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In this paper we present an algorithm for exact generation of multivariate samples with prespecified marginal
distributions and a given correlation matrix, based on a mixture of Fréchet-Hoeftding bounds and marginal
products. In the bivariate case, the algorithm can accommodate any among the theoretically possible correlation
coefficients, and explicitly provides a connection between simulation and the minimum correlation attainable
for different distribution families. We calculate the minimum correlations in several common distributional

examples, including in some that have not been looked at before. As an illustration, we provide the details and
results of implementing the algorithm for generating three-dimensional negatively and positively correlated Beta
random variables, making it the only noncopula algorithm for correlated Beta simulation in dimensions greater
than two. This work has potential for impact in a variety of fields where simulation of multivariate stochastic

components is desired.
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I. INTRODUCTION

The original question of generating multivariate probability
distributions with prespecified margins has a long history, dat-
ing in part back to the work of Wigner [1] on thermodynamic
equilibria. The general form of the problem was studied by
Fréchet [2] and Hoeffding [3] in a body of work which grew out
of the problem originally posed by Lévy [4]. Today, this work
falls under the scope of Fréchet-Hoeffding classes. An excel-
lent overview of the developments in this field can be found in
Dall’ Aglio et al. [5], Riischendorf ez al. [6], and Conway [7].

Today, algorithms for generation of correlated random
variables with prespecified marginal distributions play an
important role in simulation of stochastic processes and
hybrid deterministic-stochastic systems. Such algorithms are
encountered in a variety of fields—for example, statistics
and applied probability [8—11], finance [12], environmental
science [13], physics [14], engineering [15], and ecology
where “demographic” or “weather” stochasticity is an increas-
ingly more relevant component of species dynamics [16].
Much of the development of these algorithms has so far
relied on coupling ideas—or antithetic coupling for negatively-
correlated variables [17]—and copula-based methods [18,19].

Copula methods, in particular, have recently become widely
used in generation of samples from multivariate distributions
with prespecified marginals and a dependency function [19].
Copula methodology relies on the results of Sklar [18] who
proved that a multivariate distribution can be characterized
(uniquely in the case of continuous distributions) by the
set of its marginal distributions and a “copula” function
which describes the dependence between the components. The
dependence among the original variables is then translated,
via the copula function, into the dependence on the scale of
uniform random variables. Consequently, the entire desired
multivariate distribution is obtained via a transformation
of these correlated uniform variables. Unfortunately, the
correlation is not preserved under these transformations, and
the sampling is not exact.

In this paper we present an alternative algorithm that gener-
ates exact multivariate samples with prespecified marginals
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and a given correlation matrix. We note that specifying
marginal distributions and a correlation matrix is in general not
enough to completely determine the entire multivariate distri-
bution. Nonetheless, specifying marginal distributions and a
set of linear relationships (through a set of correlation coeffi-
cients) among the random variables is frequently done, perhaps
due to the strong intuitiveness of the linear relationship.

The algorithm can be used for generating a realization of a
set of random variables X, X>,...,X; such that each variable
X has a specified marginal distribution F;, and such that each
pairwise correlation coefficient cor(X;,X;) equals some set
value p;;. We take the correlation coefficient between two
random variables X; and X ; to be defined as

cov(X;,X;)

cor(X;,X;) =
O’X,.O'X/

where cov(X;, X ;) stands for covariance between X; and X ;.

The paper is organized as follows: Section II introduces the
basic idea of the algorithm, which allows for fast simulation
and can accommodate any among the theoretically plausible
correlation ranges. We discuss its implementation and per-
formance, and present detailed examples for several bivariate
distribution families (uniform, arcsine, Weibull, exponential,
Erlang, Beta, and Gaussian) in Sec. II B. We also calculate
the minimal correlations (or maximum negative correlations
as they are called in Kotz er al. [20]) for these distributions,
including some that have not been obtained before. In Sec. III
we present a multivariate extension of the algorithm. Finally,
Sec. IV concludes the paper with a brief summary of benefits
and limitations of the proposed approach.

