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Time and energy in team-based search
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When an object needs to be found in a random environment by a team of searchers, we obtain a formula for
the total number of searchers needed if at least k of them must find the object by some large time S. We then
compute the energy consumed by the N searchers if they are all stopped as soon as k are successful, and we show
that the energy consumed decreases as N increases. We also consider the case in which the successful ones stop
but the unsuccessful ones continue until a time-out or until they are destroyed by some other “natural” cause,
and in this case we see that the energy consumed increases with N as one might expect. The transform-based
analysis used assumes that the searchers’ motion is described by diffusion processes, that the search space is
infinite and homogeneous, that searchers can be destroyed or become permanently lost as they proceed, and that
a time-out mechanism is used so that any searcher that exceeds this time-out and has not succeeded in its quest
will be removed and replaced by a new searcher that behaves stochastically and independently of its predecessor.

DOI: 10.1103/PhysRevE.87.032125 PACS number(s): 05.20.−y, 64.60.De, 87.15.−v, 89.70.−a

I. INTRODUCTION

There are many examples in science and engineering [1–9]
that involve search in a random and imperfectly known
medium, where the search space is much larger than the
dimensions of the searcher and of the object being sought, so
that the searcher moves at random in an infinite space based on
imperfect knowledge (or bad advice) about which way to go.
The searcher can also be destroyed or trapped in a location from
which it cannot extract itself. Examples include the motion of
a particle toward an oppositely charged site in a random field,
proteins searching for a binding site on DNA [10], a search
for the destination node in a very large network [11], or robots
searching for concealed objects [12]. Multiple searchers [13]
increase the chances of success if any one of them may be
destroyed. In [14], the average travel time of a packet to a
destination in an infinitely large multihop network is obtained
using a mixed discrete and Brownian motion. Blocking and
resending at specific distances from the destination during a
search [15], and the analysis of time-outs to reduce the time
needed to find the object, were studied for single [16] and
multiple [17] diffusive searchers. Other work [18] addresses
spatially nonhomogeneous environments, e.g., when search
becomes difficult in the vicinity of the object due to attempts
to impede the searcher.

A. The model

If Zt is the non-negative distance of a searcher to the
object being sought at time t � 0 given that the initial
distance at time t = 0 is Z0 = D � 0, the total search time
for a single searcher is T = inf{t � 0|Zt = 0}. We model
{Zt : t � 0} as a homogeneous diffusion process [19,20] in
which the mean change in the searcher’s distance to the object
being sought in a small time interval �t is b�t , while the
variance of the distance traveled by the searcher over the same
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time interval is c�t , where b = lim�t→0
E[Zt+�t−Zt |Zt=z]

�t
and

c = lim�t→0
E[(Zt+�t−Zt )2−(E[Zt+�t−Zt ])2|Zt=z]

�t
. When b < 0, on

average the searcher gets closer over time to the object being
sought. If b � 0, the searcher receives wrong directions or
is misled. Also, we assume that the searcher may get lost or
be destroyed with probability λ�t in a small time interval
[t,t + �t), where λ � 0 is the destruction rate. A time-out
mechanism restarts the search from the initial location if the
object is not found by τ time units after the search starts, or after
its preceding time-out. After the time-out, an additional delay
with an exponentially distributed random variable with param-
eter μ is incurred before the search restarts. The probability that
a single searcher has reached the object being sought by time t

is denoted by G(t |D) ≡ Pr[T � t] and its probability density
function (pdf) is g(t |D). Since every expression is conditioned
on the initial distance D, in the sequel we will simply write
G(t |D) = G(t) and g(t |D) = g(t). In many applications, both
the time and energy needed for a successful search is of interest
(predators rely on their stored energy to find their prey, robots
run on batteries, and the nodes that forward packets in wireless
networks are often battery-operated).

If the searcher consumes energy only while it is moving
at one energy unit per unit time, this is equivalent to stating
that the energy consumed by a searcher J is the same as the
time it spends in motion, to the exclusion of epochs spent
waiting for a time-out to relaunch it. In [13], N searchers
are sent out from the same initial location in a quest for an
object located at distance D, each moving independently of
the others according to the diffusion process described above,
and the resulting mixed partial-ordinary differential equations
for a Lévy flight process are solved to compute the average
search time.

