath for S [points (iii)
and (iv) above]. In our situation, the size of the bath of S is
large but fixed, which corresponds to a mature (not growing)
organism; see (v) above.

Recall that above analogies came out from combining a
statistical thermodynamics model with the stability of the
maximal current under environmental changes. Note that
though the above conditions for adaptation are obtained for
a particular model, we argued that they hold more generally,
and are based on the quasiequilibrium transport and the Le
Chatelier principle.
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APPENDIX A: DERIVATION OF EQS. (38)–(41)

Before applying (33) to (35) we change in (33) α → γ + 1
and β → γ . Next, applying (36), (37) we get for the first factor
in (33) within the first order of the small parameter 1

K

eθ(Eγ

1 −E
γ+1
1 ) � e− θ

K
E′

1(x), (A1)

where E1(x) = E
γ

1 and E′
1(x) = ∂xE1(x). Likewise, we obtain

for other factors in (33)

1 + eμ̄−�Eγ+1

1 + eμ̄−�Eγ � exp

[
−�E′(x)

K

eμ̄−�E(x)

1 + eμ̄−�E(x)

]
, (A2)

1 + ebγ+1,γ + θ
2 (�Eγ −�Eγ+1)−�Eγ +μ̄

1 + ebγ+1,γ + θ
2 (�Eγ+1−�Eγ )−�Eγ+1+μ̄

� exp

[
− (θ − 1)�E′(x)

K

eb(x)+μ̄−�E(x)

1 + eb(x)+μ̄−�E(x)

]
, (A3)

where �E = E2(x) − E1(x) and b(x) = bγ+1,γ + O( 1
K

);
see (36), (37). Combining (A1)–(A3) into (35) and changing
there 1

K

∑
γ → ∫

dx we get (38)–(41).

APPENDIX B: LE CHATELIER PRINCIPLE

Here we shall derive the Le Chatelier principle for perturba-
tions of the chemical potential. In contrast to known derivations
of the principle that are purely thermodynamical, the present
derivation stays within statistical mechanics. We want to relate
the principle to conditions required for adaptation.

Though the Le Chatelier principle is widely known and
frequently applied outside of physics (see [44] for further
references on such interdisciplinary applications), already its
thermodynamic derivation contains several subtle points; see
[45] for a review. We present the statistical mechanic derivation
of the Le Chatelier principle for perturbations of an intensive
variable (chemical potential). For perturbations of extensive
variables, the principle was recently discussed from the view-
point of kinetics (nonequilibrium statistical mechanics) [44].

We shall work within a setup close to that in the main text.
There are two interacting systems S and F. Now S is described
by coordinate (continuous variable) x, while F can be in
discrete states i = 1, . . . ,n. Each such state has energy Ei(x)
and carries Ni particles; recall our discussion in Sec. II A. The
coupling between S and F is due to dependence of Ei(x) on x.

F couples with a reservoir at temperature 1 and chemical
potential μ̄. S couples with an energy reservoir at inverse
temperature θ . S is much slower than F. We assume that the
conditions for the two-temperature adiabatic quasiequilibrium
hold—see the discussion after (45) and [23]—which means
that the stationary probability p̄(x) of S and the conditional
stationary probability p̄i|x of F read

p̄i|x = e−Ei (x)+μ̄Ni

Z(x)
, Z(x) =

∑
i

e−Ei (x)+μ̄Ni , (B1)

p̄(x) ∝ eθ ln Z(x). (B2)

Thus, the conditional stationary probability of F has the
Gibbsian form with the chemical potential μ̄ and temperature
1, while the stationary probability p̄(x) of S is given by
the Gibbs distribution (at inverse temperature θ ) with the free
energy − ln Z(x) of F calculated at a fixed value of x.

Recall that having two time scales (slow and fast) is the
basic premise of the Le Chatelier principle that shows up
in all its formulations; see [44,45]. If the two temperatures
are equal, θ = 1, (B2) reverts to the usual Gibbs density.
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Denote

〈N〉x ≡
∑

i

p̄i|xNi, (B3)

〈N〉x ≡
∫

dxp̄(x)〈N〉x. (B4)

Since S is slow and F is fast, 〈N〉x characterizes the average
particle number in F for intermediate times, when the state x

of S is fixed. 〈N〉x is the average of 〈N〉x over all states of S;
it naturally characterizes the average particle number in F for
long times, where fluctuations of S are essential.

