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Chaos-induced dynamical hysteresis: Energetic and entropic barriers
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We consider periodically driven dynamical systems with energetic and entropic barriers in the presence of
deterministic noise. Due to the relaxational delay, the response of the system lags behind the applied field and
exhibits dynamical hysteresis manifested in the nonvanishing area of the response-function–field loop. It is
demonstrated that the hysteresis loop area satisfies a scaling law with exponents that depend on the nature of the
barrier.
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I. INTRODUCTION

Dynamical hysteresis is an interesting nonequilibrium
phenomenon in driven cooperatively interacting many-body
systems. It appears due to the delay in response of the system
towards an external periodic signal in the presence of thermal
fluctuation. The relaxational delay gives rise to a symmetry
breaking in the response-function–field plot, although the
external oscillating field does not provide any symmetry-
breaking input [1]. As a result, a nonvanishing area of the
response-function–field loop is obtained. Furthermore, the
loop area vanishes in the very-low- and very-high-frequency
limits exhibiting a maximum at an intermediate value of the
frequency of oscillation. Dynamic hysteresis has been studied
extensively in magnetic systems [2], stochastic systems [3],
self-organizing avalanches [4], design engineering, and many
other aspects [1–5]. We refer to [1] for further details.

To present the discussion in an appropriate context, we
begin by noting that stochasticity plays a crucial role in
dynamical hysteresis. This is because thermal noise directly
influences the delay in the response of the many-body system.
It would seem that the relaxational delay may play a similar
role when the driven system is in contact with a dynamical
system exhibiting deterministic stochasticity or chaos. In other
words, we address the following question: Can a periodically
driven system admit of dynamical hysteresis when it is coupled
to a chaotic bath? The role of a chaotic system acting as
a thermal bath or, more generally, an environment has been
investigated earlier in several situations, including realizations
of deterministic Brownian motion generated by a chaotic
process [6]; several thermodynamically inspired quantities
such as temperature [7], entropy production, and flux [8];
and statistical mechanics analogs [9] of the Kubo relation,
the fluctuation-decoherence relation, and the fluctuation-
dissipation relation [10] in chaotic systems. The focus of
the present work is an investigation of dynamical hysteresis
in a driven nonequilibrium system in the presence of a
deterministic noise. We envisage two distinct situations. The
first is when the system in question is governed by a double-
well potential. The transitions caused by chaos between the
two wells are guided by energetic considerations. In the second
case we consider a system where the potential barrier is not
energetic but entropic in origin. The entropic potential arises
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when the diffusive Brownian motion of particles through a
tube of varying cross section in higher dimension is effectively
reduced to one dimension [11].

Entropic potential [11–25] has been studied extensively
and many novel phenomena such as entropic stochastic
resonance [19], entropic resonant activation [20], entropic
noise-induced nonequilibrium transition [18], and asymmetric
stochastic localization in the case of geometry controlled
kinetics [25] have been explored. The idea of entropic transport
has also been employed in the case of entropic ratchet motion
[21,26,27], mobility of particles [28,29], logical response in
entropic transport [30], and in other contexts involving passage
of particles through phospholipid membranes, biological chan-
nels [31], artificial ion pumps, and studies related to polymers
[32–34], DNA translocation through nanostructures [35],
and many other aspects [21–53]. These developments have
potential implications in geometry-influenced physiochemical
rate processes [54–56]. A similar kind of effect has been found
in a model system that reveals that the stochastic resonance
phenomenon can occur as an outcome of confinement [57,58].
The entropic potential appears as a result of the boundary
effect of the system. In the present study we inquire whether
this boundary effect is effective for the occurrence of dynamic
hysteresis in a two-dimensional enclosure of varying cross
section in the presence of deterministic noise rather than
thermal noise. We show that when a particle confined in a
two-dimensional bilobal enclosure is driven by an external
time-periodic perturbation and kept in contact with a chaotic
bath, the response function traces a hysteresis loop when
plotted against the field. The turnover of the hysteresis loop
area with the frequency of oscillation is also observed as
a characteristic feature of dynamic hysteresis. It is thus
evident that dynamic hysteresis can occur in the presence
of fluctuations arising out of a chaotic bath. An interesting
offshoot of this investigation is that the observed variation of
the loop area with frequency in both cases follows a generic
form as revealed through the scaling behavior. The present
phenomena can be considered as deterministic analogs of
energetic and entropic dynamic hystereses.