B. Main results

In this paper, we focus on the case in which at least
k out of N searchers must be successful, and we obtain
approximate and asymptotic estimates for the search times
and exact expressions for the energy consumption. Indeed, in
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hunting or foraging, search may take place as a group effort [1],
and k out of N members of a team must be successful. In some
communication networks [21], packets are encoded so that the
information transmitted is correctly received when at least k

out of N transmitted packets arrive at the destination. Thus in
this paper we study both the time and the energy needed to find
an object by at least k searchers out of the N , when searchers
may be destroyed, and a “time-out” limits the lifetime of an
unsuccessful searcher. The energy consumed is computed (i)
when the search is stopped as soon as the first k searchers find
the object, and (ii) when the remaining searchers (other than the
first k successful ones) continue their search until successful
completion or until they are destroyed or stopped by their
time-out. The latter case is relevant when the source cannot
communicate with searchers or when successful searchers
cannot communicate with their peers.

Our main results include a formula for the total number
of searchers that are needed if at least k of them must find
the object by time S, which is expressed as NS,k

∼= k
G(S) (cf.

Sec. II C) when S is large. In Sec. II A, we show that for large
values of time, G(t) is exponentially distributed with parameter
βT = [( 1

r
+ 1

μ
)e[b+

√
b2+2c(λ+r)]D/c]−1.

Then in Sec. III we obtain the energy consumed by
the N searchers if they are all stopped as soon as k are
successful: we see that the energy consumed decreases as N

increases. However, when the successful searchers stop but the
unsuccessful ones continue until a time-out or until they are
destroyed by some other “natural” cause, we observe that the
energy consumed increases with N , as shown in Fig. 3.

II. OBTAINING G(t)

The probability that k out of N independent searchers will
be successful by time t is obviously

Gk,N (t) =
(

N

k

)
G(t)k[1 − G(t)]N−k. (1)

We know that the time until return to the origin of a pure
diffusion process starting at distance D is [22]

g0(t) = D√
2πct3

e− (D+bt)2

2ct , (2)

where the subscript 0 indicates that the quantity refers to a
pure diffusion. The PDF of the searcher’s distance z to the
destination at time t is

f0(z,t) = e− b2 t
2c e− b

c
(D−z)

√
2πct

[
e− (z−D)2

2ct − e− (z+D)2

2ct

]
(3)

and its cumulative distribution function (CDF) [23] is

G0(t) = 1

2

[
erfc

(
D + bt√

2ct

)
+ e−2bD/c erfc

(
D − bt√

2ct

)]
,

(4)

where erfc(x) = 2√
π

∫ ∞
x

e−y2
dy and b < 0 is necessary for

E[T0] = −D/b to be finite, and if b > 0 there is a nonzero
probability that the searcher will never reach the destination:

G0(∞) =
{

1, b � 0,

e−2bD/c, b > 0.

If b = 0, the searcher will almost surely reach the destination,
but in a time which is infinite on average. Writing the Laplace
transform (LT) of any α(t) as ᾱ(s) = ∫ ∞

0 α(t)e−st dt , the above
quantities yield

ḡ0(s) = e−(b+√
b2+2cs)D/c,

(5)

f̄0(z,s) = eb(z−D)/c

√
b2 + 2cs

[
e−

√
b2+2cs

c
|z−D| − e−

√
b2+2cs

c
(z+D)

]
.

In the model with loss and time-out, let X and Y be the mutually
independent random variables representing the time to the next
loss and the time to the next time-out, respectively, which
are exponentially distributed with parameters λ and r . Then
γι(t), the PDF of the duration of a search time until its first
interruption, is γι(t)dt = Pr[t � min(X,Y ) � t + dt,T0 > t]
since T0 is the total search time if there is no interruption and
its PDF is given in (2). Therefore,

γι(t) = (λ + r)e−(λ+r)t [1 − G0(t)],
(6)

γ̄ι(s) = λ + r

s + λ + r
[1 − ḡ0(s + λ + r)].