II. THE ALGORITHM FOR GENERATING BIVARIATE
SAMPLES FROM PRESCRIBED MARGINALS WITH
SPECIFIED CORRELATION

Perhaps not surprisingly, over the years the problem of
generating bivariate distributions with fixed marginals and
a specified correlation coefficient has gotten more attention
from the simulation communities (e.g., [21]) than from the

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.87.032114

VANJA M. DUKIC AND NEVENA MARIC

probability community [22]. A notable exception is a work
by Johnson and Tenenbein [23], who provide a bivariate
generation algorithm based on a method different from the one
presented in this paper. Moreover, bivariate distributions have
been studied mostly for marginals with common distributional
form, such as the normal, exponential, or Gamma (see, e.g.,
[20]). The case of exponential marginals is particularly well
studied; however, providing a constructive algorithm that
can produce all theoretically possible correlation coefficients
still proved to be a significant theoretical advance [24]. For
general marginals, Michael and Schucany [25] introduced a
mixture-density based (hierarchical) approach, although this
algorithm relies on finding a feasible mixture density for each
example, which need not always be straightforward.

Trivariate reduction methods were introduced initially for
construction of dependent Gamma random variable pairs (see,
for example, [10,26,27]), as an alternative to once compu-
tationally costly distribution inversion based methods. The
trivariate reduction idea relies on the use of three independent
variables in order to obtain one pair of correlated variables.
However, these methods are limited to additive families of
distributions, such as Gamma or Poisson. The algorithm we
present here will not have that limitation.

The algorithm in this paper is a hybrid version of the
trivariate reduction method, as it relies on three uniformly
distributed random variables to produce a pair, but it is not
inversion-free. It is based on the following reasoning: With
a certain probability we use the same source of randomness
in the construction of the pair, and two independent sources
otherwise. The probability used to determine which source is
used will be closely related to the correlation coefficient.

To set notation, let F' and G be cumulative distribution
functions (CDFs) with finite positive variances, and let X
and Y be random variables with distributions F and G,
respectively, X ~ F and Y ~ G. The first question to be
asked is whether any correlation p € [—1,1] can be attained
for the pair (X,Y). The answer to that question is negative,
and dates back to the work of Hoeffding [3] and Fréchet [2],
where the concept of extremal distributions was originally
introduced: If we let TT(F,G) be the set of all bivariate CDFs
having F and G as marginals, then among the elements of
[1(F,G), there are CDFs H* and H, which have maximum
and minimum correlation coefficient (p* and p,.), respectively.
Such extremal distributions are also called (upper and lower)
Fréchet-Hoeffding bounds. They were later characterized
by Whitt [28] who provides the following two equivalent
statements.

Theorem 1 (Hoeffding [3]). For any F and G with finite
positive variances,

H*(x,y) = min{F(x),G(y)},
H,(x,y) = max{0,[F(x) + G(y) — 1]},

for all (x,y) € R
Theorem 2 (Hoeffding [3]). For any F and G with finite
positive variances,

(F~'(U),G~"(U)) has CDF H*
and (F~'(U),G~(1 — U)) has CDF H,,
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where U has uniform distribution on [0,1] and F~! and G~!
are inverse distribution functions, defined as F~!(y) = inf{x :
F(x) > v}, and G~'(y) = inf{x : G(x) > y}, respectively.

Fréchet [2] suggested that any system of bivariate distri-
butions with specified marginals F and G should include H,
and H* as limiting cases [20]. The crux of our algorithm
is precisely in this reasoning, as we construct multivariate
distributions through careful blending of Fréchet-Hoeffding
bounds and marginal products. This blending, although clearly
apparent in the bivariate case, becomes less obvious in
dimensions greater than two and in the presence of negative
correlations.

