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The Vlasov-Maxwell statistical treatment of relativistic charged particles subject to electromagnetic (EM)
radiation reaction (RR) represents an unsolved conceptual challenge. In fact, as shown here, the customary
point-particle treatment based on the Landau-Lifschitz (LL) equation leads to a generally nonconstant Boltzmann-
Shannon (BS) entropy even in the absence of binary collisions. This conclusion appears to be in contradiction
with the intrinsic microscopic reversibility of the underlying physical system. In this paper the issue is addressed
in the framework of a Hamiltonian treatment for extended charged particles in the presence of EM RR. It is shown
that such a behavior actually has no physical ground, being a consequence of the asymptotic approximations
involved in the construction of the LL equation. In particular, it is proved that the Hamiltonian structure of the
underlying particle dynamics actually restores the conservation of the BS entropy. The connection between the
two approaches is analyzed. As a result, it is pointed out that the fulfillment of the entropy law can still be
warranted even in the framework of an asymptotic theory by introducing a suitable Hamiltonian approximation
for the EM RR equation.
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I. INTRODUCTION

A basic difficulty with the statistical treatment of classical
N -body systems based on the Vlasov-Maxwell statistical
description lies in the very formulation of relativistic charged
particle dynamics in the presence of the electromagnetic
radiation reaction (EM RR). In fact, customary treatments
are based on intrinsically asymptotic, nonvariational, and
non-Hamiltonian approaches, which are exemplified by the
Lorentz-Abram-Dirac (LAD) [1–3] or Landau-Lifschitz (LL)
[4] equations. Fundamental problems arise when attempting
to formulate classical statistical mechanics (CSM) based on
these equations. Indeed, the treatment of the relativistic CSM
for systems of this type involves a number of important issues,
which concern the following:

(1) The evidence of the microscopic reversibility for single-
particle dynamics in the presence of EM RR.

(2) The proper definition of a phase space: The problem
is relevant for the LAD equation, which is a third-order
ordinary differential equation (ODE). In fact, although the
construction of kinetic theory is still formally possible [5,6],
it involves the adoption of higher-dimensional phase space
(e.g., 12-dimensional in the case of the Vlasov equation). As
a consequence, the corresponding fluid statistical description
remains inhibited because of possibly unphysical mixed accel-
eration and velocity moments. Therefore, the LAD equation
must be discarded a priori for this reason.

(3) The lack of flow-preserving measures even in the
absence of binary collisions, i.e., when adopting the Vlasov-
Maxwell statistical description: This feature is relevant for the
LL equation and is due to its non-Hamiltonian character. This
implies that the corresponding relativistic Vlasov equation has
a nonconservative 4-force.

(4) As shown in Ref. [7], this leads necessarily to a
nonvanishing thermodynamic entropy 4-flow.

(5) The very notion of Boltzmann-Shannon (BS) statistical
entropy for the kinetic probability density, to be distinguished
from the definition of thermodynamic entropy [8,9] and
extending the corresponding definition holding for the non-
relativistic theory: In particular, the BS entropy should be
identified with a suitable 4-scalar prescribed in the framework
of a relativistic treatment of CSM and determine a measure of
the ignorance on the classical N -body system.

(6) The behavior of the BS entropy in the case of a kinetic
theory based on the asymptotic LL equation.

(7) Finally, the possibility of assuring the exact validity of
a constant H-theorem for the BS entropy, to be achieved in
the framework of a nonasymptotic theory and in analogy with
nonrelativistic systems (i.e., when EM RR can be neglected): If
true, this conclusion would be consistent with the microscopic
reversibility of the underlying physical system and would be
important in order to warrant also the macroscopic reversibility
of the N -body system in the absence of mutual particle
collisions.

The interesting question is whether these problems can be
solved in the framework of an axiomatic theory, capable of
restoring at the same time the variational and Hamiltonian
characters of relativistic particle dynamics [10]. For definite-
ness, we shall consider here the case of a flat Minkowski
space-time. In this regard, an important contribution has been
achieved in a series of recent papers, where a variational
formulation for relativistic particle dynamics in the presence
of EM RR has been obtained (see Refs. [11–14]). We stress
the following in these works: (a) The dynamics of classical
finite-size charged particles has been investigated, a feature
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which allows one to avoid the intrinsic divergences of the EM
self-field characteristic of previous point-particle treatments;
and (b) on the same grounds, renormalization models (such
as the so-called relativistic massive Lorentz electrodynamics
[15]) involving heuristic assumptions related to the concept of
renormalized mass, charge, and spin as well as their assumed
behavior during particle dynamics have been ruled out. Such
a type of model, in fact, is based on the adoption of a purely
local dynamical description. Indeed, EM RR is an intrinsic
nonlocal phenomenon arising specifically due to the finite
size of classical particles (see related extended discussions
in Refs. [11–14]).

For this purpose, in particular, in the formulation of
Refs. [11–14], particles are treated as being quasirigid,
spherically symmetric, and with total rest mass mo and total
charge q, whose distributions have the same support on a
spherical surface having an invariant radius σ > 0 (see Ref.
[11]). Under these assumptions, it was proved that particle
dynamics is variational and can be parametrized with respect
to a suitably well-defined point (to be referred to as the
center of symmetry) having position and velocity 4-vectors
rμ ≡ (ct,r) and uμ ≡ drμ

ds
and proper time s. As a consequence

of the symmetry properties of the corresponding Hamilton
variational functional, the variational RR equation was proved
to admit also both Lagrangian and Hamiltonian formulations in
standard form. In particular, the problem was shown to admit
an exact Hamiltonian structure in terms of the set {y,Heff},
whereby the particle canonical state y obeys the Hamilton
equations in terms of a suitable nonlocal effective Hamiltonian
function Heff:

dy
ds

= [y,Heff]. (1)

Here the notation is as follows. First, Heff is defined as

Heff(r,P,[r]) ≡ 1

2moc

(
Pμ − q

c
A(eff)μ

)(
P μ − q

c
A

μ

(eff)