Equations (B1)–(B3) imply

∂μ̄〈N〉x − ∂μ̄〈N〉x = θ
[〈N〉2

x − 〈N〉x2]
. (B5)

For θ > 0, (B5) is non-negative. This is statement of the
Le Chatelier principle for perturbations of intensive variables
(chemical potential): they are amplified in time [45]. Indeed,
∂μ̄〈N〉x in (B5) is the response of S + F to a perturbation of

μ̄ that is much faster than S, but much slower than F. ∂μ̄ 〈N〉x
is the response of S + F to the same perturbation, but on much
longer times so that S + F has thermalized at the perturbed
value. Recall that for perturbations of extensive variables the
statement of the Le Chatelier principle is just the opposite:
perturbations are suppressed (not amplified) in time [44,45].

Now recall the setup of Sec. IV B and assume that p̄(x) ≈
δ(x − x̂(μ̄)) is a well localized around its average that is a
necessary condition of perfect adaptation. We now obtain for
θ � 0

(B5) =
∫

dx
∂p̄(x)

∂μ̄
〈N〉x = ∂μ̄x̂(μ̄) ∂x〈N〉x |x=x̂(μ̄)

= −∂μ̄x̂(μ̄) �E′(x̂(μ̄)) ∂μ̄〈N〉x̂ � 0, (B6)

where it is taken into account that 〈N〉x depends on x only
through �E(x) − μ̄. Using ∂μ̄〈N〉x � 0 that also follows from
the Gibbsian property (B1) we get ∂μ̄x̂(μ̄) �E′(x̂(μ̄)) � 0
contradicting to the condition �E(x̂) = μ̄ of adaptation;
see (42).

APPENDIX C: QUANTIFYING IMPERFECT ADAPTATION

Section V shows that the fact of structural fluctuations is
an unavoidable consequence of adaptation. We expect that
such imperfect adaptation is not useful when the variance of
environmental changes is small. To quantify this aspect, we
need to specify the statistics of environmental changes. For
simplicity we assume that in (22)

μL − μR = μ′
L − μ′

R. (C1)

Hence μ̄ = (μL + μR)/2 with probability P(μ̄) is the only
changing environmental feature.

Let us now consider the current (16) that is partially opti-
mized: we take in (16) τL = τR = T , because this maximizes
J̄L with all other parameters being fixed; see (19). For technical
simplicity we fix the parameters as in (24), i.e., we take T = 1.
The resulting expression for J̄L reads

J̄L[�E(x) − μ̄] = sinh[(μL − μR)/4]

cosh[(�E(x) − μ̄)/2]
. (C2)

We now average (C2) over over structural and environmental
noise:

J1 ≡
∫

dx dμ̄ J̄L[�E(x) − μ̄]p̄(x)P(μ̄), (C3)

where p̄(x) is the stationary probability of S; see Sec. V. This
is to be compared with the situation when the structure is fixed:
first �E is fit to its optimal value for one environment, e.g.,
the one at 〈μ̄〉 = ∫

dμ̄ μ̄P(μ̄), thus �E = 〈μ̄〉 [recall (24)].
Then the average over the environments is taken,

J2 ≡
∫

dμ̄ J̄L[〈μ̄〉 − μ̄]P(μ̄). (C4)

We expect that J2 > J1 (J1 > J2) whenever the width of P is
sufficiently smaller (larger) than that of p̄; the adaptation is
then useless (useful).

Let us now consider the example (46): Ei = aix for
i = 1,2 and x ∈ [L1,L2], where a1 = −a2, b = 0 and p̄(x) ∝
(cosh[a2x − μ̄

2 ])−|θ |. We assume that P(μ̄) is Gaussian with
the standard deviation d and mean 〈μ̄〉. We get

J1

J2
=

∫
dx (cosh[x])−|θ |−1∫
dx (cosh[x])−|θ |

√
2πd∫

dx exp
(− x2

2d
− ln cosh

[
x
2

]) .

Now J1/J2 is larger than one—and thus the adaptation is useful
for this example—if, e.g., d = 1 and |θ | > 4.811. For d → ∞,
J1/J2 ∝ √

d tends to infinity: the adaptation is always useful
for sufficiently large environmental uncertainty.

APPENDIX D: TWO-STATE ENVIRONMENT

1. Adaptation

Let the environment can be in two states E1 and E2, where
μ̄ = (μL + μR)/2 assumes two different values μ̄1 and μ̄2.
These values are known, but it is not known which one will
be realized (cf. Sec. IV A). Then the minimal (necessary
for adaptation) number of states for the structural degree of
freedom S is also two, and the structural and environmental
states match as

Eα ↔ Sα, Eα
2 − Eα

1 = μ̄α, α = 1,2, (D1)

where the second condition means that that each state Sα

provides the optimal value for E2 − E1 [cf. (42), (21), (24)].
For the stationary probabilities of S we get [see (35) for K = 2]

p̄2 = p̄1
̄21/
̄12, p̄1 + p̄2 = 1. (D2)