Search is interrupted randomly several times in this manner,
and after each interruption it starts again at the origin after a
further delay. The last and hence successful attempt at reaching
the destination has a duration whose PDF γd (t)dt = Pr[t �
T0 � t + dt, min(X,Y ) > t] or

γd (t) = g0(t)e−(λ+r)t , γ̄d (s) = ḡ0(s + λ + r). (7)

If the searcher is successful in locating the object being
sought in its first attempt, then the search time and energy
consumption are equivalent. On the other hand, if the search
is interrupted at least once, then T will exceed J by the
amount of time spent in the wait-for-restart states. Therefore,
the joint density of T and J can be obtained by accounting
for the possibilities of locating the object being sought
in 1,2, . . . attempts while including the time spent in the
wait-for-restart states in T but not in J . Let φ(x,t) be
the joint probability density of search time T and energy
consumption J : φ(x,t)dx dt = Pr[x � J � x + dx,t � T �
t + dt]. Since each attempt is independent of its predecessors,
we have for t � x,

φ(x,t) = γd (t)δ(t − x)

+
∫ x

0
γι(y)ψ(t − x)γd (x − y)dy + · · ·

and φ(x,t) = 0 for t < x. ψ(t) is the PDF of the time interval
between the blocking or time-out of a search and the beginning
of a new one (during which no energy is consumed):

ψ(t) = r

λ + r
μe−μt + λ

λ + r

∫ t

0
re−ryμe−μ(t−y)dy,

(8)
ψ̄(s) = s + λ + r

λ + r

μr

(s + μ)(s + r)
.

Evaluating the LT of φ(x,t) with respect to the time variable t

yields

φ̄(x,s) = γd (x)e−sx + ψ̄(s)e−sx

∫ x

0
γι(y)γd (x − y)dy + · · · ,
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and taking the LT with respect to the energy variable x and
summing the resulting infinite geometric series, we obtain the
two-dimensional LT with complex variables ξ and s,

φ̂(ξ,s) = γ̄d (s + ξ )

1 − ψ̄(s)γ̄ι(s + ξ )
. (9)

The LT of the PDF of the total search time is

ḡ(s) = φ̂(0,s) = γ̄d (s)

1 − ψ̄(s)γ̄ι(s)

= (s + μ)(s + r)

s(s + μ + r)e[b+
√

b2+2c(s+λ+r)]D/c + μr
. (10)

In the special case in which b = 0, λ = 0, and μ → ∞, ḡ(s)
reduces to the expression obtained in [16].

A. Approximate inversion of the transform

Inversion of the LTs for small and large values of the real
variable is performed by taking the limit of the corresponding
Laplace variable as it tends to ∞ and 0:

ḡ(s) ∼
{ (s+μ)(s+r)

s(s+μ+r)e[b+
√

b2+2c(s+λ+r)]D/c
, s large,

μr

s(μ+r)e[b+
√

b2+2c(λ+r)]D/c+μr
, s small.

As a consequence, we have

g(t) ∼
{

γd (t) + μr

μ+r

[
�d (t) − ∫ t

0 γd (t − τ )e−(μ+r)τ dτ
]
, t small,

βT e−βT t , t large,
(11)

where �d (t) = ∫ t

0 γd (τ )dτ and

β−1
T =

[
1

r
+ 1

μ

]
e[b+

√
b2+2c(λ+r)]D/c. (12)

Similarly for the PDF of the energy consumption h̄(ξ ) ≡
φ̂(ξ,0), we have

h̄(ξ ) ∼
{ ξ+λ+r

ξe[b+
√

b2+2c(ξ+λ+r)]D/c
, ξ large,

λ+r

ξe[b+
√

b2+2c(λ+r)]D/c+λ+r
, ξ small,

so that

h(x) ∼
{

γd (x) + (λ + r)�d (x), x small,

βJ e−βJ x, x large,
(13)

where

β−1
J = e[b+

√
b2+2c(λ+r)]D/c

λ + r
.

B. Numerical inversion

Since it may not be possible to analytically invert ḡ(s) and
h̄(ξ ) for all values of t and x, we perform numerical inversion
using MATLAB [24] with the algorithm proposed in [25].
Figure 1 shows that the pdf of the search time and energy
consumption using asymptotics and the numerical inversion
of [25] agree well for a wide range of delay and energy values.