A. The basics: Bivariate algorithm

Suppose F and G are desired marginal distributions, with
finite positive variances. Then the main bivariate problem can
be stated as follows: Construct X and Y suchthat X ~ F, Y ~
G, and correlation cor(X,Y) = p. Here, p € [ps,0*], where
px and p* are minimum and maximum theoretically possible
correlation coefficients, respectively.

Let mp,or and mg,og be the first moments and standard
deviations corresponding to F and G, respectively. Let ¢ be
an algorithm such that ¢(U) ~ F, and let ¥ be an algorithm
such that ¥(U) ~ G, where U is a uniformly distributed
random variable on [0,1]. (It can be assumed, although it is
not necessary, that ¢ = F~' and ¥ = G!). Let V also be a
uniform random variable on [0, 1] and define

El¢pU)Y (V)] —mpmg

VULV = : (1
OF0OG

where E[-] is used to denote the expected value of a random
variable. To simplify notation, we will denote ¢®¢ as c?.
Also, observe that ¢?(U,U) = [E(X?) — sz]/oﬁ =1, for
X =¢U)~F.

The following construction, presented as Algorithm 1
below, will yield a pair of variables (X,Y), such that X ~ F,
Y ~ G, and cor(X,Y) = p for p € [p,0*].

ALGORITHM 1: Construction of two random variables with
prescribed marginal distributions F,G and correlation coefficient p.

1: sample U,V,W ~ U(0,1), independently
2: let X = ¢(U)

3: if p > 0 then

4: letU' =U.

5: else

6: letU' =1-U.

7: end if

8 ifW < p/c®V(U,U’) then
9: let Y =y (U

10:  else

11: let Y = (V)

12:  endif

13: RETURN (X.,Y)

Theorem 3. 1f (X,Y) is generated by Algorithm 1, then
(@) X~F,Y~G,andcor(X,Y)=p,if p/c?®V(U,U") < 1.
(b) Ifp = F~1,p = G~!, then
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(1) (X,Y) has the joint distribution H(x,y), where

for p 2 0: H(x,y)
L ) + (1 - %)F(x)G@);
P P
for p < 0: H(x,y)

L Ho )+ (1 - ﬁ)F(x)G(y).
P Dx

*

(i) Algorithm 1 is applicable for all p, < p < p*.

Proof: (a) By construction, X ~ F, Y ~ G. Using 1(-) to
denote the indicator function, E[-] to denote expected value
of a random quantity, and c in the place of p/c? ¥ (U,U’), we
have

E[XY]
= E[XY1I(W < )]+ E[XYL(W > ¢)]
= E[p()y(UHN(W < o)] + E[¢U)y(VIL(W > 0)]
(U, V, W independent)
= P(W < o)E[p(U)Y (U] + P(W > c)E¢(U)EY (V)
= cE[¢pU)Y(UN + (1 — cympmg
= c(E[p(U)Y (U] — mpmg) +mpmg.

Then, from (1), it follows that cor(X,Y) = p. Observe also that
when ¢ and ¢ are nondecreasing functions, cov(¢(U), ¥ (U))
is always positive, while cov(p(U),¥ (1 — U)) is always
negative. This can be verified easily using a coupling argument
as in [17]. Inverse distribution functions ¢ = F~',¢y = G~!
are of course nondecreasing.

(b) For positive p, Algorithm 1 produces (F~'(U),G~(U))
with probability p/cf ¢"'(U,U). By Theorem 2, the pair
(F~Y(U),G~(U)) has the CDF H*(x,y). With probability 1 —
p/cF 67 (U, U), the outcome of Algorithm 1 is a pair of two
independent variables (F “LU),G~Y(V)), with the CDF that
is a product of the marginal CDFs F(x)G(y). The argument
works analogously for negative values of p.

When p > 0, by Theorem 2, the maximum correla-
tion between F and G is attained with the coupling
(F~Y(U),G~1(U)), so that

—1 —1
p* _ E[F (U)G (U)] mrpmeg :CFil’Gil(U,U). (2)

OF0G

It follows that p/c 67 (U,U) < 1 & p < p*.