)
,

(2)

where r and [r] denote, respectively, local and nonlocal spatial
dependences in terms of the particle position 4-vector rμ.
Furthermore, A

μ

(eff) is the nonlocal effective EM 4-potential

A(eff)μ(r,[r]) ≡ A
(ext)
μ (r) + 2A

(self)
μ (r,[r]), (3)

with A
(ext)
μ (r) and A

(self)
μ (r,[r]) being, respectively, suitable

particle surface averages of the external and self-EM
4-potentials. For a spatially nonrotating extended particle, the
latter is defined as

A
(self)
μ (r,[r]) ≡ 2q

∫ 2

1
dr ′

μδ(R̃αR̃α − σ 2), (4)

where here and in the rest of the paper the lower and
upper extrema of integration “1” and “2” are identified
with lims→±∞ rμ (s) according to the prescription
following the discussion reported in Ref. [14]. In addition,
R̃α ≡ rα (s) − rα(s ′) represents the displacement bivector
between actual and retarded particle positions, rα (s) and
rα(s ′), respectively. Both are determined along the particle
space-time trajectory and are evaluated at the proper times s

and s ′ < s, which are related by the delay-time equation

R̃αR̃α − σ 2 = 0. (5)

Second, the canonical state is identified with y = (rμ,Pμ),
where

Pμ = moc
drμ(s)

ds
+ q

c

[
A

(ext)
μ + 2A

(self)
μ

]
(6)

is the conjugate canonical momentum. Therefore, y spans the
eight-dimensional phase-space � ≡ �r × �u, where �r and
�u are, respectively, the Minkowski M4-configuration space
and the four-dimensional velocity space, both with metric
ημν ≡ diag (1, − 1, − 1, − 1). Finally, [η,ξ ] ≡ [η,ξ ](x)
denotes the local Poisson brackets defined in terms of the
canonical state y as

[η,ξ ] =
(

∂η

∂y

)T

· J ·
(

∂ξ

∂y

)
, (7)

with all components of y to be considered independent (i.e.,
y as unconstrained). Furthermore, J is the canonical Poisson
matrix [16], while η(y) and ξ (y) denote two arbitrary smooth
phase functions. As shown in Ref. [13], such a type of Hamilto-
nian theory can be extended also to the treatment of finite-size
N -body systems subject to nonlocal EM interactions.

Based on these results, in this paper we intend to address the
issues indicated above in the framework of an axiomatic for-
mulation of kinetic theory and investigate the possible validity
of H-theorems which hold for the BS entropy associated with
the probability density function both for the exact Hamiltonian
theory and the related asymptotic approximations. The scheme
of the paper is as follows. In Sec. II the symmetry properties
of the exact RR equation with respect to time-charge-parity
(TCP) and time-reversal transformations are addressed, allow-
ing for the proof of microscopic reversibility for the variational
formulation of single-particle dynamics in the presence of EM
RR. In Sec. III the relevant asymptotic approximations of the
exact RR equation are recalled and their physical meaning is
discussed. These are shown to satisfy as well the TCP and
time-reversal invariance properties of the exact RR equation,
thus proving that microscopic reversibility is preserved also
by these approximate solutions. In Sec. IV the concept of
statistical BS entropy is extended to relativistic CSM and
the corresponding entropy production rate is determined
for generally nonconservative systems. In Sec. V the BS
entropy associated with the probability density for the Vlasov
equation is explicitly calculated for the LL and the exact
Hamiltonian RR equations. In Sec. VI the connection between
the entropy laws holding in the two cases is established and
the corresponding physical interpretation is pointed out. In
particular, it is shown that the validity of the BS entropy
conservation law can be restored even in the framework of an
asymptotic treatment of the RR theory by adopting a suitable
Hamiltonian approximation for particle dynamics. Finally,
concluding remarks are given in Sec. VII.

II. TCP AND TIME-REVERSAL INVARIANCE OF THE
EXACT RR EQUATION

In this section we preliminarily analyze the symmetry
properties of the exact RR equation for finite-size classical
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charges obtained in Refs. [11–14] with respect to discrete
transformations represented by TCP and time-reversal invari-
ance properties. This analysis is necessary in order to prove
the microscopic reversibility of the physical system when EM
RR is taken into account.

The symmetry properties of the RR equations (1) can
be conveniently deduced from the corresponding variational
principle. As shown in Refs. [11–14] the nonlocal Hamilton
action functional S(r,u, [r]) for classical finite-size charged
particles can be represented as

S(r,u,[r]) = SM (r,u) + S
(ext)
C (r) + S

(self)
C (r,[r]), (8)

where SM , S
(ext)
C , and S

(self)
C are, respectively, the inertial mass

and the EM coupling with the external and the self-fields.
As said before, here r and u stand for local dependencies with
respect to the 4-vector position rμ and the 4-velocity uμ, while
[r] stands for nonlocal dependencies on rμ. In particular, the
contributions in Eq. (8) are given by

SM (r,u) =
∫ +∞

−∞
ds

[
mocuμ

drμ

ds
− 1

2
mocuμ(s)uμ(s)

]
, (9)

S
(ext)
C (r) = q

c

∫ 2

1
drμA

(ext)
μ , (10)

S
(self)
C (r,[r]) = q

c

∫ 2

1
drμA

(self)
μ , (11)

where A
(self)
μ is defined by Eq. (4) and carries nonlocal

spatial dependencies. As proved in Ref. [11], the variational
calculation provides a second-order delay-type ODE, which is
equivalent to Eq. (1) and is given by

moc
duμ(s)

ds
= q

c
F

(ext)
μν (r)uν (s) + q

c
F

(self)
μk (r, [r]) uk (s) .(12)

Here F
(ext)
μν ≡ ∂μA

(ext)
ν − ∂νA

(ext)
μ denotes the surface-averaged

Faraday tensor associated with the external EM field, while

F
(self)
μk (r, [r]) is given by

F
(self)
μk (r,[r]) = −2q

∫ 2

1
dr ′

μ

∂

∂rk
δ(R̃αR̃α − σ 2)

+ 2q

∫ 2

1
dr ′

k

∂

∂rμ
δ(R̃αR̃α − σ 2). (13)

Hence, the 4-vectors,

G(ext)
μ ≡ q

c
F

(ext)
μν (r)uν (s) , (14)

G(self)
μ ≡ q

c
F

(self)
μk (r,[r])uk(s), (15)

denote, respectively, the external EM force and the self-EM
RR force.

