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The spin-glass Blume-Capel model is studied by using an extended mean-field renormalization group
approximation. The effects of a probability distribution of the bilinear interaction coupling with competing
interactions have been investigated. The phase diagrams show second-order phase boundaries among
ferromagnetic, antiferromagnetic, paramagnetic, and spin-glass phases. On the other hand, tricritical phenomena
exist only for certain values of the concentration of ferromagnetic bonds as well as ratios of the ferromagnetic
to the antiferromagnetic competitive interactions. An application to the magnetic properties of ternary system
Fe-Al-Mn alloys is presented. Good fittings to the experimental data are obtained.
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I. INTRODUCTION

Fe-Mn-Al disordered alloys have been studied not only to
improve their mechanical and magnetic properties but also
as possible candidates for corrosion applications and stainless
steels [1–3]. These alloys exhibit good oxidation and corrosion
resistance and a range of different magnetic phases. Depending
on the stoichiometry and temperature treatment, one has
ferromagnetic (F), antiferromagnetic (AF), paramagnetic (P),
spin-glass (SG), and reentrant spin-glass (RSG) phases [4,5].
These rich properties have been ascribed mainly to the result
of (i) the random distribution of their constituent atoms and
(ii) the corresponding competing nearest-neighbor interactions
coming from different magnetic behavior of the Fe, Mn, and
Al atoms.

Theoretical models have been proposed to obtain the phase
diagram of this system and to fit some magnetic properties
such as the reduced mean hyperfine field at room temperature
as a function of Fe, Al, or Mn concentration [6–9]. In general, a
spin-1/2 Ising model, with an adequate probability distribution
for the exchange interactions, has been used in order to better
understand the magnetic behavior of these alloys. The pair
approximation based on Bogoliubov’s inequality [10] and the
mean-field renormalization group approach [11–15] have been
applied to get the approximate analytical results.

To explain the magnetic behavior of these alloys, it has been
assumed that the aluminum atoms behave as a magnetic hole
(thus driving the dilution effect), while the iron and manganese
atoms play the role of magnetic sites. Therefore, the theoretical
phase diagrams have been obtained within a diluted and
random-site Ising model in such a way that good concordance
with the experimental data have been achieved by adjusting the
Hamiltonian parameters. However, some slight discrepancies
have been found in the behavior of the reduced mean hyperfine
field as a function of Fe, Al, and Mn concentrations. These
disagreements are the subject of the present paper. We believe
they can be associated to the magnetic anisotropy, which
is present in many magnetic materials. Such an important
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anisotropy, however, has not been taken into account in the
simple Ising models used in previous works.

Recently, an extended spin-1 Ising like system has been
introduced in order to study the ternary Fe-Ni-Mn and Fe-Al
alloys [16]. The phase diagram for the Fe-Ni-Mn system is
in a much better accord with the experimental data than the
previous one obtained by using the simple spin-1/2 Ising
model, mainly concerning SG and AF phases. The spin-1
model takes into account the electrostatic interactions due
to neighboring charges by introducing a parameter called the
crystal field (CF) � [17]. The CF reduces the degeneracy (since
there is no preferred orientation of the angular momentum and,
therefore, no preferred orientation of the magnetic moment
due to spin) of the electronic levels for two correlated electron
spins in zero-field systems (ignoring the electron exchange
interaction and only considering the magnetic interactions)
with spin �1 and causes magnetic anisotropy [18,19].

The simplest system that takes in account both physically
important terms, namely the exchange interaction and the
crystal field, is the so-called Blume-Capel (BC) model [20,21].
The mutual interactions between them ensure the tricritical
phenomena, observed, for example, in the metamagnetic
system Ni(NO3)2 · 2H2O [22] and in 3He-4He mixtures [23].
At high temperatures the second-order phase transitions are
dominated by thermal fluctuations, while at low temperatures
the first-order phase transitions occur, beginning from zero
temperature ground-state energy crossings. A tricritical point
(TCP) separates the high-temperature second-order boundary
from the low-temperature first-order boundary. The BC model
has been investigated by various techniques, such as the mean-
field approximation [24], Monte Carlo simulations [25,26],
renormalization group methods [27,28], and conformal invari-
ance [29], among others. In the present case, we study a more
general type of competing random-bond BC model, which
presents additional spin-glass phases.