The paper is organized as follows. In Sec. II we discuss
the essential dynamics of the chaotic bath that drives the
system. The model and dynamics of the system are discussed
for energetic and entropic barriers. To describe the energetic
system, we consider a particle moving in a bistable potential
field and subjected to an oscillating field and a chaotic bath.
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For an entropic system, we consider the motion of the particle
in a two-dimensional bilobal confinement with varying cross
section. In Sec. III we present a detailed description of
numerical simulations and discuss the results. The paper is
summarized in Sec. IV.

II. MODEL DESCRIPTION AND DYNAMICS
OF THE SYSTEM

We consider a low-dimensional nonlinear system to model a
chaotic bath. This comprises two interacting quartic oscillators
characterized by a set of coordinates and momenta x,y and
px,py , respectively. The Hamiltonian of the bath is given by

HB = p2
x + p2

y

2
+ a

4
(x4 + y4) + x2y2

2
. (2.1)

The equations of motion of the bath are

ẋ = px, (2.2)

ṗx = −ax3 − xy2, (2.3)

ẏ = py, (2.4)

ṗy = −ay3 − x2y, (2.5)

where a is a dimensionless parameter. The variables x, y, px ,
py , and time t are made dimensionless with proper scaling
factors. The parameter a governs the dynamics of the bath.
Depending upon the value of a, the bath exhibits chaotic or
regular behavior. For a → 0 limit the dynamics of the bath is
chaotic. The system is integrable for the special values of
a = 0.33 and 1.0. We have used a = 0.01 throughout our
study. The largest Lyapunov exponent is positive in this regime.
Several variants of the model have been considered in earlier
works for the exploration of energy transfer dynamics [59]
and understanding the nature of thermalization [7,59]. Our
aim here is to exploit the model as a source of deterministic
noise to study dynamical hysteresis. Depending on the nature
of coupling to the other degrees of freedom of the overall
system, two distinct situations emerge.

A. System with energy barrier

We first consider the overdamped dynamics of a particle
moving in a one-dimensional bistable potential field and
subjected to an external periodic drive. The potential has the
form

V (q) = a1

4
q4 − b1

2
q2. (2.6)

The potential has one maximum at qmax = 0 and two minima
at qmin = ±√

b1/a1, as shown in Fig. 1. The energy difference
between the maximum and the minima �V = b2

1/4a1 creates
the energy barrier for the particle. The deterministic fluctuation
is now injected in the system through the variable governed by
the set of dynamical equations (2.2)–(2.5). The overdamped
dynamics of the system can be expressed as

�
dq

dt
= −V ′(q) + A0sin(ωt) + cx, (2.7)
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FIG. 1. (Color online) Double-well potential with system param-
eters a1 = 1.0 and b1 = 1.0.

where � is the frictional coefficient, q represents the position
of the particle, −V ′(q) corresponds to the force field acting on
the particle, A0 and ω are the amplitude and frequency of the
periodic driving, respectively, and c is a constant that denotes
the strength of the coupling of the chaotic drive. To make
Eq. (2.7) dimensionless we divide q by Lq , a characteristic
length representing the distance between two minima of
the bistable potential and time t by a characteristic time τ ,
representing the mean first-passage time of the particle from
one potential minimum to the other. Thus the forces are scaled
by the quantity �Lq

τ
. We can further define the dimensionless

quantities as follows: q̃ = q

Lq
is the dimensionless position

variable of the particle, t̃ = t
τ

is the dimensionless time, ã1

and b̃1 are the dimensionless coefficients (made dimensionless
using proper scaling factors), Ã0 has the form Ã0 = A0τ

�Lq
, the

dimensionless frequency ω̃ can be represented as ω̃ = ωτ , and
the dimensionless parameter c̃ and variable x̃ have the forms
c̃ = cτ

�
and x̃ = x

Lq
. For the sake of brevity and notational

convenience, we omit the tilde from now on to represent
dimensionless quantities. Now the dynamics of the system
can be presented in the form

dq

dt
= −a1q

3 + b1q + A0sin(ωt) + cx. (2.8)

In the following section we make use of Eqs. (2.2)–(2.5)
and (2.8) for numerical simulations for the study of dynamical
hysteresis for the energetic barrier. The quantity c has been
taken to be equal to 1 for all the numerical calculations.