Let us now consider the TCP-transformation law, which is
defined as follows: ⎧⎨

⎩
T : t → −t,

C : q → −q,

P : r → −r.
(16)

This will be intended as acting both on the particle dynamical
variables as well as on the external EM potential and the
corresponding sources. We notice that the TCP transformation
defined by Eq. (16) is effectively equivalent to the C


transformation defined as{
C : q → −q,


 : rμ → −rμ.
(17)

Therefore, in order to prove the TCP invariance of the func-
tional S(r,u, [r]), it is sufficient to prove its C
 invariance. In
particular, it is immediate to verify that each term entering the
functional (8) is left unchanged under the C
 transformation,
which must apply the same to both local and nonlocal
dependencies. We further notice that in the case of S

(ext)
C (r) the

4-vector A
(ext)μ

is left unchanged because Maxwell’s equations
are TCP invariant. Since the RR equation (12) is variational,
it exhibits the same symmetry properties of the variational
functional S(r,u, [r]) and therefore it is also TCP invariant
according to Eq. (16).

A comment is in order regarding the physical relevance of
this conclusion. In fact, in classical mechanics the customary
viewpoint is that TCP invariance is a direct consequence
of Lorentz symmetry, to be intended as a local property.
However, when dealing with nonlocal interactions, as in
the case of the EM RR phenomenon, in principle there
is no reason to exclude a priori possible TCP-invariance
violations, while still demanding full Lorentz covariance of
the theory. TCP-symmetry-breaking effects might arise due to
nonlocal interactions, even in the framework of a covariant
theory (as the one developed in Refs. [11–14]). In fact,
Lorentz covariance, both at classical and quantum levels, is
usually achieved imposing suitable commutation rules with
the local generators of the Poincarè algebra [Dirac generator
formalism (DGF)]. A crucial point is, however, that, as proved
in Ref. [13], DGF becomes incorrect in the case of the
nonlocal EM RR interaction. Thus, for example, the so-called
Lorentz-symmetry condition, i.e., the commutation rule with
the canonical momentum, is not sufficient to warrant the
full Lorentz covariance of the theory. As a result, a proper
modification of Poincarè algebra is required to deal with
nonlocal interactions. This is realized by means of the nonlocal
generator formalism developed in Ref. [13]. Therefore, the
rigorous result obtained here concerning the TCP invariance
of the RR equation is nontrivial.

Let us next investigate the property of time-reversal
invariance. In fact, an important issue is whether the exact
RR equation is also time-reversal symmetric, namely, it is
invariant with respect to the time-reversal transformation

t → T t = −t, (18)

r → T r = r, (19)

s → T s = s, (20)

where T is here referred to as the time-reversal operator. For
the world line of a particle parametrized in terms of t one has
r (t) → r (−t), so that

T rμ(t) = −rμ(−t), (21)

T
drμ(t)

ds
= −drμ(−t)

ds
. (22)

These transformations imply that the initial conditions for
the state x ≡ [rμ(t),uμ(t)] and T x ≡ [T rμ(t),T uμ(t)] must
be defined consistently, namely, in such a way as to satisfy
an existence and uniqueness theorem (see Ref. [11]). From
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the mathematical point of view, this means that the initial
conditions must define a well-posed problem in both cases. As
a further consequence, when T acts on the retarded proper time
s ′, and s ′ is parametrized in terms of the retarded coordinate
time t ′, by definition it is left unchanged, i.e.,

T s ′(t ′) = s ′(t ′). (23)

Under these premises, one can prove that the RR equation (12)
is invariant with respect to the time-reversal transforma-
tion (18)–(20). The result follows again by inspecting the
variational functional S(r,u, [r]). In fact, first the inertial
contributions in SM are all invariant thanks to properties (21)
and (22). The coupling term with the external EM field S

(ext)
C

is similarly invariant because, under time reversal, also Aμ(ext)

satisfies an analogous transformation property, namely,

T Aμ(ext) = −A(ext)
μ . (24)

Notice that this equation does not imply at all that Aμ(ext) is odd
with respect to time-reversal transformation. Finally, since the
coupling term with the EM self-field S

(self)
C is by construction

a symmetric functional, it is therefore T invariant, too.
These results allow one to conclude that the exact nonlocal

RR equation for finite-size classical charged particles is both
TCP and time-reversal invariant. This proves the microscopic
reversibility of the physical system when the EM RR effect
is taken into account within the framework of the variational
treatment based on the nonlocal Hamilton action functional
S(r,u, [r]).

III. ASYMPTOTIC APPROXIMATIONS OF
THE RR EQUATION

In this section we address the determination of asymptotic
approximations of the exact RR equation for finite-size
particles and the investigation of the corresponding symmetry
properties which they satisfy. More precisely, this refers to the
search for asymptotic approximations holding in the case of
slowly varying and smooth external EM forces (in the sense
defined in Ref. [12]) and applying in validity of the short
delay-time ordering. This is obtained formally, requiring

0 < ε ≡
∣∣∣ sret

s

∣∣∣ � 1, (25)

where sret = s − s ′ is referred to as delay time, with s and s ′
denoting, respectively, the present and retarded particle proper
times.