When p <0, we again have, by Theorem 2, that the
minimal correlation between F and G is attained with the
coupling (F~'(U),G~'(1 — U)), and that then

. E[F'\(O)G'A - U) —mpmg
- OFO0G
= U1 -U). 3)

In this case it follows that p/cF "¢ (U,1 —U)< 1 & p >
P«. As noted in the last paragraph of the proof of part (a),
since ¢ = F~', ¢ = G~!, we have that p* > 0 and p, < 0.
Therefore the algorithm works for the entire range of possible
correlations between F and G. |

Remark. Note that we allow a possibility that ¢ and i are
not inverse distribution functions, because the main idea of the
algorithm is applicable to transformations that are not inverse

*
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distribution functions. We will present Algorithm 4 in Sec. III
as an example of using such transformations.

B. Examples: Finding minimum correlations

We now illustrate the implementation of Algorithm 1 using
several common distributions as examples. We will assume
identical marginal distributions, F = G, and that ¢ denotes an
inverse distribution function in each case below. Since the cor-
relation coefficient is not preserved under inverse distribution
transformation—namely, in general cor(F~'(U),F~'(V)) #
cor(U,V)—the range of possible correlations for any individ-
ual distribution has to be derived separately. Once the range of
feasible correlations is known, application of Algorithm 1 is
very simple and requires only few lines of code.

It should be noted that determination of minimum (and
maximum) possible correlation among two distributions has
had a theoretical value in its own right. At the same time it is
also of practical value, as knowing the maximum and minimum
correlations allows us to place the correlation estimates in
perspective, which is of great importance in empirical data
analysis. Moran [29] showed that only symmetric bivariate
distributions for which there exist ng and n; such that no + 1Y
has the same distribution as X allow p to take any value
in the entire range [—1,1]. Some ranges for correlation
coefficients for bivariate distributional families are provided
in [7]; however, many ranges still remain to be computed.

When the marginals are equal, maximum correlation p* =
1 since cor(X,X) =1, and only p, has to be determined.
We present briefly several examples and derive the minimum
correlation for each case. The first two cases, the uniform and
arcsine, easily follow from Moran [29], so we show them only
as illustrations.

(1) Uniform. In the case of uniform distribution on [0,1],
we have that ¢(U) = U and

_EWUA-U)-[EW) _ 1/6—-1/4
- Var(U) Ty

*

(2) Arcsine. In the case of the arcsine distribution with
density 1/(mr+/1 — x2) on [—1,1], ¢p(U) = cos(mU) [22]. As
the mean of this density is 0 and variance 1/2, it follows that

1 1
f cos(mx)cosm(l — x)dx = / cosz(nx)dx
0 0

= — / 1 + S(QJZ)C)dX - =
— co — .
2 0 2

From here p, = —1, and that the algorithm is applicable for
all p € [-1,1].

(3) Exponential. 1f the variables are exponentially dis-
tributed with mean 1 (density e™) then ¢(U) = —In(U) and
o =1—m2/6 ~ —0.6449, since

1
Elp(U)¢(1 — U)] = f In(x) In(1 — x)dx =2 - L
0

The above integral can be solved using Maclaurin series
representation of In(x), using either double or single series,
and we present this proof in the Appendix.
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TABLE 1. Minimal correlation of a bivariate distribution
with marginals distributed as Weibull(k), for different values of
parameter k.

k 4 3 2 1 0.9 0.8 0.5

px —0.999 —0.996 —0.947 —-0.645 —0.574 —0.492 —-0.193

Consequently, since S ~ exp(A) (for A > 0) can be obtained
as AT where T ~ exp(l), the same range of attainable
correlation p > p, =1 —?/6 is valid for any choice of
marginal exponential distribution. It is worth noting that
many different bivariate exponential distribution algorithms
have been studied, including a classic example by Gumbel
[30] and many others mentioned in [20]. Another recent
construction of bivariate exponential distribution that allows an
arbitrary positive or negative correlation coefficient has been
introduced by [24]. They use an elegant concept of multivariate
phase-type distributions, and provide a constructive algorithm
that achieves minimum correlation p, through a limit of a
sequence.