In fact, the present work is twofold. First, the disordered
Blume-Capel model proposed for these alloys has some
interesting thermodynamical properties which have not been,
as far as we are concerned, discussed in the literature.
Second, we are trying to better understand some experimental
anomalies observed in such alloys, which are some decades
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old and with no satisfactory theoretical explanation yet. We
believe that with such modeling, new experimental realization
for different concentrations of the compounds should be
encouraged, mainly in order to seek for the new spin-glass
phases predicted by the model.

As we will shortly see, the present model gives indeed a
remarkable account for the discrepancies previously obtained
for the Fe-Mn-Al alloys by using the spin-1/2 Ising system.
Thus, a type of competing diluted and random-bond Blume-
Capel model is proposed for the Fe-Mn-Al systems in Sec. II.
It is close in spirit but differs from the model proposed
for the Fe-Ni-Mn alloys in Ref. [16], mainly regarding the
distribution probability of the interactions. In order to treat
the continuous transitions of these systems we employ the
extended mean-field renormalization group approach that is
outlined in Sec. III. The results for the phase diagram by
considering a competing probability distribution is presented
in Sec. IV, while the application to the Fe-Mn-Al alloys will
be discussed in Sec. V. Some final comments and remarks
are summarized in Sec. VI. Appendices A and B are devoted
to conveying some of the final theoretical expressions for the
corresponding physical realizations.

II. RANDOM BLUME-CAPEL MODEL

The Blume-Capel model [20,21] is a simple extension of
the spin-1 Ising model for magnetic systems. The Hamiltonian
has an additional single site anisotropy factor, or crystal field,
and exhibits a second-order phase transition line that joins a
first-order transition line at the so-called tricritical point. The
Hamiltonian, taking into account random interactions, can be
given by

H = −
∑
〈ij〉

Jijσiσj + �

N∑
i=1

σ 2
i , (1)

where Jij is the random nearest-neighbor bilinear exchange
interaction, � is the single-ion anisotropy, the first sum is over
nearest-neighbor pairs on a lattice of N sites, and the spins σi

have values 0, ± 1.
The random-bond model, which will be applicable to the

alloys we have discussed so far, has the following probability
distribution [6]:

P (Jij ) = pδ(Jij − J ) + qδ(Jij ) + xδ(Jij + αJ ), (2)

where p is the probability of having ferromagnetic bonds J ,
q for diluted bonds, and x for antiferromagnetic competitive
interactions αJ , respectively. We will assume J > 0, α > 0,
and p + q + x = 1.

III. THE EXTENDED MFRG APPROACH

The mean-field renormalization group (MFRG) approach
[11,12,14] has proven to be efficient and easily applicable in
the study of the critical properties of lattice models. The results
are satisfactory, even by considering the smallest possibles
clusters, namely one spin and a pair of spins. In particular,
by using the one- and two-spin clusters in the spin σ = 1/2
Ising model [11], the critical temperature Tc is equal to that
obtained by the Bethe approximation (BA), where the critical

exponents are not classic. However, when the same method
is applied to the Ising model with σ � 1, the results obtained
with the smaller clusters are not equivalent to those provided by
the BA and, besides, one obtains a critical temperature Tc �= 0
for the one-dimensional model [30,31]. On the other hand,
the extended mean-field renormalization (EMFRG) approach
gives, for the smallest cluster, the same results for Tc as those
obtained from BA and constant coupling approximation [10]
as well for the quadrupole moment Q = 〈σ 2〉.

To illustrate the application of the EMFRG approach,
we will take herein the smallest clusters and consider the
ferromagnetic phase first. Thus, the Hamiltonian for the
one-spin cluster (N ′ = 1) is

H1 = −zJ ′b′σ1 − zγ1σ
2
1 + �′σ 2

1 , (3)

where z is the coordination number of the lattice. b′ is the
symmetry breaking boundary condition acting at the boundary
of the cluster and is related to the ferromagnetic order
parameter of the system (〈σ 〉). γ1 is an additional parameter
related to the mean square of the spin (〈σ 2〉).