In principle, two different Taylor expansions can be
performed on the EM self-force. In analogy with Ref. [12],
these can be obtained by expanding the self-force either
in the neighborhood of s (present-time expansion) or s ′
(retarded-time expansion). Although qualitatively similar, the
two expansions produce intrinsically different approximations
for the RR equation. It is immediate to show (see Ref. [12])
that a prerequisite for both expansions is the validity of the
asymptotic approximation

sret = σ [1 + O(ε2)]. (26)

In fact, employing, for example, the present-time expansion,
the delay equation (5) requires

s2
ret − 1

12
s4

ret
duk(s)

ds

duk(s)

ds
= σ 2. (27)

Hence, for consistency with Eq. (26), it must be

1

24
s2

ret
duk(s)

ds

duk(s)

ds
∼ O(ε4). (28)

Estimating the 4-acceleration in terms of the external Lorentz
force G(ext)

μ given by Eq. (14) yields the condition of boundness:

1

24

(
σ

moc

)2 ∣∣G(ext)
μ G(ext)μ

∣∣ ∼ O(ε4). (29)

This result is important because it provides a practical
definition of the dimensionless parameter ε. We note that,
however, the parameter ε thus defined may become of O(1) in
extreme physical conditions. This might happen, for example,
in laser beams characterized by extremely high intensities (e.g.,
I ∼ 1024 W cm−2) or in exotic astrophysical environments,
such as the so-called magnetars in which the magnetic field
intensity can be as high as 1014 G. Therefore, the validity of
the ordering (26) necessarily excludes these circumstances. In
other words, if the condition (26) is violated, necessarily the
exact RR equations (1) must be used.

When ε can be considered infinitesimal, as pointed out
in Refs. [11,12], explicit expressions of the asymptotic
approximations for the RR self-force can be determined. In
particular, we stress that the requirement (26) is necessary in
all cases considered here, and in particular in order to recover
the customary form of the LAD equation from the exact RR
equation.

We consider first the present-time expansion. In this case,
one can show that it leads to an infinite-order differential
equation. In particular, by truncating the Taylor expansion
to first order in ε, the procedure recovers, apart from a mass-
renormalization term, the customary expression for the well-
known LAD equation [11]. The corresponding expression of
the EM self-force for the resulting LAD equation is realized
by the asymptotic approximation

Gμ|LAD = g(LAD)μ[1 + O(ε)], (30)

where the leading-order term g(LAD)μ is given by

g(LAD)μ = −moEMc
duμ(s)

ds
+ h(LAD)μ. (31)

Here, the first term is the present-time mass-renormalization
contribution, which is proportional to the EM mass moEM ≡

q2

2c2σ
. Instead, h(LAD)μ is the customary LAD 4-vector

h(LAD)μ = 2

3

q2

c

[
d2uμ(s)

ds2
− uμ(s)uk(s)

d2uk(s)

ds2

]
, (32)

which leads to a third-order ODE for the RR equation, in
which all of the contributions are evaluated at present proper
time s. The connection with the LL equation then follows
by employing the one-step reduction process described in
Ref. [4], which requires also neglecting mass-renormalization
contributions. This procedure, however, is only applicable
when the EM self-force can be considered to be a small
perturbation with respect to the Lorentz force produced by
the external EM field. The corresponding expression for the
self-force in this approximation gives G(self)μ ∼= F

μ

LL, where

F
μ

LL = 2

3

q3

moc3

[
uku

λ∂λF
(ext)μk + q

m0c2
hμ

]
, (33)
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with

hμ ≡ −F (ext)μkF
(ext)
λk uλ + uμF

(ext)
σλ uλF (ext)σkuk. (34)

In such a case, by construction, both for LAD and LL
equations, delay-time effects are ignored. As remarked in the
Introduction, the resulting asymptotic equations are nonvaria-
tional and therefore non-Hamiltonian.

Consider next the retarded-time expansion. This generates
a second-order delay-type ODE, in which the RR delayed con-
tributions contain now in principle infinite-order derivatives,
all evaluated at the retarded time s ′. Upon truncation of the
expansion to first order in ε, as in the case of the LAD equation,
this yields the equation discovered in Ref. [12], hereon referred
to as the CT RR equation. In this case the expression of the
EM self-force gives the asymptotic approximation

Gμ|CT = g(CT)μ[1 + O(ε)], (35)

where the leading-order term g(CT)μ depends on the retarded
proper time s ′ only and is given by

g(CT)μ = −moEMc
duμ(s ′)

ds ′ + h(CT)μ. (36)

Here, the first term can be interpreted as a retarded-time mass-
renormalization contribution, while h(CT)μ is now the 4-vector

h(CT)μ = 1

6

q2

c

d2uμ(s ′)
ds ′2 − 2

3

q2

c
uμ(s ′)uk(s ′)

d2uk(s ′)
ds ′2 . (37)

Again, provided the RR self-force g(CT)μ can be treated as
a perturbation of the externally produced Lorentz force, the
same iterative procedure invoked to reach the LL equation
(starting from the LAD equation) can be invoked also here
for the CT RR equation to reduce the order of the derivatives
entering h(CT)μ. This yields for h(CT)μ the controvariant
iterative approximation

hα
(CT)

∼= hα
1 + hα

2 + hα
3 , (38)

where

hα
1 ≡ 1

6

q3

moc3

∂F
(ext)αk

∂rl
uk(s ′)ul(s ′), (39)

hα
2 ≡ −1

6

q4

m2
oc

5
F

(ext)αl
F

(ext)
kl uk(s ′), (40)

hα
3 ≡ 2

3

q4

m2
oc

5
F

(ext)
kl ul(s ′)F

(ext)km
um(s ′)uα(s ′). (41)

The resulting second-order delay-type ODE obtained
implementing this approximation in the exact RR equation
will be referred to as the reduced CT RR equation.