(4) Erlang. As a Gamma(n,A) distribution where n
is an integer, an Erlang(n,A) random variable (density
x"“le=*/*/[(n — 1)!A\"]) can be obtained as a sum of n
independent exponential random variables with parameter
A. Let (Sll,Slz),(Szl,S%),...,(S;,S,f) be n independent outputs
of Algorithm 1, where each variable in the pair has an
exponential marginal distribution (with parameter A), and
where cor(Sil,Siz)z,o, for i =1,...,n. (Notice also that
for j #1i, Sl.1 and S jl are independent, as are Sil, and
§7) Let X =S8/ 4---+, and ¥ =57 +--- 4+ S;. Then
X,Y ~ Gamma(n,A) and cor(X,Y) = p. It follows that the
minimal possible correlation of X and Y is 1 —n2/6~
—0.6449.

(5) Weibull. The Weibull distribution with density
kxk=le=*" for x >0, and k > 0, has ¢(U) = —In"/*(U).
Here, the minimal correlation, given in Eq. (3), for different
values of k could only be evaluated numerically, and is given
in Table 1. Please notice that the case k = 1 corresponds to
exp(1) distribution that we have already discussed.

(6) Beta. A random variable with Beta(a,1) distribution
(density ax®~! on [0,1]) can be sampled as U'“ and,
due to symmetry, Beta(1,b) can be sampled as 1 —U'/?
[22]. We analyze the first case in which ¢(U) = U /@ and
E@@U)p(1 —U)) =B /a+ 1,1/a + 1), where B stands for
the beta function B(x,y) = fol t*~1(1 — ¢)*~'dt. For a special
case when a = 1/n, where n is an integer, the minimum
correlation can be obtained analytically by realizing that

Bn+1n+1)= (2(:—_2;, If we let m and o be the mean and

standard deviation of Beta(1/n,1), then

_ E@W)$(1 -U)) —m’

.« =
o2

(!

1
ol e _ [+ DIP = @2+ D)!

n? 2 |
(14n)2(14-2n) n*(2n)!

For other values of a, minimal correlations can be obtained
numerically, which we show in Table II.
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TABLE II. Minimal correlation of a bivariate distribution with
marginals distributed as Beta(a, 1), for different values of a.

a 5 4 3 2 1 0.8 0.5 0.3

px —0.795 —0.824 —0.867 —0.931 —1 —0.989 —0.875 —0.634

(7) Minimum correlations for the Poisson distribution are
calculated by Shin and Pasupathy [31], while the log-normal
case was studied in De Veaux [32], among others. We refer the
readers to derivations in their papers.

III. MULTIVARIATE ALGORITHM

In this section we propose an extension of the above
algorithm to the multivariate case. We start with the simplest
case, where X, X>,...,X,, is a set of n identically distributed
random variables, each with F as the marginal distribution,
and identical positive pairwise correlation coefficient for each
pair, cor(X;,X ;) = p”.

As before, let ¢ be an algorithm such that ¢(U) ~ F,
where U is a uniform random variable on [0, 1]. (Although not
necessary, we can set ¢ to equal F~'.) Then the construction
given in Algorithm 2 below yields a set of n random variables,
(X1,....X,), such that X; ~ F foreachi, and cor(X;,X ;) = p*
foreachi # j, i,j < n:

ALGORITHM 2: Construction of n random variables, X, X,
.., X,, identically distributed with a prescribed marginal distribu-
tion F and identical positive pairwise correlation coefficient p.

