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Nematic-disordered phase transition in systems of long rigid rods on two-dimensional lattices
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We study the phase transition from a nematic phase to a high-density disordered phase in systems of long
rigid rods of length k on the square and triangular lattices. We use an efficient Monte Carlo scheme that partly
overcomes the problem of very large relaxation times of nearly jammed configurations. The existence of a
continuous transition is observed on both lattices for k = 7. We study correlations in the high-density disordered
phase, and we find evidence of a crossover length scale ξ ∗ � 1400 on the square lattice. For distances smaller
than ξ ∗, correlations appear to decay algebraically. Our best estimates of the critical exponents differ from those
of the Ising model, but we can not rule out a crossover to Ising universality class at length scales �ξ ∗. On
the triangular lattice, the critical exponents are consistent with those of the two-dimensional three-state Potts
universality class.
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I. INTRODUCTION

The study of the ordering transition in a system of long
rigid rods in solution with only excluded volume interaction
has a long history, starting with Onsager’s proof that beyond
a critical density, a solution of thin cylindrical rods would
undergo a transition to an orientationally ordered state [1–4]. In
two-dimensional continuum space, when the rods may orient
in any direction, the continuous rotational symmetry remains
unbroken at any density. However, the system undergoes a
Kosterlitz-Thouless–type transition from a low-density phase
with exponential decay of orientational correlations to a high-
density phase with a power law decay [5–8].

In this paper, we study the problem when the underlying
space is discrete: the square or the triangular lattice. Straight
rods occupying k consecutive sites along any one lattice
direction will be called k-mers. For dimers (k = 2), it has been
shown rigorously that the system remains in the isotropic phase
at all packing densities [9]. A system of dimers with additional
interactions, either attractive, favoring parallel alignment, or
repulsive, disallowing nearest-neighbor occupation, can have
ordered phases [10]. For k > 2, the existence of a phase
transition, with only hard-core interactions, remained unsettled
for a long time [11]. Ghosh and Dhar recently argued that
k-mers on a square lattice, for k � kmin, would undergo two
phase transitions, and the nematic phase would exist for only
an intermediate range of densities ρ∗

1 < ρ < ρ∗
2 [12]. Similar

behavior is expected in higher dimensions. In two dimensions,
numerical studies have shown that kmin = 7 [12]. The existence
of the nematic phase, and hence the first transition from the
isotropic to nematic phase, has been proved rigorously [13].
This transition has also been studied in detail through Monte
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Carlo simulations [14–17]. On the square lattice, the transition
is numerically found to be in the Ising (equivalently the
liquid-gas) universality class [14,18], and on the triangular
lattices, it is in the q = 3 Potts model universality class [14,15].

In this paper, we investigate whether the high-density
disordered phase is a reentrant low-density disordered phase,
or a new qualitatively distinct phase. To distinguish between
these two phases without nematic order, we will refer to the
first as low-density disordered (LDD) phase and the second as
high-density disordered (HDD) phase in the remainder of the
paper.

The second transition at ρ∗
2 from the nematic to the HDD

phase has not been studied much so far. Numerical studies
are difficult because of the large relaxation times of the
nearly jammed configurations at high densities. Conventional
Monte Carlo algorithms using deposition-evaporation moves
involving only addition or removal of single rods at a time are
quite inefficient at large densities. With additional diffusion
and rotation moves, it is possible to equilibrate the system
[17,19], but the algorithm is still not efficient enough to
make quantitative studies of the transition, or the nature
of the HDD phase. In Ref. [12], a variational estimate of
the entropy of the nematic and the HDD phases suggests
that 1 − ρ∗

2 should vary as 1/k2 for large k. Linares et al.
estimated that 0.87 � ρ∗

2 � 0.93 for k = 7, and proposed an
approximate functional form for the entropy as a function
of the density [17]. However, not much is known about the
nature of transition. Recently, we showed that a Bethe-type
approximation becomes exact on a random locally treelike
layered lattice, and for the 4-coordinated lattice kmin = 4. But,
on this lattice, the second transition is absent [20].

By implementing an efficient Monte Carlo algorithm, we
show that, for k = 7, at high densities the orientational order
is absent on both square and triangular lattices. We investigate
the nature of this HDD phase. Using lattices of size up to L =
2576, we find evidence of a power-law decay of orientational
correlations between rods for distances r � ξ ∗ ≈ 1400, where
ξ ∗ is a characteristic length scale of the system. Correlations
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appear to decay faster for distances r � ξ ∗, but we have limited
data in this regime, and can not rule out a power-law decay,
even for r � ξ ∗.