C. Searchers needed for k successes in time S

Let Ti, i = 1, . . . ,N , be independent random variables,
each of them with a probability distribution function G(t);
they represent the time it takes for each of the N searchers to
find the object. Let T1,N � T2,N � · · · � TN,N be the variables
Ti rearranged in ascending order, i.e., the corresponding order
statistics, and define G−1(p) = inf{t : G(t) � p}, 0 < p < 1,
the quantile function of the distribution of the search time

for a single searcher. When N is large, it is known that
T�pN�,N , the pth sample quantile, is asymptotically normally
distributed [26]:

T�pN�,N ∼ N
(

G−1(p),
p(1 − p)

N{g[G−1(p)]}2

)
. (14)

Thus for large N the distribution of the time for k out of N

searchers to be successful tends to a constant equal to the
p ≈ k/N th quantile of G(t). As a consequence, the number
of searchers NS,k required to find the object in time S when N

is large is given approximately by

NS,k
∼=

⌈
k

G(S)

⌉
. (15)

Since convergence to the normal distribution (14) is fast,
the expression (15) provides a good approximation even
for relatively small NS,k . The good agreement between the
asymptotic approximation of (15) and GN,k(S) from (1),
and the numerical inversion of [25] discussed in Sec. II, are
illustrated in Fig. 2.

III. ENERGY EXPENDITURE

To derive the energy required for k out of N independent
searchers to locate the object, we need to evaluate the time-
dependent pdf for the energy expended by a searcher. Let the
random variables St and Jt represent the state of a searcher at
time t � 0 and its energy consumption up to t , respectively, and
define the joint pdf hp(x,t)dx = Pr[x � Jt � x + dx,St =
p], p ∈ {d,ι,a}, where we have the following cases:

Case d: The searcher reached the destination at some time
τ � t so that

hd (x,t) =
∫ t

x

φ(x,τ )dτ, ĥd (ξ,s) = φ̂(ξ,s)

s
. (16)
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FIG. 1. (Color online) The figure shows the pdf of search time g(t)
(above) and energy consumption h(t) (below) when the searcher loss
rate is λ = 0.05, b = 0.1, and c = 1, average time-out 1/r = 100, the
average time that separates a time-out from the instant when a new
searcher is sent out is 1/μ = 10, and the initial distance of the object
from the searchers is D = 10. For this example that has a small value
of b and hence relatively high uncertainty in the search direction, the
pdf of the search time has a long tail, which is apparent from the
logarithmic scale on the horizontal axis.

Case ι: The searcher is idle at time t due to a blocking or
time-out that has not yet ended:

hι(x,t) = γι(x)[1 − �(t − x)] +
∫ x

0

∫ t−x

0
γι(y1)ψ(y2)γι

× (x − y1)[1 − �(t − x − y2)]dy2dy1 + · · · ,

where �(t) = ∫ t

0 ψ(τ )dτ . Here the ith term denotes the case
in which the time instant t occurs after the search process is
suspended i times but before restarting the (i + 1)th search
attempt. Taking the double LT of the above equation yields:

ĥι(ξ,s) = [1 − ψ̄(s)]γ̄ι(s + ξ )

s[1 − ψ̄(s)γ̄ι(s + ξ )]
= 1

s

[
1 − 1 − γ̄ι(s + ξ )

1 − ψ̄(s)γ̄ι(s + ξ )

]
.

(17)

Case a: The searcher is active (i.e., moving through the
search space) at time t :

ha(x,t) = e−(λ+r)t [1 − G0(t)]δ(x − t) +
∫ x

0
γι(y)

×ψ(t − x)e−(λ+r)(x−y)[1 − G0(x − y)]dy + · · · .

FIG. 2. Comparison of the asymptotic approximation with exact
analysis for the total number of searchers NS,k that are required, so
that k of them find the object within time S, for different values of k.
The parameters are the same as in Fig. 1.