1:  sample U,V V,,....V,,W; W,,....W, ~ U(0,1), independently
2: fori=1-—>ndo

3: if W; < |p| then

4: let X; = ¢(U)

5: else

6: let X; = ¢(V))

7: end if

8: end for

9:  RETURN X,,..., X,

Algorithm 2 will be applicable to a range of correlation
values, which will depend not only on F as in the bivariate
case, but also on the conditions required for positive semidefi-
niteness or positive definiteness of the correlation matrix. For
example, a commonly used necessary and sufficient condition
for positive definiteness of a matrix is Sylvester’s criterion,
which states that a matrix is positive definite if and only
if all leading principal minors have positive determinants.
In the case of a 3-dimensional “compound symmetry” cor-
relation matrix—a matrix where all diagonal elements are
equal to 1 and all off-diagonal elements are equal to r €
(—1,1)—Sylvester’s criterion equates to the condition that the
determinant, 1 — 372 + 23, is positive, or equivalently that
—0.5 < r < 1. The matrix structure assumed by Algorithm 2
above will thus be positive definite for any p> < 1. The topic of
conditions for positive semidefiniteness of a correlation matrix
can be found in [33], among others.
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The next multivariate algorithm extension is to the case
when X1,X>,...,X, is again a set of n identically distributed
random variables, each with F as the marginal distribution.
However, now we allow the pairwise correlation coefficient to
be different for every pair, cor(X;,X ;) = p;;, but only if each
pij can be expressed as p;p; where p; € (ps,p*) for all i =
1,...,n. The construction given in Algorithm 3 below yields a
set of n random variables, (X1,...,X,), such that X; ~ F for
each i, and cor(X;,X;) = p;j = pipj foreachi # j, i,j < n:

ALGORITHM 3: Construction of n random variables, X, X>,
.., Xy, identically distributed with a prescribed marginal distribu-
tion F, and pairwise correlation coefficients p;; = p;0;.

1: sample U, V|, V,,...,.V,, W, W,,... W, ~ U(0,1),

independently
2 fori =1— ndo
3 if p; > 0 then
4. letU' =U
5: else
6: letU' =1-U
7 end if
8: if W, < p;/c?(U,U’) then
9: let X; = ¢(U’)
10: else
11: let X; = ¢(V))
12: end if
13:  end for

14:  RETURN X,,...,X,

Algorithm 3 will also be applicable to a range of correlation
values, which will depend not only on the choice of F, but
also on the properties required of the correlation matrix. For
example, for a general 3-dimensional correlation matrix, where
the three correlation coefficients are p, ¢, and r, with |p| < 1,
lgl < 1, |r| < 1, Sylvester’s criterion for positive definiteness
equates to the determinant being positive, 1 — p? — g% — r? +
2pgr > 0.

In addition, while Algorithm 3 allows for negative correla-
tion between variables, the correlation coefficient factorization
requirement imposes an added restriction. For example,
Algorithm 3 cannot accommodate cases such as independence
between X; and X,, but dependence between X; and X3
and between X, and X3; nor can it accommodate correlation
matrices with an odd number of negative correlation coef-
ficients. This added restriction in the 3-dimensional case is
shown in Fig. 1. In the top plot we see the general applicable
3-dimensional region for the 3 correlation coefficients p, ¢, and
r required for positive definiteness. Two views of the subset
of that region where Algorithm 3 is applicable are given the
middle and bottom plots.

Only subsets of this region shown in the middle and bottom
plots in Fig. 1 may be applicable to specific distributions.
In the case of 3-dimensional random variable with uniform
marginals, the region in the middle and bottom plots in Fig. 1
is fully attainable. However, in the case of a 3-dimensional
Weibull(0.5), the region shown in the middle and bottom plots
in Fig. 1 has to be further restricted via intersecting it with
[—0.1992,1] x [—0.1992,1] x [—0.1992,1].