B. System with entropic barrier

Another part of our study concerns the motion of a particle
in the presence of an entropic barrier. This barrier arises
whenever there is a variation in the diameter of a tube or
a channel for which the particle requires more time to travel
from one point to the other. For a channel of uniform width, the
problem of transport is essentially one dimensional. However,
if there is a bulge, the motion of the particle slows down in
the vicinity of it. This is because the particle can explore more
space by its random walk. Again when there is a constriction in
the channel, more time is required because the particle has to
find its path through the bottleneck. Thus any variation in shape
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FIG. 2. (Color online) Two-dimensional bilobal system with
system parameters ε = 0.25 and b = 0.02.

retards the motion of the particle. When the system is driven by
a white noise it is possible to formulate the stochastic dynamics
of the particle in terms of the Fokker-Planck equation [60] in
two dimensions. Zwanzig showed that for a tube of varying
cross section, it is possible to reduce the stochastic dynamics
to one-dimensional transport governed by the Fick-Jacobs
equation and confinement in higher dimension gives rise to
an entropic potential in lower dimension.

We now consider the problem of entropic transport when the
noise has a deterministic origin according to Eqs. (2.2)–(2.5).
The confinement is assumed to be a two-dimensional bilobal
enclosure with varying cross section, as shown in Fig. 2. A
particle is subjected to an external oscillatory drive in the x

direction and a weak transverse force along the negative-y
direction. The motion of the particle is governed by a drive
from the chaotic bath discussed earlier. The overdamped two-
dimensional motion of the particle can be expressed as

�
d�r
dt

= −Gêy + A0sin(ωt)êx + cxêx + cyêy, (2.9)

where �r is the position vector of the particle, which can be
expressed as �r = qxêx + qyêy , with qx and qy the position
variables of the particle in the confinement along the x and
y directions, respectively, and G is the weak force acting
along the negative-y direction of the structure. A periodic force
with amplitude A0 acts on the particle along the longitudinal
direction. Here x and y are the bath variables that introduce
chaos into the system. For simplicity, we assume the same
coupling strength c in both directions. The two-dimensional
confinement can be imposed by using reflecting boundary
conditions. The system boundary, as shown in Fig. 2, can
be described by using

Bl(qx) = −Bu(qx) = Ly(qx/Lx)4 − 2Ly(qx/Lx)2 − b/2,

(2.10)

where Bl(x) and Bu(x) are the expressions for the lower and
upper boundaries of the system, respectively, Lx corresponds
to the distance between the position of the middle point of the
bottleneck and the maximal width of the structure, the length
Ly represents the narrowing of the boundary function, and b is
the remaining width at the bottleneck. Consequently, the local

half-width of the system can be expressed as

B(qx) = [Bu(qx) − Bl(qx)]/2. (2.11)

For convenience, we now make the dynamics dimensionless
[15–25]. The length is made dimensionless using the character-
istic length scale Lx and time by the characteristic time scale τ

introduced earlier. The description of the dynamics is obtained
by using the dimensionless quantities q̃x = qx/Lx and q̃y =
qy/Lx , implying b̃ = b/Lx and t̃ = t/τ . This ensures that the
wall functions of the system are dimensionless, i.e., B̃l(q̃x) =
Bl(qx)/Lx = −B̃u(q̃x) and B̃(q̃x) = B(qx)/Lx . The forces are
scaled by the quantity FR = �Lx/τ . Thus we can write
G̃ = Gτ/�Lx and Ã0 = A0τ/�Lx . The scaled frequency ω̃

takes the form ω̃ = ωτ . Here x̃ and ỹ can be represented
as x̃ = x/Lx and ỹ = y/Lx and the dimensionless strength
of the chaotic drive has the form c̃ = cτ/�. Again, for the
sake of brevity we dispense with the tilde to represent scaled
quantities. In dimensionless form, the dynamical equation of
motion of the particle can be written as

d�r
dt

= −Gêy + A0sin(ωt)êx + cxêx + cyêy . (2.12)

The dynamics of the system can be decomposed into two
equations along the two perpendicular directions

dqx

dt
= A0sin(ωt) + cx,

(2.13)
dqy

dt
= −G + cy.

Like the previous case, here also c has been taken to be equal
to 1 for all the numerical calculations. The dimensionless
boundary function has the form

B(qx) = [Bu(qx) − Bl(qx)]/2 = −εq4
x + 2εq2

x + b/2,

(2.14)

where ε = Ly/Lx is the aspect ratio. Thus ε is an appro-
priately scaled quantity. Now Eq. (2.13) and the equations of
motion (2.2)–(2.5) for the chaotic bath form a system-reservoir
couple. The confinement is introduced through the reflection
of the particle at the boundary of the system [Eq. (2.14)].