In the first term, no time-out or blocking has occurred up to
t and consequently the total energy consumption is equal to
t . The ith term corresponds to the case in which at time t the
search is ongoing after it was restarted i − 1 times so that the
pdf of the energy utilization up to t is given by the convolution
of the pdf of i − 1 interrupted search periods (each followed
by an idle period in which energy is not consumed) and a single
search period which does not end before the time instant t . We
then end up with

ĥa(ξ,s) = 1 − ḡ0(s + ξ + λ + r)

[s + ξ + λ + r][1 − ψ̄(s)γ̄ι(s + ξ )]

= 1

λ + r

γ̄ι(s + ξ )

1 − ψ̄(s)γ̄ι(s + ξ )
. (18)

Note that
∑

p={d,ι,a} hp(x,t) ≡ h(x,t) is the pdf of the energy
consumed by the searcher up to t :

ĥ(ξ,s) = 1

s

[
1 − ξ

λ + r

γ̄ι(s + ξ )

1 − ψ̄(s)γ̄ι(s + ξ )

]
(19)

and limt→∞ h(x,t) = h(x) as expected.
When search is suspended immediately after the object

being sought is found by k searchers, the total energy
consumption can be obtained directly using our preceding
analysis:

Result 1. Let J−
k,N be the total energy consumption up to the

time at which a k-subset of N searchers finds the object being
sought; the LT of its pdf is given by

h̄−
k,N (ξ ) = N !

(k − 1)!(N − k)!

∫ ∞

0
h̄d (ξ,t)k−1φ̄(ξ,t)

× [h̄ι(ξ,t) + h̄a(ξ,t)]N−kdt. (20)

Proof. For the total consumption to be equal to x with a
search time t , it is necessary that exactly k − 1, 1, and N − k

searchers locate the object being sought in the intervals [0,t],
[t,t + dt], and [t + dt,∞], respectively, and that the energy
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expended by each individual searcher is at most t while their
sum is x. The probabilities that a search succeeds in the three
respective intervals while consuming w units of energy up to t

are hd (w,t)dw, φ(w,t)dw dt , and [hι(w,t) + ha(w,t)]dw; the
result then follows by accounting for all possible combinations,
convolving with respect to the energy variable (which is
equivalent to multiplication in the ξ domain), and integrating
over all possible values of t .

On the other hand, if all active but unsuccessful searchers
continue searching after the first k successful ones complete
their search, we need to know the energy expended by an active
searcher up to t and its distance to the object being sought so as
to compute the additional energy consumed before it actually
stops moving. Define

f (z,x,t)dz dx = Pr[x � Jt � x + dx,z � Zt � z + dz],

which can be derived using f0(z,t) from (3) as

f (z,x,t) = e−(λ+r)t f0(z,t)δ(x − t) +
∫ x

0
γι(τ )ψ(t − x)

× f0(z,x − τ )e−(λ+r)(x−τ )dτ

+ · · · , x � t,z > 0,

where the first term is the probability that the searcher reaches
distance z in time t without being interrupted so that x = t ;
the second term is the probability that the search is stopped
at some time τ ∈ [0,x], it is restarted after t − x time units,
and distance z is reached during the next search attempt in
a time interval x − τ in which no interruption occurs. More
generally, the ith term represents the case in which the time
instant t lies in the ith attempt to locate the object, when the
searcher is at distance z and has consumed x units of energy.
The two-dimensional LT of f (z,x,t) is

f̂ (z,ξ,s) = f̄0(z,s + ξ + λ + r)

1 − ψ̄(s)γ̄ι(s + ξ )
. (21)

Note that f (z,x,t) satisfies the following equalities:∫ t

0
f (z,x,t)dx = f (z,t),

∫ ∞

0
f (z,x,t)dz = ha(x,t)

so that

f̄ (z,s) = f̂ (z,0,s) = f̄0(z,s + λ + r)

1 − ψ̄(s)γ̄ι(s)
. (22)

Result 2. If there is no mechanism to immediately stop
active searchers after the completion of the search, then the
pdf of the total energy consumed J+

k,N is given by

h̄+
k,N (ξ ) = N !

(k − 1)!(N − k)!

∫ ∞

0
h̄d (ξ,t)k−1φ̄(ξ,t)

× [h̄ι(ξ,t) + h̄c(ξ,t)]N−kdt, (23)

where hc(ξ,t) is the pdf for the total energy expended by an
unsuccessful active searcher until it stops moving after the
search ends at t :

ĥc(ξ,s) = 1

s(ξ + λ + r)

sγ̄ι(s + ξ ) + ξ [γ̄d (ξ ) − γ̄d (s + ξ )]

1 − ψ̄(s)γ̄ι(s + ξ )
.