PHYSICAL REVIEW E 87, 032114 (2013)
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FIG. 1. (Color online) General applicable region for the 3-
dimensional implementation of Algorithm 3. The top plot shows the
full 3-dimensional domain of allowable correlation coefficients p, ¢,
and r [shown as the range (—1,1) on the three coordinate axes], which
support positive definiteness of a 3-dimensional correlation matrix.
The middle and bottom plots are alternative views of that region
further restricted by the factorization requirement in Algorithm 3;
these plots are obtained by taking the region depicted in the top plot
and removing the coordinate axes and subregions where rpg < O.
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Finally, we note that for any given set of correlation
coefficients, p;j,i,j = 1,...,n, the factorization into p; terms
will generally not be unique. In particular, the factorization
can be obtained by solving a set of (;) equations in n
unknowns which will, in the case of all nonzero correlations,
generally yield two sets of solutions with alternate signs.
Algorithm 3 will work for any of the admissible factorizations,
but choosing the factorization with the smaller number of
negative p; coefficients is recommended, to reduce the number
of comparisons with ¢?(U,1 — U). In the next section we will
give a concrete example of an implementation of Algorithm 3
starting with a given correlation matrix.

A. Example: Algorithm for generating multivariate correlated
Beta random variables

We conclude this section with an application of Algorithm
3 for sampling a 3-dimensional random variable, (X1, X5, X3),
with Beta(v;,v,) marginals and a set of pairwise correlation
coefficients cor(X;,X;) = p;; for i,j = 1,2,3. Among other
things, a Beta density is used in practice to describe concen-
trations of compounds in a chemical reaction. A multivariate
Beta density can thus be used to jointly describe multiple
compounds, where a negative correlation would exist between
a compound and its inhibitors, and a positive one between a
compound and its promoters.

Algorithm 4, given below, is the only non-copula-based
algorithm for generating multivariate correlated Beta random
variables for dimensions greater than 2. This algorithm is
valid for integers v; and v,, and is based on generating two
Gamma-distributed random variables, G; ~ Gamma(v,1)
and G, ~ Gamma(v,,1), and forming a new variable as
B = G1/(G + G»), which will be distributed as Beta(v;,v,).
As vy and v, are integers, G| and G, can be obtained via
a sum of v; and v, exponential random variables with mean
1, respectively. This example illustrates two facts: (1) that
¢(-) need not be an inverse CDF and (b) that the source of
randomness used in generation of a random variable need
not be a scalar. Expanding the definition of the quantity ¢?*¥
defined by Eq. (1), we will let U = (U,,...,U,, +.,) and define
$u.,(U) =3\ InU; /3 In U

The example with 10 000 simulated 3-dimensional vari-
ables with Beta(4,7) marginals, p;; = 0.4, p;3 = 0.3, and
p23 = 0.2, resulting from Algorithm 4, is shown in Fig. 2
(top). The bottom plot of Fig. 2 shows an example with
10 000 simulated 3-dimensional variables with the same
marginals, but with p;; = —0.4, p;3 = —0.3, and py3 = 0.3.
Note that for Beta(4,7), ¢?*7(U,1 —U)~ —0.71, so only
pij = —0.71 can be considered for generating Beta(4,7) using
Algorithm 4.

IV. CONCLUSIONS

The algorithm presented in this paper is a simple gen-
eralization of the trivariate-reduction method for generation
of multivariate samples with specified marginal distributions
and correlation matrix. In comparison with the copulas it is
simpler in that it is based only on marginal distributions and
a correlation matrix and does not require a whole multivariate
distribution specification. On the other hand it is exact and
more transparent to implement than copulas. Additionally,
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ALGORITHM 4: Construction of 3-dimensional Beta(v;,v,) ran-
dom variable, with Beta(v,,v,) marginals and with correlation coeffi-
cients pi2, P13, 023.