III. NUMERICAL SIMULATIONS: RESULTS AND
DISCUSSION

A. Hysteresis loops

Our aim here is to inquire whether a system with determin-
istic stochasticity admits dynamical hysteresis when driven by
a periodic force. To this end, we define a response-function
integrated probability of residence of particles in any one of
the potential wells or in either of the lobes for the system with
an energy or entropic barrier, respectively. We first consider
the energetic case. Let the probability of finding a particle
at position q and at time t be P (q,t). Then the integrated
probability of residence of the particles in one of the wells
Pi(t) is defined as

Pi(t) =
∫ ±qr

qmax

dq P (q,t), (3.1)

where i = L,R for the left and right wells, respectively,
qmax = 0 is the position of the maximum of the potential well,
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and ±qr correspond to the reflecting ends of the potential.
The limit of integration runs from qmax to −qr to get the
integrated probability of residence of particles in the left well
and from qmax to qr to get that for the right well. This integrated
probability takes into account the total number of particles
residing in either of the potential wells. The same can be
defined for the two-dimensional system for the entropic case.
We consider that the probability of getting a particle at position
(qx,qy) and at time t be given by P (qx,qy,t) for the system
with an entropic barrier. Thus the response function can be
defined as

Pi(t) =
∫ Bu(qx )

Bl (qx )
dqy

∫ ±qxr

qx0

dqxP (qx,qy,t). (3.2)

The subscript i has the same implication as before; i = L,R

are used to designate the left and right lobes of the structure,
respectively. Here one has to perform double integration as
the space is two dimensional. In addition, qx0 represents the
middle point of the bottleneck and ±qxr are the extreme right
and left ends of the structure, respectively. To obtain PL(t) one
has to integrate between the limits qx0 and −qxr and to get
PR(t) integration is from qx0 to qxr . In this case also, Pi(t)
takes care of the total number of particles in left or right lobe.
This integrated probability serves as the response function to
explore hysteresis. For further analysis, we must concentrate
on the normalized integrated probability of residence of the
particles in one well or lobe. We numerically calculate the
normalized integrated probability using Eq. (2.8) along with
the equations of motion for the chaotic bath for the energetic
case. To get the response function for the entropic case, we
numerically solve Eq. (2.13) again with the bath dynamics
along with the consideration of the confinement [Eq. (2.14)].
For the numerical integration, we have used an improved Euler
algorithm, taking the time step �t = 10−3. To exploit the
sensitive dependence on the initial conditions of the chaotic
trajectories, we perform an average over 105 initial conditions
of the bath variables. We use the following parameter sets:
For the potential well we use the ratio a1:b1 = 1:1 and for the
two-dimensional system ε:b = 25:2.

The response function PL(t) is plotted against the oscillat-
ing part of the periodic force sin(ωt) for both the energetic
[Fig. 3(a)] and entropic [Fig. 4(a)] systems for several values

of the frequency of oscillation ω. The integrated probability
of residence of a particle in the left lobe PL(t) forms a
closed loop when plotted against the oscillatory drive. The
periodic force acting on the particles alternately increases and
decreases with time. As expected, the response function also
evolves with time in the same manner, i.e., in a periodic
fashion. However, the interesting thing is that during the
forward and backward movement of the response function,
the same path is not followed. The frequency of oscillation
is almost the same for the external drive and the response
function, but the phase is different. The response function
suffers a phase lag as if it retains a memory of its path. For
example, consider that with the oscillatory force the response
function decreases with time and at one point the periodic force
begins to increase; thus it is expected that the response of the
system towards the external drive would be instantaneous;
however, this is not actually the case. The response function
decreases for some more time before it realizes the increment
of the oscillatory drive. This brings about the formation of
the hysteresis loops. A symmetry breaking of the travel path
of the response function occurs around its equilibrium value
( 1

2 ). The dynamical hysteresis occurs in the system as a result
of competition between two time scales. One is the time
period of oscillation of the external forcing and the other is
the relaxation time of the system towards this drive in the
presence of an energetic or entropic barrier. The relaxation time
is determined by the bath to which the system is connected. In
all previous cases dynamical hysteresis has been studied in the
presence of thermal noise in the system. This random noise
has a stochastic origin. In the present work, however, we focus
on the point that the relaxation time of the system under study
is affected by the chaotic dynamics of the bath, which has a
deterministic origin. Thus the hysteresis loops observed can
be termed deterministic hysteresis loops. Another interesting
thing is that chaos-induced hysteresis loops can be observed
for both energetic and entropic barriers.