A notable feature of both the CT RR and the reduced
CT RR equations obtained in this way is that they take into
account consistently relativistic finite delay-time effects that
are characteristic of the RR phenomenon and, furthermore, are
variational and preserve the Hamiltonian structure of the exact
RR problem. It should be also remarked that the LAD and CT
approximations are intrinsically different and do not match in
the limit s ′ → s. Therefore, contrary to naive interpretations,
the two approximations cannot be trivially obtained one from
the other by simply exchanging s with s ′. In fact, this would
correspond to considering the point-particle limit. However,

in such a limit, first, the mass-renormalization terms diverge,
and second, as proved above, the two asymptotic expressions
h(LAD)μ and h(CT)μ do not coincide. The present conclusion
shows that the point-particle limit must be regarded as
unphysical. Nevertheless, it is obvious that the two asymptotic
approximations, i.e., the LAD and CT equations (respectively
the LL and reduced CT equations), are mutually related by
a simple Taylor expansion. In other words, for example, the
LAD equation reduces to the CT equation by Taylor expanding
the whole 4-vector g(LAD)μ in the neighborhood of the proper
time s ′. This provides the connection between the two sets of
asymptotic approximations.

To conclude this section, let us address the issue of the
symmetry properties with respect to the discrete TCP and time-
reversal transformations. Since in all cases the perturbative
expansions are performed with respect to particle proper
time s, it is obvious that both symmetries remain necessarily
preserved. As a consequence it is concluded that both LAD and
LL equations as well as the CT and corresponding reduced CT
equations keep the correct TCP and time-reversal invariance
properties of the exact RR equation. This permits to state
that microscopic reversibility is preserved for the dynamics
of single charges subject to EM RR also when asymptotic
approximations of the RR self-force apply.

IV. THE BOLTZMANN-SHANNON ENTROPY

In this section we introduce the notion of BS entropy in
the context of relativistic treatment of CSM, which extends
the definition holding in the case of nonrelativistic theory. It
is well known that the BS entropy follows from the concept
of the ignorance function originally introduced by Shannon
in information theory [17] and further developed by Jaynes
[18,19]. A basic prerequisite is the axiomatic formulation of
the microscopic statistical description for relativistic systems
(see Ref. [12]), here briefly recalled for convenience. For
definiteness we restrict our analysis to isolated relativistic
single charged particles in the absence of binary collisions, as
appropriate for the Vlasov-Maxwell statistical treatment. We
assume that the particle is identified with a superabundant state
vector x = (rμ,uμ) spanning the extended eight-dimensional
phase space � and with essential state variables x1 (x) spanning
the six-dimensional reduced phase space �1 and to be suitably
defined (see below). In particular, rμ and uμ are, respectively,
the position and velocity 4-vectors associated with a particle
characterized by proper time s, so that uμ = drμ

ds
. It follows

that necessarily the invariant set �1 = �1 (s) is defined as

�1(s) ≡ {x : x ∈ �, |u| = 1, ds = √
gμνdrμdrν}, (42)

where |u| ≡ √
uαuα and s is the world-line proper time

uniquely related to any x. Furthermore, we assume that particle
dynamics is determined by the flow Ts0,s which is taken of the
form

Ts0,s : x0 ≡ x (s0) → x ≡ x (s)

= χ (x0,s − s0, {x (s1) : s1 ∈ ]−∞,s0[}) , (43)

with χ being a smooth real function. The flow Ts0,s is generated
by a delay ODE of the type

d

ds
x (s) = X (x, {x (s1) : s1 ∈ ]−∞,s0[}) , (44)

032107-5



CLAUDIO CREMASCHINI AND MASSIMO TESSAROTTO PHYSICAL REVIEW E 87, 032107 (2013)

where X is generally a nonconservative vector field defined as
X ≡ (uμ,Fμ), with Fμ denoting the force 4-vector. Notice that
this map does not generally define a dynamical system, since
for relativistic systems the state x (s) can depend on the whole
causal past history of the particle through {x (s1)} (see also
related discussions in Ref. [11]). This permits us to introduce
a probability measure on �1 to be identified, for an arbitrary
subset B (s) ⊆ �1, with the set function

P (B(s)) =
∫

�

dxρ(x)δ(|u| − 1)δ(s − s(x))δB(s)(x), (45)

where dx = d4rd4u is the canonical measure on �, δB(s)(x)
is the characteristic function of B(s), and ρ(x) > 0 is the
probability density on �1 and therefore defined so that
P (�1) = 1. In the absence of binary collisions, by assumption
P (B(s)) must satisfy the axiom of probability conservation,
namely, for all B(s0) and for all s,s0 ∈ I ⊆ R,

P (B(s)) = P (B(s0)). (46)

It follows that the probability density ρ(x) must satisfy the
integral Vlasov (Liouville) equation∣∣∣∣∂x(s)

∂x0

∣∣∣∣ ρ(x(s)) = ρ(x(s0)) ≡ ρ(x0), (47)

where
∣∣∣ ∂x(s)

∂x0

∣∣∣ is the Jacobian of the map (43), which, according

to the Liouville theorem, is given by∣∣∣∣∂x (s)

∂x0

∣∣∣∣ = exp

[
−

∫ s

s0

ds ′ ∂

∂uμ(s ′)
Fμ(s ′)

]
. (48)

In particular, in the case in which X is conservative, namely,
∂

∂uμ Fμ = 0, it follows that identically | ∂x(s)
∂x0

| = 1. Requiring
now ρ (x0) to be differentiable, the previous equation, for all
x ≡ x (s), can be equivalently cast in terms of the generally
nonconservative differential Vlasov equation (see Theorem 6
in Ref. [12]):

d

ds

[∣∣∣∣∂x(s)

∂x0

∣∣∣∣ ρ(x(s))
]

= uμ ∂ρ(x)

∂rμ
+ ∂(Fμρ(x))

∂uμ
= 0. (49)

In order to proceed we distinguish here the cases in which
ρ(x) is, respectively, (1) a strictly positive ordinary function
(stochastic PDF) and (2) a product of a distribution with an
ordinary strictly positive function w(x) (partially deterministic
PDF). The latter is identified with a PDF of the general form
ρ(x) = δ(f (x) − f (x(s)))w(x), with f (x) being a suitable
smooth function of the particle state. An example is realized
by letting f (x) = x1, so that ρ(x) = δ(x1 − x1(s))w(x), where
x1 identifies one of the components of the particle state and
x1(s) is considered a prescribed function of the proper time
s. Correspondingly, we can now introduce the notion of BS
entropy S(ρ(x)) associated with ρ(x). In the first case S(ρ(x))
is identified with the 4-scalar