Similarly, for the two-spin cluster (N = 2), one has

H2 = −J12σ1σ2 − (z − 1)J1b1σ1 − (z − 1)J2b2σ2

+ (z − 1)γ2
(
σ 2

1 + σ 2
2

) + �
(
σ 2

1 + σ 2
2

)
, (4)

where bi , i = 1,2, and γ2 have the same meanings as above.
For these clusters we have

m1 = eδ1 sinh(I0)

1 + 2eδ1 cosh(I0)
, (5)

Q1 = eδ1 cosh(I0)

1 + 2eδ1 cosh(I0)
, (6)

where I0 = zK ′b′, K ′ = βJ ′, β = (kBT )−1,kB is the
Boltzmann constant, and δ1 = zβγ1 − β�′ ≡ q1 − D′. m1 =
〈σ1〉1 and Q1 = 〈σ 2

1 〉1 are the mean values related to the
one-spin cluster and

m2 = eδ2{sinh(I1) + eδ2+K12 sinh(I1 + I2)

+ eδ2−K12 sinh(I1 − I2)}/Z2, (7)

Q2 = eδ2{cosh(I1) + cosh(I2) + 2eδ2+K12 cosh(I1 + I2)

+ eδ2−K12 cosh(I1 − I2)}/Z2, (8)

with

Z2 = 1 + 2eδ2 cosh(I1) + 2 cosh(I2)

+ 2eδ2+K12 cosh(I1 + I2) + eδ2−K12 cosh(I1 − I2),

where Ii = (z − 1)Kibi , Ki = βJi, and δ2 = (z − 1)βγ2 −
β� ≡ q2 − D. m2 = 〈σ1〉2,Q1 = 〈σ 2

1 〉2 are the mean values
related to the two-spin cluster.

A. Obtaining the critical line

Close to a critical transition the magnetization is very small
and, assuming that b′ � 1 and b � 1 (where b1 = b2 = b in
the ferromagnetic case), we can expand to third order in b′ and
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b, respectively, to obtain

m1 = f1(K ′,D′,q1)b′ + g1(K ′,D′,q1)b′3, (9)

Q1 = h1(K ′,D′,q1), (10)

m2 = f2(K,D,q2)b + g2[K,D,q2)b3, (11)

Q2 = h2(K,D,q2). (12)

Expressions for fi , gi and hi,i = 1,2 are given in
Appendix A.

The critical properties of the system are obtained by
assuming that Eqs. (9) and (11) scale as

m1 = �d−yH m2, (13)

and imposing a same scaling relation for b′ and b, i.e.,

b′ = �d−yH b, (14)

where � = (N/N ′)1/d is the scaling factor, d is the dimension
of the lattice, and yH is the magnetic critical exponent. From
Eqs (5), (7), (13), and (14) we obtain

f1(K ′,D′,q1) = f2(K,D,q2), (15)

which is independent of any scaling factor and can be viewed as
a renormalization recursion relation among the parameters of
the Hamiltonian. When q1 = q2 = 0 and σ = 1, Eq. (15) has
the same functional form of Eq. (7) obtained in Ref. [30], which
has a nonzero transition temperature for the one-dimensional
model.

From Eq. (15) is not possible to determine a complete
renormalization group flow in the parameter space; therefore,
the critical properties can be analyzed by restricting the space
to the physical plausible invariant subset D′ = D [16]. Note
that the quantity Q = 〈σ 2〉 is not critical as the magnetization.
In this sense, its anomalous dimension is zero, so we can
assume Q1 = Q2 = Q and impose the same relation for
the parameters q1 and q2, i.e., q1 = q2 = q. Thus, Eq. (15)
becomes

f1(K ′,D,q) = f2(K,D,q) (16)

and from Eqs. (10) and (12) we get

h1(K ′,D,q) = h2(K,D,q). (17)

Equations (16) and (17) give the fixed point K ′ = K = Kc.
In this way, besides the critical temperature and the thermal
critical exponent, one is also able to obtain a thermodynamical
property (equation of state), in this case 〈σ 2〉, which is not
usual in the MFRG approach for σ = 1/2 models.

For the antiferromagnetic phase the calculations are quite
similar. One has to consider two sublattices with opposite
magnetizations, where b1 = −b2 = b. In doing so, the critical
behavior happens to be exactly the same as that developed
above for the ferromagnetic case, with the sublattice magneti-
zation playing the role of the order parameter.