Using (D2) and (33) we obtain

p̄2(μ̄1)

p̄1(μ̄1)
= eθ(E1

1−E2
1 ) 1 + em

2

1 + eb+ θm
2

1 + eb+(1− θ
2 )m

, (D3)

p̄1(μ̄2)

p̄2(μ̄2)
= e−θ(E1

1−E2
1 ) 1 + e−m

2

1 + eb− θm
2

1 + eb−(1− θ
2 )m

, (D4)

where we defined [cf. (29), (34)]

m ≡ μ̄1 − μ̄2, b ≡ (
B21

2 − B21
1

)/
2. (D5)
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Equations (D3), (D4) imply

p̄1(μ̄2)

1 − p̄1(μ̄2)

p̄2(μ̄1)

1 − p̄2(μ̄1)

= 1 + cosh[m]

2

cosh[b] + cosh
[

θm
2

])
cosh[b] + cosh

[
θm
2 − m

] . (D6)

For the perfect adaptation it is necessary to have both p̄1(μ̄2)
and p̄2(μ̄1) going to zero (cf. Sec. IV A). Here p̄1(μ̄2) and
p̄2(μ̄1) are the error probabilities, they characterize deviations
from the optimal behavior due to structural noise. If they both
go to zero, then for E = E1 (E = E2) one can neglect transitions
to S2 (S1), at least in the stationary regime, and the machine
will function optimally for each environment; see (42).

The perfect adaptation is impossible: the minimum of (D6)
equals to 1/4 and it is reached for

θ < 0, b = 0, |m| � 1, |θ ||m| � 1. (D7)

Indeed, θ < 0 is necessary for (D6) < 1; the remaining
conditions in (D7) are straightforward to obtain and interpret:
b = 0 means that F does not alter the time scales of S, while
|m| � 1 means that the environmental values are sufficiently
different from each other. In this context recall our discussion
on b(x) = 0 after (45).

The imperfect adaptation can be defined via

p̄1(μ̄2) < p̄2(μ̄2), p̄2(μ̄1) < p̄1(μ̄1), (D8)

i.e., the probabilities to get into “wrong” structural states
are smaller than the probabilities to be in the “right” states.
Equation (D8) means that the error probabilities p̄1(μ̄2) and
p̄2(μ̄1) are both smaller than 1/2. For this it is necessary
that θ < 0; otherwise (D6) is always larger than 1. Hence
the imperfect adaptation demands negative temperatures; cf.
Sec. IV B.

For illustrating the imperfect adaptation let us assume that
i) μL − μR stays constant [cf. (C1)]; ii) |m| � 1; and iii) both
states E1 and E2 have equal probabilities 1/2.

Now if the environment is in Eα (α = 1,2), S is in
its states S1 and S2 with probabilities p̄1(μ̄α) and p̄2(μ̄α),
respectively. If S is in Sα , the particle current is given by
J̄ ∗

L = sinh[(μL − μR)/4], see (C2). If S is not in Sα , the particle
current is J̄ ∗

L/ cosh[m/2]; cf. (23). This current is negligible
due to the above condition ii). Hence the current averaged over
environmental and structural fluctuations reads

1
2 [p̄1(μ̄1) + p̄2(μ̄2)]J̄ ∗

L. (D9)

We compare (D9) with a constant S = S1 that is fit to the
optimal value E1

2 − E1
1 = E2

2 − E2
1 = μ̄1 of one environ-

mental state. In that situation the average particle current
is 1

2 J̄ ∗
L. Requiring that 1

2 J̄ ∗
L is smaller than (D9) we get

p̄1(μ̄1) + p̄2(μ̄2) > 1, which is ensured by the definition (D8)
of the imperfect adaptation.

Concrete conditions for imperfect adaptation are found
from (D3), (D4) under θ < 0 and (D8). We mention the
particular case, where the error probabilities p̄1(μ̄2) and
p̄2(μ̄1) both assume their minimal values. Consider |m| � 1
and b = 0, when (D8) amounts to∣∣∣∣E1

1 − E2
1 + μ̄1 − μ̄2

2

∣∣∣∣ <
ln 2

|θ | . (D10)

The minimal values p̄1(μ̄2) = p̄2(μ̄1) = 1/3 are reached when
|E1

1 − E2
1 + μ̄1−μ̄2

2 | → 0. These minimal values are consistent
with (D7).

Hence the two-state structure is able to adapt imperfectly to
two environmental states that are sufficiently far from each
other. For the imperfect adaptation we need not only that
the temperatures of S and F differ (θ �= 1), but also that the
temperature of S is negative (θ < 0).