Regarding the critical behavior near the phase transi-
tion on the square and triangular lattices, for k = 7, our
results show that the transition is continuous and occurs
for ρ∗

2 = 0.917 ± 0.015 (μc = 5.57 ± 0.02) on the square
lattice, and for ρ∗

2 = 0.905 ± 0.010 (μc = 5.14 ± 0.05) on
the triangular lattice, where μc is the critical chemical
potential. For comparison, ρ∗

1 ≈ 0.745 on the square lattice.
On the square lattice, our best estimates of the effective
critical exponents differ from the Ising universality class,
with exponents ν = 0.90 ± 0.05, β/ν = 0.22 ± 0.07, γ /ν =
1.56 ± 0.07, and α/ν = 0.22 ± 0.07. However, it appears that
these are only effective exponents, and may be expected to
cross over to the Ising universality class at larger length scales.
On the triangular lattice, our estimates of critical exponents for
the second transition are consistent with those of the three-state
Potts model universality class (ν = 5

6 , β = 1
9 ).

The plan of the paper is as follows. In Sec. II, we define the
model precisely, and describe the Monte Carlo algorithm used.
In Sec. III, we use this algorithm to show that at high activities,
the nematic phase is unstable to creation of bubbles of HDD
phase, and that the decay of the nematic order parameter to
zero is well described quantitatively by the classical nucleation
theory of Kolmogorov-Johnson-Mehl-Avrami. In Sec. IV,
we study different properties of the HDD phase: the two
point correlations, cluster size distributions, susceptibility,
size distribution of structures that we call “stacks”, and the
formation of bound states of vacancies. The critical behavior
near the second transition from the nematic phase to the HDD
phase is studied in Sec. V for both the square and triangular
lattices, by determining the numerical values of the critical
exponents. Section VI summarizes the main results of the
paper, and we discuss some possible extensions.

II. MODEL AND THE MONTE CARLO ALGORITHM

For simplicity, we first define the model on the square lat-
tice. Generalization to the triangular lattice is straightforward.
Consider a square lattice of size L × L with periodic boundary
conditions. A k-mer can be either horizontal (x-mer) or vertical
(y-mer). A lattice site can have at most one k-mer passing
through it. An activity z = eμ is associated with each k-mer,
where μ is the chemical potential.

The Monte Carlo algorithm we use is defined as follows
(this was reported earlier in a conference [21]): given a valid
configuration, first, all x-mers are removed without moving
any of the y-mers. Each row now consists of sets of contiguous
empty sites, separated from each other by sites occupied by
y-mers. The lattice is now reoccupied with x-mers. In the
grand canonical ensemble, this can be done independently in
each row, and the problem reduces to that of occupying an
interval of some given length � of a one-dimensional lattice
with k-mers with correct probabilities.

Let the grand canonical partition function of a system of
hard rods on a one-dimensional lattice of � sites with open
boundary conditions be denoted by 	o(z; �). The probability
that the leftmost site is occupied by the leftmost site of an x-mer
is p� = z	o(z; � − k)/	o(z; �). If not occupied, we consider

the neighbor to the right and reduce the number of lattice sites
by one. If occupied, we move to the (k + 1)th neighbor and
reduce the length of the interval by k.

The partition functions 	o(z; �) obey the simple recursion
relation 	o(z; �) = z	o(z; � − k) + 	o(z; � − 1) for � � k,
and 	o(z; �) = 1 for � = 0,1, . . . ,k − 1. The solution of this
recursion relation is 	o(z; �) = ∑k

i=1 aiλ
�
i , where λi’s are

independent of �. The ai’s are determined by the boundary
conditions 	o(z; �) = 1 for � = 0,1, . . . ,k − 1.

With periodic boundary conditions, the recursion relations
have to be modified. Let 	p(z; �) be the partition function of a
one-dimensional lattice of length � with periodic boundary
conditions. It is easy to see that 	p(z; �) = kz	o(z; � −
k) + 	o(z; � − 1). We use a list of stored values of the
relevant probabilities {p�} for all � = 1, . . . ,L, to reduce the
computation time.

Following the evaporation of and reoccupation by
x-mers, we repeat the procedure with y-mers. Keeping x-mers
unmoved, all y-mers are evaporated and the columns are then
reoccupied with y-mers. A Monte Carlo move corresponds
to one set of evaporation and reoccupation of both x-mers
and y-mers. It is straightforward to see that the algorithm is
ergodic, and satisfies the detailed balance condition.