B. Location of the tricritical point

The MFRG approach locates the TCP by obtaining the
critical temperature Tc as a function of the parameter D. In
general, we have a point (DT ,TT ), where (dTc/dD)T → ∞

such that for D > DT there is no solution for Tc while for
D < DT there are two solutions for Tc. This special point is
associated to TCP, but there is an ambiguity to distinguish
a TCP and a possible second-order reentrancy in the phase
diagram of the model. The idea is to explore the cubic term
in Eqs. (9) and (11) and from Eq. (16) we have an additional
equation,

g1(K,D,q) = g2(K,D,q). (18)

When Eq. (18) is satisfied, TCP is located without ambiguity.
Thus, the second-order transitions and the location of the TCP
are identical to those obtained by a Landau expansion in the
free energy of the model.

C. Obtaining the spin-glass phase transition

Spin glass is observed in a variety of disordered magnetic
materials and involving both competing Jij and disorder. Due
to the randomness of the interactions Jij , we expect the average
magnetization to vanish. However, averages involving squares
of the magnetization are generally nonzero. Spin glasses are
described by the Edwards-Anderson order parameter qEA =
〈σ 〉2, where the brackets mean the thermal average and the
overline means the configurational average over the random
bonds [32]. By following the same procedure above one gets
for the spin-glass order parameter

qEA1(K ′,D,q,b′) = j1(K ′,D,q)b′2, (19)

qEA2(K,D,q,b) = j2(K,D,q)b2. (20)

Assuming a similar scaling relation qEA1 = �θqEA2 and b′2 =
�θb2, where θ is the anomalous dimension of the spin-glass
order parameter, we have

qEA1(K ′,D,q) = qEA1(K,D,q). (21)

Accordingly, we can also compute the noncritical variable
R = 〈σ 2〉2, from which we arrive at the relation

R1(K ′,D,q,b′2 = 0) = R2(K,D,q,b2 = 0). (22)

From Eqs. (21) and (22) we get the spin-glass transition
line.

IV. GENERAL OVERVIEW OF THE PHASE DIAGRAMS

Before discussing the experimental realization of the
ternary alloys it is worthwhile to get a picture of the phase
diagrams of the present models as a function of its theoretical
parameters.

Figure 1(a) shows the reduced critical temperature (τ ≡
kBT /J ) as a function of the reduced crystal field (δ ≡ �/J ) for
various values of the antiferrromagnetic interaction concentra-
tion (x) for lattice coordination number z = 8 and parameter
α = 1. For q = 0 and x > 0.3, the tricritical phenomenon is
not more present. Table I reports some values for δT and τT for
different concentrations x. The localization of TCP is given
when Eq. (18) is satisfied along the second-order transition
line. For p = 1 (or q = 0 and x = 0), we recover the previous
phase diagram of the spin-1 Blume-Capel model according to
the extended MFRG [33]. For the cases when q = 0 with x = 0
(yellow line), x = 0.10 (orange line), x = 0.20 (wine line),
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(a)

(b)

FIG. 1. (Color online) Phase diagram in the reduced crystal field
(δ ≡ �/J ) and the reduced critical temperature (τ ≡ kBT /J ) plane
for various antiferromagnetic concentrations x. (a) For q = 0 with
x = 0 (yellow line), x = 0.10 (orange line), x = 0.20 (wine line),
and x = 0.25 (blue line). (b) For q = 0.2 with x = 0 (yellow line),
x = 0.02 (orange line), and x = 0.04 (wine line). The dotted line
corresponds to TCPs. For this case α = 1 and z = 8.

and x = 0.25 (blue line), the behavior of δ = δ(τ ) is similar to
that of Fig. 1 reported in Ref. [16]. For this case, τ decreases
when δ decreases up to δT = 0.72 and τT = 0.517; below this
pair of values the tricritical behavior is suppressed. For the
particular range 0.20 < x < 0.25, the temperature presents a
more pronounced decay behavior and one reason may be the
strong competition between the parameters involved, namely
δ, τ , and q. Similar behavior is found for q = 0.2 and x = 0
(yellow line), x = 0.02 (orange line), and x = 0.04 (wine line),
as shown in Fig. 1(b) and Table I. Here, for antiferrromagnetic
interaction concentrations x > 0.04 the tricritical phenomenon
disappears.