S(ρ(x)) = −
∫

�

dxδ(|u| − 1)δ(s − s(x))ρ(x) ln
ρ(x)

A(x)
, (50)

with A(x) being a suitable 4-scalar, which coincides with
A(x) = 1 in the flat space-time when rμ = (r0 = ct,r) and
r is represented in terms of orthogonal Cartesian coordinates
(r1,r2,r3) (see also Ref. [20]). As a consequence it follows
by construction that S is a function of s of the form S(s) ≡

S(ρ(x(s))). It is then immediate to show that, when A(x) = 1,
the BS entropies S(s) and S(s0) are simply related by

S(s) = −
∫

�

dx0δ(|u0| − 1)δ(s0 − s(x0))

× ρ(x0) ln

[
ρ(x0)

∣∣∣∣ ∂x0

∂x(s)

∣∣∣∣
]

. (51)

Thanks to the Liouville theorem it follows that

S(s) = S(s0) −
∫

�

dx0δ(|u0| − 1)δ(s0 − s(x0))

× ρ(x0)
∫ s

s0

ds ′ ∂

∂uμ(s ′)
Fμ(s ′). (52)

This implies that generally, for a nonconservative Fμ, the
entropy production rate ∂

∂s
S (s) is nonzero and is given by

∂

∂s
S(s) = −

∫
�

dxδ (|u| − 1)δ(s − s(x))ρ (x)
∂Fμ

∂uμ
. (53)

In the following we shall refer to the nonvanishing entropy
production rate as the characteristic feature for the macro-
scopic irreversibility for the dynamics of the N -body system.
On the other hand, in the case of a conservative 4-force Fμ

one obtains the constant H-theorem

∂

∂s
S(s) = 0, (54)

which is interpreted as the requirement which assures the
macroscopic reversibility of the N -body dynamics. Similarly,
for a partially deterministic PDF one introduces for the BS
entropy the definition

S(s) = −
∫

�

dxδ (|u| − 1)δ(s − s(x))

× δ(x1 − x1(s))w(x) ln w(x), (55)

where we have set A(x) = 1. Also in this case it is immediate
to relate S(s) with S(s0). In fact, from Eq. (47) one gets an
integral equation which determines w(x(s)), namely,

w(x0) =
∣∣∣∣∂x(s)

∂x0

∣∣∣∣w(x(s)). (56)

As a consequence one recovers again an expression analogous
to Eq. (52) with ρ(x0) ≡ δ(x1,0 − x1(s0))w(x0).

It is worth noting that the notion of BS entropy introduced
here is consistent with the physical interpretation adopted
in the context of information theory. As a particular case,
let w(x) = 1 and δ(f (x) − f (x(s))) ≡ δ(x − x(s)) coincide
with the eight-dimensional Dirac-delta function. It follows
that ρ(x) coincides with the deterministic PDF, while both
S(s) and the corresponding entropy production rate ∂

∂s
S(s)

vanish identically. This conclusion implies that indeed S(s) is
a measure of the ignorance on the physical system also in the
case of relativistic CSM.

V. BS ENTROPY FOR THE RR EQUATION

In this section we determine the BS entropy and the
corresponding entropy production rate which is obtained in
the case of the RR equation for the EM RR. This corresponds
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to identify the 4-vector Fμ with

Fμ = ημν
(
F (ext)

ν + F (self)
ν

)
, (57)

where F (ext)
ν and F (self)

ν denote the EM forces acting on the
charged particle and due respectively to the external and
self (i.e., RR) EM fields. Two different representations are
considered. The first one relies on the customary point-particle
model in the framework of the LL approximation of the RR
self-force. In this approximation, the external Lorentz force is
identified with

F (ext)
ν ≡ q

moc2
uαF (ext)

αν (r) , (58)

where F (ext)
αν (r) ≡ ∂αA(ext)

ν (r) − ∂νA
(ext)
α (r) is the Faraday

tensor associated with the external EM field produced by the
4-vector potential A(ext)

ν (r). Instead, the self-force is obtained
by identifying F (self)μ with the 4-vector F

μ

LL given by Eq. (33).
The second representation follows from the Hamiltonian

theory presented in Ref. [12] and applies for the treatment
of finite-size charge distributions. In this case the external
4-vector force F (ext)

ν and the self 4-force F (self)
ν are identified,

respectively, with the 4-vectors G(ext)
μ and G(self)

μ given by
Eqs. (14) and (15).

Let us now proceed with the explicit evaluation of the
BS entropy and the corresponding entropy production rate
in the two representations considered. We first notice that in
both cases the only possibly nonvanishing contribution to the
entropy production rate can only arise due to the RR self-force.
In fact, due to the antisymmetric property of the Faraday
tensor associated with the external EM field, in both cases the
divergence ∂Fμ(ext)

∂uμ vanishes identically. Let us consider next
the contribution due to F (self)

μ . In the case of the LL theory,
after straightforward algebra, one obtains

∂

∂uμ
F

μ

LL = 2

3

q3

moc3
uk∂μF (ext)μk − 2

3

q3

m2
oc

5
F (ext)μkF

(ext)
μk

+ 2
q3

m2
oc

5
uku

λF (ext)kσF
(ext)
σλ , (59)

where in general each contribution on the right-hand side is
nonvanishing. In particular, the first term is proportional to
the external 4-current density, i.e., ∂μF (ext)μk = − 4π

c
J (ext)k .

The second term is instead proportional to the invariant EM
4-scalar W = F (ext)μkF

(ext)
μk = B2 − E2. Finally, the third term

is proportional to the square of the external EM force. Due to
the independence of these terms, it follows that the divergence
of F

μ

LL is generally nonzero. This implies that the entropy
production rate (53) associated with the 1-body PDF ρ(x)
is always nonvanishing in the case of the LL treatment,
implying a macroscopic irreversibility for the dynamics of
the corresponding N -body system.