1:  sample U = {U},..,U;",U]},....U,*},W;,W,, W5 ~ U(0,1),
independently

2: if any of the eigenvalues of the given correlation matrix are
negative then

3: stop: matrix not positive semidefinite
4: else
5 if p12p13023 < 0, only one of py2, p13, p23 is 0, or any

pij < ¢”12(U,1 — U) then

6: stop: algorithm not applicable.

7: else

8: if p12 = p13 = p23 = 0 then

9: let oy =pr=p3=0

10: else

11: if p;; =0, pix = 0and pj; # 0 then

12: let p; =0, p; =1and px = pix

13: else

14: let p, = /p12p23/ P13: P1 = P12/ P2, P3 = P23/ P2

15: if p; < ¢?12(U,1 — U) for any i then

16: stop: negative correlations cannot be exact.

17: else

18: fori =1— 3do

19: if p; > 0 then

20: letU =U

21: else

22: letU=1-U

23: end if

24 if W; < p;/c®12(U,U’) then

25: let G, = "L, —In(U,)

26: let G, = Y| — In(Uy)

27: else

28: sample V/!,.., V", V! V,2~U(0,1),
independently

29: let G, ="', —In(V})

30: let G, =32, —In(Vy)

31: end if

32: letX,- =G1/(G1 +G2)

33: end for

34: end if

35: end if

36: end if

37: end if

38:  endif

39:  RETURN X,,X,,X3

we generate samples directly from uniform random vari-
ables, the immediate output from random number generators,
which may be more desirable and faster than going through
others distributions, such as Gaussians, as in many other
methods.

The algorithm is applicable to all distributions with finite
variances, and, in the bivariate case, can accommodate the
entire range of theoretically feasible correlations. Its major
computational difficulty is related to determination of exact
pairwise correlation ranges, a question of theoretical and
practical value per se, which has to be answered once for every
set of marginal distributions. We emphasize that lower and
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FIG. 2. (Color online) An example with 10 000 simulated 3-
dimensional Beta(4,7) variables resulting from Algorithm 4. Top
panel: p1, = 0.4, p13 = 0.3, p3 = 0.2. Bottom panel: p;, = —0.4,
p13 = —0.3, and py; = 0.3.

upper bounds for the correlation coefficient actually depend
on the family of marginal distributions in question, and that
the commonly used [—1,1] interval can be inappropriate in
many applications. In this paper we have presented exact
ranges for some common distributional examples so that the
implementation of the algorithms is straight-forward.
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APPENDIX

To prove the exponential distribution result from Sec. II B,

1
1
/ In(x)In(1 — x)dx =2 — —72,
0 6

PHYSICAL REVIEW E 87, 032114 (2013)

we use a representation of In(x) as a Maclaurin series for
x € (0,1):

Z'ZUW“ Ly

In(x)In(1 — x) =

Observe that lim,_, ¢ In(x)In(1 — x) = lim,_,; In(x) In
(1 — x) = 0, and the double sum equals In(x) In(1 — x) for all
x € [0,1]. Furthermore,

1
/ In(x) In(1 — x)dx = ZZ Jﬂ(l +1Lj+1)
0

i=1 j=I

_iioqm—m
e (i+j+1!

0 o i — 1)
=sz

=2 i+ 1)(l +2) 2 (70

i=1 j=1

(AL)

where 8(i +1,j + 1) = fo X1 =x)dx = Wjﬂ), is a stan-
dard presentation of the beta function with i, j integers.

To proceed from here we use the Corollary 3.7 in [34],

(o]
Z n+k _n—l’

k=0

so the last j sum in Eq. (A1) equals (i + 2)/(i + 1) and

nd 1

1
/0 In(x) In(1 — x)dx = ; TR (A2)

To prove that the above series converges to 2 — 2/6 recall
that Y72, 1/i? = 72/6. Now we add that series to Eq. (A2)
and show that it adds up to 2:

oo [o¢] o0 1
;t(z—l—l)z Zu+1)2 g_z

i=1
1)
- +1
1
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