In Fig. 2(a) we have the corresponding phase diagrams from
q = 0 (yellow line), q = 0.25 (orange line), q = 0.50 (wine
line), and q = 0.63 (blue line) for x = 0, whose behavior is

TABLE I. Values of the tricritical points δT ,τT for different x and
fixed q concentrations.

q x δT τT

0 3.60 2.724
0.1 3.30 1.139

0 0.2 2.47 0.682
0.3 0.72 0.517
0 3.20 1.904

0.2 0.02 2.86 1.785
0.04 2.08 1.659

(a)

(b)

FIG. 2. (Color online) The same as described in the caption to
Fig. 1 for several dilution concentrations (q) in the δ,τ plane for (a)
x = 0 with q = 0 (yellow line), q = 0.25 (orange line), q = 0.50
(wine line), and q = 0.63 (blue line). For (b) x = 0.2 with q = 0
(yellow line), q = 0.09 (orange line), and 0.18 (wine line).

similar to Fig. 1(b), but in this case we have a wider range for
q where the tricritical phenomenon is observed. However, for
x = 0.2 with q = 0 (yellow line), q = 0.09 (orange line), and
0.18 (wine line), the curves present a stronger decay to the
TCP. Table II shows the values for tricritical points obtained
according to Eq. (18). In both Figs. 1 and 2 above the transitions
are from the ferromagnetic ordered phase to the paramagnetic
disordered phase.

On the other hand, the phase diagrams on the space of re-
duced temperature (τ ) and concentration of antiferromagnetic
bonds (x), for various reduced (positive and negative) crystal
fields (δ), present a second-order transition line that decreases
with the decreasing of x and goes to zero at a critical value xc.
As the system is rich in antiferromagnetic bonds, the transition
is from the antiferromagnetic ordered phase to the disordered

TABLE II. Values of the tricritical points (δT ,τT ) for different q

and fixed x concentrations.

x q δT τT

0 3.60 2.723
0 0.25 3.08 1.766

0.50 2.44 1.433
0.65 2.13 1.261
0 2.47 0.682

0.20 0.99 1.11 0.631
0.18 −0.54 0.613
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(a)

(b)

FIG. 3. (Color online) Reduced critical temperature as function
of the concentration of antiferromagnetic bonds for different crystal
fields δ and z = 8. (a) For q = 0.15 with δ = −0.9 (wine line), δ =
−0.3 (orange line), δ = 0 (yellow dot line), δ = 0.3 (orange dashed
line), and δ = 0.9 (wine dashed line), we have xc = 0.42. (b) For
q = 0.40 with δ = −0.9 (wine line), δ = −0.3 (orange line), δ = 0
(yellow dot line), δ = 0.3 (orange dashed line), and δ = 0.9 (wine
dashed line), we have xc = 0.30.

paramagnetic phase. That is why the temperature reduces as
x decreases. For instance, at q = 0.15, Fig. 3(a) shows a
value xc = 0.42 and for q = 0.40 the corresponding value is
xc = 0.30, as is shown in Fig. 3(b). Both figures have a similar
behavior. The competition between q and δ is more evident.

For x = 0.15 with δ = −0.9 (wine line), δ = −0.3 (orange
line), δ = 0 (yellow dot line), δ = 0.3 (orange dashed line), and
x = 0.20 with δ = −0.9 (wine line), δ = −0.3 (orange line),
δ = 0 (yellow dot line), δ = 0.3 (orange dashed line), a similar
behavior is found as a function of q. In this case, τ decreases as
q increases until it reaches the critical value for qc = 0.56 for
x = 0.15 [as shown in Fig. 4(a)] and qc = 0.51 for x = 0.20
[as shown in Fig. 4(b)]. As before, in both cases the negative δ

values are slightly above the positive ones. Here the transition
is from the ferromagnetic to the paramagnetic phases.