Let us now analyze in detail the implications of the
representation for F (self)

μ (r,[r]) given above in Eq. (15) and
holding in the case of extended particles. It is immediate
to show that the corresponding entropy production rate
necessarily vanishes identically. The result is straightforward
and follows as a consequence of the Hamiltonian structure of
the RR theory recalled in the Introduction and leading to the
representation (15). In fact, we notice that, by construction,
the BS entropy can be viewed as an observable, which

cannot depend on the particular choice of state x adopted for
its representation. Therefore, provided the flow (44) can be
represented in canonical form, i.e., there is a diffeomorphism
of the form x → y, with y = (rμ,Pμ) being a canonical state,
it follows that necessarily S(s) must satisfy the constant
H-theorem given by Eq. (54). In the present case the previous
transformation is simply determined by the set of equations

rμ = rμ, (60)

Pμ = uμ + q

c

[
A

(ext)
μ + 2A

(self)
μ

]
, (61)

where A
(self)
μ is the nonlocal EM 4-vector potential of the self-

field given in Eq. (4). The result follows in elementary way.
In fact, let us start from the expression of BS entropy (50)
expressed in terms of the noncanonical state x and in which
A(x) is set equal to one. Then, introducing the transformation
x → y and noting that, according to Eqs. (60) and (61), | ∂x

∂y | =
1, it follows identically that

S(s) ≡ S(ρ(x(s))) = S1(ρ1(y(s))), (62)

where ρ(x) = ρ1(y) and S1(ρ1(y(s))) is defined as the BS
entropy associated with ρ1(y), namely,

S1(ρ1(y(s))) = −
∫

�y

dyδ(|u| − 1)δ(s − s(y))

× ρ1(y) ln ρ1(y). (63)

Then, for all s,s0 ∈ I , the integral Liouville equation (47)
reduces to ρ1(y(s)) = ρ1(y(s0)). This implies identically that

S1(ρ1(y(s))) = S1(ρ1(y(s0))). (64)

Therefore, it follows that in the framework of the Hamiltonian
theory of EM RR for extended charges the BS entropy S(s)
recovers, as expected, the constant H-theorem (54). This is
consistent with the microscopic reversibility proved in Sec. II.

VI. PHYSICAL INTERPRETATION

The results obtained in the previous section raise the
problem of the existence of an apparent contradiction between
the entropy production rates characterizing the two theories
of EM RR considered above. The purpose of this section
is to investigate in detail the meaning of the BS entropy in
the two cases, determine their relationship, and discuss the
physical interpretation which follows from the validity of the
corresponding H-theorems. In particular, here we point out that
the two results can be reconciled in the framework of the exact
theory, which allows one also to get a correct interpretation of
the nonvanishing entropy production rate predicted by the LL
approximation (see below). In this regard we first notice that
a basic difference between the LL theory and the Hamiltonian
formulation lies in the realization of the corresponding 1-body
PDFs and the related evolution equations. In fact, in the
formulation based on the LL approximation, since the theory
is non-Hamiltonian, the PDF ρ(x) can only be expressed in
terms of a noncanonical state [for example, x = (rμ,uμ)],
while a transformation of the type x → y to a canonical
state y remains forbidden in such a case. In contrast, in
the framework of the exact Hamiltonian theory, the PDF
admits a functional dependence in terms of the canonical
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state y = (rμ,Pμ), which is uniquely determined by Eqs. (60)
and (61). As a basic consequence, in the second case the
PDF ρ1(y) carries an implicit contribution due to the EM self
4-potential and arising specifically through the definition of the
canonical 4-momentum Pμ. In Ref. [12] it was shown that this
kind of functional form is actually crucial for the consistent
formulation of both kinetic and fluid theories following from
the statistical description based on ρ1(y). We now proceed
investigating how this property affects also the formulation of
the H-theorem.

In order to establish the connection between the entropy
production rate in the two cases, it is convenient to adopt a
perturbative treatment analogous to that adopted in Ref. [12].
This requires to represent the PDF ρ1(y) in terms of generally
noncanonical variables w. For definiteness, let us introduce an
arbitrary noncanonical phase-space diffeomorphism from � to
�w, with �w denoting a transformed phase space having the
same dimension of �,

y ≡ (rμ,Pμ) → w ≡ w(y), (65)

where, for example, w can be identified with the noncanonical
state x ≡ (rμ,uμ). In this case the transformation follows from
Eq. (61) and is realized by

rμ = rμ, (66)

uμ = Pμ − q

c

[
A

(ext)
μ + 2A

(self)
μ

]
, (67)

while the relativistic nonlocal RR equations are given again
by Eq. (44), where now Fμ = ∂pμ

∂rν uν − ∂uμ

∂Pν

∂Heff
∂rν is the exact

EM force, including both external and self-contributions. In
the LL theory the exact EM force is expressed in terms of the
asymptotic approximation

Fμ = F (ext)μ + F
μ

LL + �Fμ, (68)

where F (ext)μ and F
μ

LL are defined by Eqs. (58) and (33), while
�Fμ is the difference between the exact and approximate
EM forces, which is assumed to be a small perturbation.
Incidentally, this viewpoint is consistent with the assumptions
underlying the LL theory, where indeed the EM self-force is
treated perturbatively. As a consequence, in the leading-order
approximation, the noncanonical state x satisfies now the
asymptotic LL equation

drμ

ds
= uμ, (69)

duμ

ds
= F (ext)μ + F

μ

LL. (70)

The perturbative approach requires introducing for the canon-
ical state y = (rμ,Pμ) the representation

y = ync + �y, (71)

where ync ≡ (rμ,pμ) is the particle state whose dynamics
is determined by the LL equations (69) and (70), with
pμ ≡ uμ + q

c
A(ext)

μ , while �y ≡ y − ync is assumed to be a
small perturbation. When this condition is realized, a Taylor
expansion for the PDF ρ1(y) becomes possible. To first order
this yields