2. Energy current from S to F

As we have seen, adaptation demands that the temperature
θ of S is different from that of F (which is defined to be 1) and
that θ < 0. Then there will be a current of energy JS→F from
the bath of S to that of F. This energy will flow through S + F.
We now study this energy current in the stationary regime
using (27)–(32). By definition, the energy flowing from the
thermal reservoir of S is given as that part of the average
energy

∑
iα Eα

i pα
i change, which is driven by the reservoir

[see (27)]

JS→F = ε
∑
iαγ

Eα
i

[
ω

αγ

i p
γ

i − ω
γα

i pα
i

]
. (D11)

Using the effective master equation [see (31), (32)] we
rewrite (D11) for the stationary situation as

J̄S→F = ε
∑
iαγ

Eα
i

[
ω

αγ

i p̄
γ

i − ω
γα

i p̄α
i

]
(D12)

= −2ε 
̄21 p̄1 ∂θ ln[
̄21
̄12] (D13)

= ε e
1
2 (B12

1 +B12
2 )


̄12 + 
̄21

m sinh
[ (1−θ)m

2

]
2 cosh

[
m
2

] , (D14)

where m is defined in (D5). We see that J̄S→F > 0 for θ <

1 confirming that the energy flows from the lower inverse
temperature to the higher one. Thus, J̄S→F > 0 means that the
stored energy is lost (dissipated) in time, i.e., that the quality
of adaptation, which was related to θ < 0, tends to degrade
in time. Note that due to the assumed adiabatic limit ε → 0,
J̄S→F > 0 is much smaller than the particle current J̄L. The
latter is due to the motion of F and is inversely proportional to
the first power of its characteristic time.

APPENDIX E: CONTROLLER DIRECTLY SENSING
TWO-STATE ENVIRONMENT

We now show that if we allow the structure S to interact
directly with the uncertain environment (reservoirs), there
is a perfect adaptation for a two-state S having the same
temperature as F. Recall that the temperature of F was assumed
to be 1, so from now on this is the common temperature of S
and F. For the present model such an interaction is set naturally
if we assume that the state FiSα carries Nα

i particles, and it is
switched off naturally if Nα

i does depend on α. Instead of (29)
we get

ω
αγ

i = ω
αγ

i|L + ω
αγ

i|R, i = 1,2, (E1)

ω
αγ

i|k = e
1
2 (Eγ

i −Eα
i )− μk

2 (Nγ

i −Nα
i ), k = L,R, (E2)

where we assumed θ = 1, since S and F have the same
temperature [see (6)], and we put B

αγ

i = 0 for simplicity.
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The effective transition rates 
̄21 and 
̄12 are defined as
in (32). They are calculated from (E1), (E2) by using (32), (17):


̄21


̄12
= p̄2

p̄1
= eE1

1−E2
1+μ̄(N2

1 −N1
1 ) 1 + e−�E2+μ̄�N2

1 + e−�E1+μ̄�N1 , (E3)

where �Eα = Eα
2 − Eα

1 and �Nα = Nα
2 − Nα

1 . The proba-
bilities p̄α of the states Sα are defined via (E3), (D2)

A simpler way to obtain (E3) is to note that 
̄21/
̄12 =
ef 1−f 2

, where f α is the free energy of the fast F for a fixed
state Sα of S

e−f α = e−Eα
1 +μ̄Nα

1 + e−Eα
2 +μ̄Nα

2 . (E4)

Now the state of S does not depend on the time-scale
separation, since due to θ = 1 the overall state of S + F is
Gibbsian.

We now assume the uncertain binary environment defined
in the previous section. To ensure that F functions optimally in
each environment we set �Eα = μα for α = 1,2 and �N1 =

�N2 = 1 [cf. (24)]. Hence N2
i − N1

i ≡ N does not depend on
i. For the error probabilities we obtain from (E3) [cf. (D6)]

p̄2(μ̄1) =
[

1 + 2e−(E1
1−E2

1 )−μ̄1N+μ̄2−μ̄1

1 + e(μ̄2−μ̄1)

]−1

, (E5)

p̄1(μ̄2) =
[

1 + 2eE1
1−E2

1+μ̄2N

1 + e(μ̄2−μ̄1)

]−1

. (E6)

Conditions for imperfect adaptation are read off
from (E5), (E6), (D8). There are environments where
both error probabilities p̄2(μ̄1) and p̄1(μ̄2) go to zero, e.g.,
take in (E5), (E6)

μ̄1 � |μ̄2| = −μ̄2, |N | = −N � 1, E1
1 = E2

1 . (E7)

Thus if S senses the environment directly, all adaptation costs
disappear: it is possible for θ = 1 (equal temperatures for S
and F, no need for the stored energy), without malfunctions
(both error probabilities can go to zero) and with the minimal
number of states for S.
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