The quadrupolar quantity Q as a function of δ along the
transition line for some x values (x = 0 yellow line and x =
1.0 orange line) with q constant (=0) is shown in Fig. 5(a).
This is in fact an equation of state which has been obtained
from the EMFRG approach [27] for p = 1 or x = 0. In this
work and for x = 0, Q decreases from negative to positive
values of δ until δc ≈ 2.0, where Q = 0, and for the case
x = 1.0, Q begins above x = 0 but ends in the same value
δc ≈ 2.0, in contrast to what was found in Ref. [27], where the
curve tends to zero. Similar behavior can viewed in Fig. 5(b)
where q has a range between 0 (yellow line) to 0.99 (orange

(a)

(b)

FIG. 4. (Color online) The same as described in the captin to
Fig. 3 for several concentrations. (a) x = 0.15 with qc = 0.56.
(b) x = 0.20 and we have qc = 0.51.

line) and the Q-initial values are lower. A detailed analysis of
the low-temperature region of the phase diagram presenting
first-order transitions is not possible by using the EMFRG
because it treats only second-order phase transitions.

A global theoretical phase diagram in the p-τ plane for
coordination number z = 8, α = 1, and δ = 1 with q = 0
(yellow line) and q = 0.1 (orange dot line) is shown in
Fig. 6(a), and for δ = −1 with q = 0 (yellow line) and q = 0.1
(orange dot line) in Fig. 6(b), according to the probability
distribution (2). In particular, when δ → −∞ we recover the
Fig. 1 of Ref. [6]. Both figures exhibit a similar behavior
for positive or negative δ values and a nonsymmetric phase
diagrams is obtained, in disagreement with Ref. [6]. For q = 0,
the ferromagnetic boundary decreases as p decreases until near
the critical Fe concentration, tending then abruptly to zero. The
antiferromagnetic boundary remains almost constant with p

until very near the critical Fe concentration, and again tends to
zero abruptly. The spin-glass transition temperature continues
being independent of the ferromagnetic bond concentration
for a fixed q. For q = 0.1 the behavior is similar but shifts
to the left, as shown in Fig. 6(a). For negative δ values, the
phase diagram is similar to that in Fig. 6(a); however, the
paramagnetic boundary is slightly wider and the ferromagnetic
boundary now is constant as p decreases, as shown in Fig. 6(b).
The critical Fe concentration is given by p+

c ≈ z(3−q)
2(3z−2) for

positive values of the reduce crystal field δ. This behavior is
observed in the experimental realization FexMn0.600−xAl0.400,
0.200 � x � 0.600 [34]. For positive values of δ, we have a
similar behavior as in Fig. 6(a), but in this case the F and AF
boundaries increase when q increases; the critical value for p

is reached in this case at p−
c ≈ z(3−q)

2(3z−1) .
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(a)

(b)

FIG. 5. (Color online) Quadrupolar quantity (Q) as a function
of δ along the transition line. (a) q = 0 with x = 0 (yellow line)
and x = 1.0 (orange line). (b) x = 0 with q = 0 (yellow line) and
q = 0.99 (orange line).

V. APPLICATION TO THE FE-MN-AL TERNARY ALLOYS

The phase diagram of the Fe-Mn-Al ternary alloys shows
several phases which depend on the atomic percentage of iron,
manganese, and aluminum atoms. Thus, for example, we found
spin-glass (SG) and reentrant spin-glass (RSG) behavior, as a
consequence of the presence of competing ferromagnetic (Fe-
Fe) and antiferromagnetic (Fe-Mn) interactions [35]. These
ternary Fe-Mn-Al systems are also a good candidate to replace
the conventional stainless steel. Thus, from a theoretical
viewpoint, they are quite attractive regarding their physical and
mechanical properties, too [36]. In this section we will discuss
the application of the present theoretical model to the magnetic
properties of these ternary alloys. In Ref. [6] it was used a
diluted and random-bond Ising model where it was assumed
that the Mn atom behaves as Al atoms with the Fe magnetic
moment constant and the Al atoms behaving like magnetic
holes. This is true for small Mn concentrations (x), but
when we have large Mn concentrations, an antiferromagnetic
interaction is induced. For x = 0, the site and bond-dilute Ising
model explain the observed behavior. But for x �= 0 one can
also assume α = x, i.e., enhancing the AF interaction as the
Mn concentration is increased. We also consider, as given in
Ref. [6], that the exchange parameter J depends on q and
is independent of x, namely J (q) = J1 − qJ0. The values for
the theoretical parameters J1 = 12.846 meV and J0/J1 = 0.95
used in Ref. [6] are the same in the present study, and the value
for δ which gives the best results is chosen to be 1.5.