ρ1(y) � ρ1(ync) + �ρ1(y,ync), (72)

where

�ρ1(y,ync) ≡ �y
∂ρ1(y)

∂y

∣∣∣∣
y=ync

(73)

is the first-order term of the series. When the representa-
tion (72) is substituted in the definition (50) of BS entropy
and we let A(x) = 1, the following asymptotic approximation
is obtained:

S1(ρ1(y)) ∼= S1(ρ1(ync)) + �S1(ρ1(y,ync)), (74)

where, correct to first order in the perturbative expansion,

S1(ρ1(ync)) =
∫

�y

dyncδ(|u| − 1)δ(s − s(ync))

× ρ1(ync) ln ρ1(ync), (75)

�S1(ρ1(y,ync)) =
∫

�y

dyncδ(|u| − 1)δ(s − s(ync))

×�ρ1(y,ync)[1 + ln ρ1(ync)]

+
∫

�y

dync

∣∣∣∣∂�y
∂ync

∣∣∣∣ δ(|u| − 1)ρ1(ync)

× δ(s − s(ync)) ln ρ1(ync). (76)

One can prove that the first term of �S1(ρ1(y,ync)) vanishes
identically, thus indicating that to this order �ρ1(y,ync) does
not contribute explicitly to the entropy correction �S1. Hence,
in this approximation the previous equation reduces to

�S1(ρ1(y,ync)) =
∫

�y

dync

∣∣∣∣∂�y
∂ync

∣∣∣∣ δ(|u| − 1)ρ1(ync)

×δ(s − s(ync)) ln ρ1(ync). (77)

As a consequence of Eq. (64) one finds that the entropy
production rate arising in the LL approximation (for the
RR self-force) is only due to the nonconservation of the
phase-space volume in this description, namely, due to the
Jacobian | ∂�y

∂ync
| being generally different from unity. This

provides a simple interpretation of the simultaneous validity of
the two H theorems holding in the two cases discussed here. In
particular, it shows that the nonvanishing entropy production
rate characterizing the LL theory is intrinsically related to its
non-Hamiltonian character.

The real issue is whether this conclusion is merely inciden-
tal or has an actual physical meaning related in some sense to
the actual EM RR interaction. The answer to this question
is of course of basic importance. Its precise formulation
can again be shown to follow from the Hamiltonian theory
developed in Ref. [12]. In fact, in validity of the short
delay-time ordering (25), it has been shown that the adoption
of the retarded-time (rather than the present-time) expansion
permits one to recover a nonlocal asymptotic approximation
of the exact EM RR force (CT and reduced CT equations).
Such an approximation remarkably preserves the Hamiltonian
structure of the exact theory in terms of the set {z,Hasym} with
canonical equations of the form

dz
ds

= [z,Hasym]. (78)

Here the vector z ≡ (rμ,πμ) spanning the eight-dimensional
phase space �z is the canonical state defined with respect to
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the non-local Hamiltonian function

Hasym(r,π,r ′
0) = 1

2moc

(
πμ − q

c
A

(ext)
μ (r)

)

×
(

πμ − q

c
A

(ext)μ
(r)

)
+ g(CT)μ(r(s ′))rμ,

(79)

while the canonical momentum is now

πμ = m0c
drμ(s)

ds
+ q

c
A

(ext)
μ (r). (80)

In addition, notice that here the 4-vector g(CT)μ(r(s ′)) depends
only on the extremal particle world line r(s ′) at the retarded
proper time s ′ and is given by Eq. (36) above. In this
Hamiltonian approximation, denoting by ρ2 (z) the PDF which
evolves by means of the integral Vlasov equation,

ρ2(z(s)) = ρ2(z(s0)) ≡ ρ2(z0), (81)

it follows that the BS entropy associated with the same PDF,

S2(ρ2(z)) = −
∫

�z

dzδ(|u| − 1)δ(s − s(z))ρ2(z) ln ρ2(z),

(82)

is again identically conserved (as in the exact Hamiltonian
formulation). This means that the difficulty inherited by the
LL approximation should be considered purely incidental and
not be interpreted as a physically meaningful property.

VII. CONCLUSIONS

In the Vlasov-Maxwell statistical description of classical
N -body systems, the customary approach to the EM RR prob-
lem based on the relativistic Landau-Lifschitz (LL) equation
gives rise to a generally nonvanishing BS entropy production
rate. In the framework of classical statistical mechanics, when
binary collisions are negligible, this represents a paradox.
In fact, the conclusion appears in contradiction with the
microscopic reversibility of the underlying classical system.
The dilemma is whether such a macroscopic irreversibility
of the dynamics of the N -body system is an intrinsic feature
of the EM RR or is merely a consequence of the asymptotic

approximations adopted in the LL equation. To address the
issue, in this paper we have first considered the symmetry
properties of the RR equation with respect to both TCP and
time-reversal transformations. It has been proved that these
invariance features hold for the single-particle dynamics both
for the exact variational and Hamiltonian RR equation as well
as for its relevant asymptotic approximations, including the
LL treatment. This makes possible to assure the microscopic
reversibility when nonlocal EM RR effects are taken into
account. Then, the notion of BS entropy and related entropy
production rate have been properly extended to relativistic
systems and formulated in the context of classical statistical
mechanics (CSM). An axiomatic approach of the EM RR
problem earlier developed has been adopted, which allows one
to determine the exact Hamiltonian structure of single-particle
dynamics subject to external and self EM fields. The BS
entropy production rates predicted by the Hamiltonian and LL
approaches have been explicitly determined and compared.
In particular, in contrast to the Hamiltonian theory, the LL
equation has been shown to lead to a generally nonva-
nishing entropy production rate. A discussion concerning
the physical interpretation of the result has been provided,
showing that the paradox only arises due to the intrinsic
non-Hamiltonian character involved in the LL approximate
treatment of the EM RR. As shown here, this behavior can
be avoided by making use either of the exact Hamiltonian
approach or introducing a suitable asymptotic Hamiltonian
approximation.
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