To show this result, notice that the pdf h+
k,N is evaluated in

the same manner as h−
k,N except that we use hc instead of ha

to take account of the additional energy consumed by active
searchers upon the completion of the search. More precisely,
hc(x,t) takes the following form:

hc(x,t) =
∫ ∞

0

∫ x

0
f (z,x − u,t)[γι(u|z) + γd (u|z)]du dz,

(24)

where γι(.|z) and γd (.|z) are computed as in (6) and (7),
respectively, but with the initial distance being z instead of D.
Hence, if the object being sought is found at some time t while
a searcher is at distance z > 0 and has consumed x − u units of
energy, then the searcher will continue to move and consume
additional u units of energy with probability γι(u|z)du if it
is interrupted before reaching the destination or γd (u|z)du

otherwise. Finally, hc(y,t) is obtained by integrating over all
possible values of the distance z > 0 and energy u ∈ [0,x] at
the time instant t , and its two-dimensional LT follows directly.

The total average energy consumption of a k-out-of-N
search is

E[J±
k,N ] = − lim

ξ→0

dh̄±
k,N (ξ )

dξ
= − lim

ξ→0

N !

(k − 1)!(N − k)!

×
∫ ∞

0
dt

[
G(t)k−1[1 − G(t)]N−k ∂φ̄(ξ,t)

∂ξ

+ (k − 1)G(t)k−2g(t)[1 − G(t)]N−k ∂h̄d (ξ,t)

∂ξ

+ (N − k)G(t)k−1g(t)[1 − G(t)]N−k−1

×
(

∂h̄ι(ξ,t)

∂ξ
+ ∂h̄∗(ξ,t)

∂ξ

)]
,

where h∗ is substituted by either ha or hc, depending on
whether active searchers stop or continue after the object
being sought is found. The LTs of ∂φ̄(ξ,t)

∂ξ
, ∂h̄d (ξ,t)

∂ξ
, and

∂
∂ξ

[h̄ι(ξ,t) + h̄∗(ξ,t)] are, respectively,

φ̂′(0,s) = −ḡ(s)

1 − ψ̄(s)γ̄ι(s)

1

(s + μ)(s + r)

×
[
μrĥa(0,s) + s(s + μ + r)D√

b2 + 2c(s + λ + r)

]
,

ĥ′
d (0,s) = φ̂′(0,s)

s
,

ĥ′
ι(0,s) + ĥ′

a(0,s) = − ĥa(0,s)

s
− ĥ′

d (0,s),

ĥ′
ι(0,s) + ĥ′

c(0,s) = − ĥa(0,s)

s
− ĥ′

d (0,s) + 1

λ + r

×
[

ḡ0(λ + r)

1 − ψ̄(s)γ̄ι(s)
− ḡ(s) − ĥa(0,s)

]
.

Hence only one-dimensional LT numerical inversion opera-
tions need to be performed in order to compute E[J−

k,N ] and
E[J+

k,N ].
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FIG. 3. Average energy consumption with and without a stopping
mechanism vs time-out 1/r for k = 5 and various values of N ,
with b = 0.15, c = 1.25, λ = 0.001, μ = 0.1, and D = 10. When
N increases, the energy consumed decreases with the stopping
mechanism, and the opposite is true without the stopping mechanism.

In Fig. 3, we show E[J−
k,N ] and E[J+

k,N ] for k = 5 versus the
time-out 1/r for different values of N . The numerical results

indicate that the minimum amount of energy consumed until
the object is found (i.e., E[J−

k,N ]) does not vary much with the
number of searchers N . However, in the absence of a stopping
mechanism, the minimum energy consumed increases with N

and the time-out value that minimizes the energy expended
is smaller. The intuitive but interesting observation is that
when N increases, the energy consumed increases if there
is no stopping mechanism, while the opposite occurs with the
stopping mechanism.

IV. FUTURE WORK

There are several directions in which we can extend
this work. We have assumed that the N diffusive searchers
move independently of each other; but there are cases that
involve collaborative behavior or use of memory, e.g., a
searcher which has exhaustively searched a particular area
may leave “negative hints” that would encourage others to
move elsewhere. It would also be interesting to generalize the
analysis to nonhomogeneous environments and study attacks
by a swarm of searchers. Furthermore, approaches using
the “multiple class” artefact [27,28] could be used to study
how effective search teams could be composed from diverse
individuals, and techniques for allocating the work to different
searchers [29] could also be considered.
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