In order to apply the spin-glass Blume-Capel model to
these alloys we will use the pair approximation based on

(a)

(b)

FIG. 6. (Color online) Nonsymmetric random-bond phase dia-
gram for different values of q, α = 1, and two values (positive and
negative) of δ: (a) δ = 1 with q = 0 (yellow line) and q = 0.1 (orange
dot line); (b) δ = −1 with q = 0 (yellow line) and q = 0.1 (orange
dot line). Phases are abbreviated as follows: antiferromagnetic (AF),
ferromagnetic (F), paramagnetic (P), and spinglass (SG).

Bogoliubov’s inequality [10] to compute the ferromagnetic
order parameter 〈σ 〉 ≡ m ∝ H , where H is the mean reduced
hyperfine field. The procedure is similar to that performed in
Ref. [16], and Appendix B gives the equations to be solved by
use of numerical methods. The solid line in Fig. 7 was obtained
from the present model and the dashed line represents the
theoretical fitting from the previous simple Ising model. This
figure shows the behavior of the mean reduced hyperfine field
(H ) as function of Mn concentration (x) for various Al con-
centrations (q). It can be observed that with the present model,
considering the probability distribution (2), and the same
adjusted values of J1 and J0/J1, better fittings are obtained
in comparison with those of Ref. [6]. The interaction between
δ,J and the corresponding equation J (q) = J1 − qJ0 gives
a better agreement between the experimental and theoretical
data. Similar results are depicted in Fig. 8, where we have the
behavior between H as a function of Mn concentration.

VI. CONCLUSIONS AND REMARKS

In summary, the thermodynamical behavior of the ternary
Fe-Mn-Al system was described through an approximate
scheme by taking the pair approximation based on Bogoliubov
inequality. The agreement achieved from the present approach
is far better than the previous one by taking a simple Ising
model. For this system we assumed that Fe atoms interact
ferromagnetically, Mn atoms behave with antiferromagnetic
interactions, and Al atoms are paramagnetic. Therefore,
according to the Bethe-Slater curve these alloys are in fact
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(a)

(b)

(c)

FIG. 7. (Color online) Mean hyperfine field H as function of Al
concentration q for different values of x. (a) x = 0.05, (b) x = 0.10,
and (c) x = 0.20. The experimental results (dots) were fitted by the
model discussed in Ref. [6] (black dashed line) and the yellow solid
line represents the theoretical results according to the present model.

a prototype to be described by the Blume-Capel model with
the appropriate diluted and random-bond distribution (2). The
theoretical phase diagrams obtained for the positive values
of the reduced crystal field present qualitatively the same
behavior as the experimental data reported in the literature for
the system FexMn0.600−xAl0.400, 0.200 � x � 0.600, which
will be applied to the present model in a future work. This
system presents several phases as ferro, antiferro, para, spin
glass, reentrant spin glass, superparamagnetism, and so on.
It should be stressed that a similar spin-1 model has been
recently applied to the binary Fe-Al compound [37,38] with
results that are not much improved when compared to the
spin-1/2 counterpart [39]. Despite that, we believe that the
anisotropy present in these experimental realizations is in
fact important and should be well described by models with
spin greater than 1/2. In addition, as the spin-glass region is

(a)

(b)

(c)

FIG. 8. (Color online) Mean hyperfine field H as function of Mn
concentration x for different values of q. (a) q = 0.20, (b) q = 0.25,
and (c) q = 0.35. The experimental results (dots) were fitted by the
model discussed in Ref. [6] (black dashed line) and the yellow solid
line represents the theoretical results according to the present model.

dependent on the the crystal field, it should be very welcome
to have new experimental realizations with different crystal
field interactions in order to seek the differences of the
corresponding spin-glass region in the phase diagram.
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APPENDIX A: EQUATIONS FOR EMFRG

In this Appendix we present the analytical results leading
to the second-order ferromagnetic transition line as well as the
Edwards-Anderson spin-glass transition line for the random-
bond distribution (2).
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In what follows we have