The shape and size of the hysteresis loops for the left and
right lobes are similar; only their orientations are different.
This is evident from Figs. 3(b) and 4(b). The shape, size, and
orientation of the hysteresis loops are very much dependent on
the frequency of oscillation [Figs. 3(a) and 4(a)]. The dynam-
ical hysteresis can occur when the time scales modulating the
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FIG. 3. (Color online) (a) Hysteresis loops in the presence of an energy barrier for different values of frequency ω for A0 = 0.4.
(b) Hysteresis loops for left and right lobes at a particular frequency ω = 0.05 and amplitude A0 = 0.4.
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FIG. 4. (Color online) (a) Hysteresis loops in the presence of an entropic barrier for different values of frequency ω for A0 = 1.0.
(b) Hysteresis loops for left and right lobes at a particular frequency ω = 0.004 and amplitude A0 = 1.0.

systems are not very different and disappears in the static limit.
The competition between the two time scales is most effective
when they are comparable. When the frequency of modulation
ω is very small, the time scales differ greatly; the response
function traverses along almost the same path. The same is
true when ω is very large. Then the response function evolves
around a steady value ( 1

2 ) as the system relaxes much faster
than the time period of oscillation of the drive. However, when
the time scales are comparable, the system retains its memory
for a much longer time. As a result, the paths for back and
forth motion become very different. This gives rise to a large
hysteresis loop.

Before proceeding to the following section, two pertinent
points are noteworthy. We have considered a flat distribution of
variables for random initial conditions in our numerical study.
We have carried out numerical analysis with other distributions
also. It has been found that the occurrence of hysteresis loops
is independent of the distribution of variables, but the size of
the loop is dependent on the width of distribution. In addition,
we would like to mention that in order to check the validity

of the present results the calculations have been done for the
regular regime. The hysteresis is not observed in this case,
implying that the chaotic motion of the bath dynamics plays a
key role in bringing about hysteresis.

B. Hysteresis loop area

The deterministic hysteresis that we observe in the presence
of energetic and entropic barriers can be quantified in terms of
a dynamic order parameter such as the quantity Rhys(ω), which
is defined as the integrated value of the response function Pi(t)
over a complete period, i.e., the area covered by the hysteresis
loop. This is represented as

Rhys(ω) =
∮

Pi(t)dA, (3.3)

where A = A0sin(ωt). As discussed in the preceding section,
the loop area would be maximum when the time scales
governing the systems are comparable. This is what is reflected
in the numerical calculation of the loop area. It has been
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FIG. 5. (Color online) (a) Scaled loop area R̄hys = Rhys/A
α
0 against scaled frequency ω̄ = ω/A

γ

0 in the presence of an energetic barrier.
The inset shows the loop area Rhys scaled by the amplitude A0 vs the driving frequency ω plot for three different values of the dimensionless
amplitude A0 in the presence of an energetic barrier; g(ω̄) is the fitting function and has the form g(ω̄) = k1ω̄

1+k2ω̄2 , with k1 = 18.8 and k2 = 36.04.

(b) Scaled loop area R̄hys = Rhys/A
α
0 against scaled frequency ω̄ = ω/A

γ

0 in the presence of an entropic barrier. The inset shows the loop area
Rhys scaled by the amplitude A0 vs the driving frequency ω plot for three different values of the scaled amplitude A0 in the presence of an
entropic barrier; g(ω̄) is the fitting function and has the form g(ω̄) = k1ω̄

1+k2ω̄2 , with k1 = 103.0 and k2 = 3100.0.
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FIG. 6. (Color online) Loop area Rhys vs the driving frequency ω

plot for three different values of G.

found that the loop area tends to zero for very low and very
high frequencies and is maximum at an intermediate value.
The quantity Rhys shows a turnover when plotted against the
frequency of oscillation ω. We have plotted the hysteresis loop
area Rhys against ω for three different values of amplitude
of oscillation for both the energetic [inset of Fig. 5(a)] and
entropic [inset of Fig. 5(b)] systems. In both cases it is shown
that the loop area increases with an increase in amplitude
of oscillation. Another observation is that the position of the
turnover shifts towards the right with increasing amplitude.
This implies that the relaxation time scale of the system is also
influenced by the amplitude through the nonlinearity of the
system and bath dynamics.