K = βJ β = 1

kBT

δ = �

J
δ1 = zg − δ

δ2 = [(z − 1)g − δ]K I0 = zK ′
ib

′
i

I1 = (z − 1)K1b1 I2 = (z − 1)K2b2

Z1(K ′) = 1 + 2eδ1K
′
, (A1a)

Z2(Ki) = 1 + 4eδ2{1 + eδ2 cosh(Ki)}. (A1b)

For the magnetizations (F/AF and first/third order) and
quadrupoles we obtain [κ = (z − 1)eδ2 ]

m1,f = z

[
q

Z1(0)
+ peδ1K

Z1(K)
+ xe−αδ1K

Z1(−αK)

]
, (A2a)

m2,f = κ

[
q

Z2(0)
+ pW+

1 (K)

Z2(K)
+ xW−

1 (−αK)

Z2(αK)

]
, (A2b)

m1,t = z3

6

[
q

Z1(0)
+ pW2(K)

Z2
1(K)

+ xW2(αK)

Z2
1(−αK)

]
, (A2c)

m2,t = κ3

[
qW3

Z2(0)
+ pW4(K)

Z2(K)
+ xW4(αK)

Z2(αK)

]
. (A2d)

Q1 = q

Z1(0)
+ peδ1K

Z1(K)
+ xe−αδ1K

Z1(−αK)
, (A3a)

Q2 = eδ2

[
q

Z2(0)
+ pW5(K)

Z2(K)
+ xW5(αK)

Z2(αK)

]
, (A3b)

where

W±
1 (Ki) = 1 + 2eδ2 cosh(Ki) ± 2eδ2 sinh(Ki),

W2(K ′) = eδ1K
′
(4eδ1K

′ − 1),

W3 = 4eδ2 − 1,

W4(Ki) = 2eδ2 − 1 + 2eδ2 (6eδ2 − 1) cosh(Ki)

+ 16e3δ2 cosh2(Ki),

W5(Ki) = 1 + 2eδ2 cosh(Ki).

For the Edwards-Anderson spin-glass parameter we get

n1 = z2

[
q

Z2
1(0)

+ pe2δ1K

Z2
1(K)

+ xe−2αδ1K

Z2
1(αK)

]
, (A4a)

n2 = κ2

[
q

Z2
2(0)

+ pW6(K)

Z2
2(K)

+ xW6(αK)

Z2
2(αK)

]
, (A4b)

R1 = q

Z2
1(0)

+ pe2δ1K

Z2
1(K)

+ xe−2αδ1K

Z2
1(αK)

, (A4c)

R2 = eδ2

[
q

Z2(0)
+ pW7(K)

Z2(K)
+ xW7(αK)

Z2(αK)

]
, (A4d)

where

W6(Ki) = 1 + 4eδ2 cosh(Ki) + 4e2δ2 cosh(2Ki),

W7(Ki) = {1 + 2eδ2 cosh(Ki)}2.

APPENDIX B: EQUATIONS FOR THE
PAIR APPROXIMATION

The pair approximation based on the Bogoliubov inequality
for the free energy [10] follows closely the procedure used in
Ref. [16]. We introduce the notation:

r = z − 1

z
d = β�,

a = βγ1 b = βγ2

Magnetization:

ms = eb−d sinh(a)

1 + 2eb−d cosh(a)
, (B1)

mp = qW8(0)

Zp(0)
+ pW8(K)

Zp(K)
+ xW8(−αK)

Zp(−αK)
. (B2)

Quadrupole:

Qs = eb−d cosh(a)

1 + 2eb−d cosh(a)
(B3)

Qp = qW9(0)

Zp(0)
+ pW9(K)

Zp(K)
+ xW9(−αK)

Zp(−αK)
where

Zp(K ′) = 1 + 2e2(rb−d)+K ′ + 4erb−d cosh(ra)

+ 2e2(rb−d−K ′) cosh(2ra) (B4)

and with

W8(K ′) = erb−d [sinh(ra) + erb−d+K ′
sinh(2ra)]

W9(K ′) = erb−d [erb−d + cosh(ra) + erb−d+K ′
cosh(2ra)]

The above procedure has been done for the ferromagnetic
model. Nevertheless, the same equations are obtained for
the antiferromagnetic case, where m1 and m2 are treated as
sublattice magnetizations.
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