For the entropic system G is a parameter that can be used
to tune the system between entropy- and energy-dominated
regimes. We have plotted Rhys against ω for different values
of G (Fig. 6). It has been found that the maximum of Rhys vs
ω curve shifts towards the left with increasing values of G.

C. Scaling relations

It has been discussed earlier that the hysteresis loop area
vanishes in the very-low- and very-high-frequency limits. The
observed variation can be fitted in the form

Rhys(ω) = Aα
0 ωβg

(
ω

A
γ

0

)
, (3.4)

with the scaling exponents α, β, and γ . Here g is the scaling
function that vanishes when the argument of the function tends
to 0 or ∞. It is well known [1] that the exponents depend
predominantly on the dynamic process involved and also on
the ranges of frequency and amplitude. Since under a linear
approximation the loop area vs ω plot fits a Lorentzian curve
[1], we consider the scaling function g of a Lorentzian form in
the low-frequency limit. We scale the frequency by A

γ

0 and g

is the function of the scaled frequency. The loop area variation
is represented by the expression

Rhys(ω̄) = Aα
0

k1ω̄

1 + k2ω̄2
, (3.5)

where ω̄ = ω

A
γ

0
and g(ω̄) = k1ω̄

1+k2ω̄2 . So the scaled area is

R̄hys(ω̄) = Rhys(ω̄)/Aα
0 . (3.6)

If we plot the scaled loop area against the scaled frequency
for different amplitudes, all the curves collapse on a sin-
gle Lorentzian for both energetic [Fig. 5(a)] and entropic
[Fig. 5(b)] barriers. For the system with an energy barrier,
the values of the exponents are α = 2.285 and γ = 0.51. For
the system with an entropic barrier, α = 1.6 and γ = 0.51.
The hysteresis loop area therefore satisfies a scaling law with
exponents that depend on the nature of the barrier.

Finally, a discussion about the nature of dynamical hys-
teresis in relation to a cooperatively interacting system (e.g., a
ferromagnetic system represented by the Ising model with
nearest-neighbor ferromagnetic coupling) is pertinent. We
begin by noting that the ferromagnetic system is a many-body
system, whereas we are dealing here with a few-body system.
The origin of relaxational delay in a few-body system and in
a many-body system is different. The response magnetization
in the latter case captures the basics of dynamical hysteresis
within a mean field description. The response function in
our study is the integrated probability of residence of the
particles in one of the wells or lobes in the sense of an
average (over the ensemble) in the spirit of mean field. The
observed scaling behavior (which manifestly characterizes the
dynamical transition in a many-body system) in the present
study is another hint towards the similarity of the two scenarios,
but does not stem from interacting cooperation per se. Another
aspect of dynamical hysteresis is that the variation of loop
area as a function of frequency is reminiscent of the stochastic
resonance phenomenon where the turnover in the rate of escape
(inverse of the mean first-passage time) is observed due to
the periodic oscillation of the effective energetic and entropic
barriers. However, a careful analysis reveals [53] that the loop
area essentially takes care of the average effect that includes
not only the mean first-passage time but also the higher
moments. Thus the observed effect is distinct from stochastic
resonance.

IV. CONCLUSION

Although static hysteresis as a result of the equilibrium
response of a cooperatively interacting many-body system,
such as a magnet, has been well known for a long time, the
nonequilibrium response of the system to a time-dependent
drive has been the subject of more recent research. We have
explored this nonequilibrium response when the periodically
driven system in question is kept in contact with a chaotic bath,
i.e., a few degree-of-freedom dynamical system. Two distinct
situations governed by energetic and entropic barriers have
been considered. Dynamical hysteresis carries the signature
of the nonequilibrium response in terms of closed loops of
a nonvanishing area in the response-function–periodic-drive
plot; the response function characterizes the probability of
finding the particle in one of the two wells of the double-well
potential (for the energetic case) or in one of the two lobes of
a bilobal enclosure (for the entropic case). It has been shown
that the hysteresis effect is optimal when the hysteresis loop
area exhibits a maximum at a given frequency of the drive
and vanishes in the static limit. The analysis of the variation
of the hysteresis loop area with frequency reveals a generic
form that can be captured by appropriate scaling relations. The
scaling exponents for the energetic and the entropic barriers
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are different, implying the distinctive nature of the underlying
dynamical processes in the two cases. Our analysis shows that
the memory effect under the influence of the deterministic
noise of a dynamical system can play a decisive role in
the dynamic response even for a few-degrees-of-freedom
system.
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