The algorithm is easily parallelizable since the evaporation
and reoccupation of x-mers in any row (column) is independent
of the other rows (columns). For the larger system sizes
(L > 400), we used a parallelized version of the computer
program. This enables us to study the critical behavior at the
second transition for system sizes up to L = 952, properties
of the HDD phase away from the transition point for system
sizes up to L = 2576, and probe densities up to ρ = 0.995.
At these high densities, we ensure equilibration by checking
that the long time behavior of the system is independent of
the initial preparation. For this, we used two different initial
conditions, one in which all sites are occupied by x-mers and
the other in which one half of the lattice contains x-mers and
the other half only y-mers.

III. METASTABILITY OF THE NEMATIC PHASE
FOR LARGE ACTIVITIES

We first verify that, for large activities, the nematic phase is
unstable to the growth of the HDD phase. In Figs. 1(a) –1(c),
we show snapshots of the system of rods of length k = 7
in equilibrium, on a square lattice at low, intermediate, and
high densities. For the high-density snapshot, the initial

(a) (b) (c)

FIG. 1. (Color online) Typical configurations of the system in
equilibrium at densities (a) ρ ≈ 0.66 (μ = 0.41), (b) ρ ≈ 0.89
(μ = 4.82), and (c) ρ ≈ 0.96 (μ = 7.60) on a square lattice. Here,
k = 7 and L = 98.
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FIG. 2. (Color online) A typical configuration of the system in
equilibrium at density ρ ≈ 0.96 (μ = 7.60) on a triangular lattice.
Here, k = 7 and L = 98.

configuration had full nematic order, but the system relaxed to
a disordered phase. A similar disordered phase is also seen for
the triangular lattice at high densities (see Fig. 2).

In Fig. 3, we show the temporal evolution of the order
parameter Q, defined by Q = 〈nh − nv〉/〈nh + nv〉, where nh

and nv are the number of x-mers and y-mers, respectively.
For all values of μ, the initial configuration had full nematic
order. For μ = 3.89, at large times, the system relaxes to an
equilibrium state with a finite nematic order. However, for
larger μ = 7.60, the nematic order decreases with time to
zero. Interestingly, we find that the average lifetime of the
metastable state decreases with increasing system size, and
saturates to an L-independent value for L � 200 (see Fig. 3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1×106  2×106  3×106

Q

t

μ=7.60

μ=3.89, L=252

L=126
L=154
L=210
L=336
L=448
L=952

fit to Eq.(1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1×106  2×106  3×106

Q

t

μ=7.60
μ=6.91
μ=6.57

FIG. 3. (Color online) Decay of the order parameter Q for the
square lattice as a function of time (Monte Carlo steps), starting
from a fully ordered state for two different values of μ: μ = 3.89
(ρ ≈ 0.867) and μ = 7.60 (ρ ≈ 0.957). The best fit of the data to
Eq. (1) with additional subleading terms is also shown. Inset: Data
for different chemical potentials, all corresponding to HDD phase for
L = 154 and k = 7. The densities corresponding to these values of
μ are approximately 0.957, 0.948, and 0.941.

Naively, faster relaxation for larger systems may appear
unexpected, but is easily explained using the well-known
nucleation theory of Kolmogorov-Johnson-Mehl-Avrami
[22,23]. We assume that critical droplets of the stable phase are
created with a small uniform rate ε per unit time per unit area,
and once formed, the droplet radius grows at a constant rate v.
Then, the probability that any randomly chosen site is still not
invaded by the stable phase is given by exp[−ε

∫ t

0 dt ′V (t ′)],
where V (t ′) is the area of the region such that a nucleation
event within this area will reach the origin before time t ′.
The area V (t ′) is given by V (t ′) = πv2t ′2 when the droplet is
smaller than the size of the lattice. For time t ′ greater than this
characteristic time t∗, we have V (t ′) = L2. If the droplet does
not grow equally fast in all directions, we take suitably defined
average over directions to define v2. Thus, we obtain

Q(t) = exp

[
− π

3
εv2t3

]
for t < t∗

= exp

[
−πεv2t∗2

(
t − 2t∗

3

)]
for t > t∗. (1)

We see that with this choice, both Q(t) and its derivative are
continuous at t = t∗. Since V (t ′) should tend to L2 for large
t ′, we get the crossover scale t∗ given by

t∗ = L

v
√

π
. (2)

The crossover lattice size L∗ beyond which the average lifetime
of the metastable state becomes independent of L can then be
estimated from the above to be

L∗ ∼
(

3
√

πv

ε

)1/3

. (3)

Fitting the numerical data in Fig. 3 to Eq. (1), we ob-
tain ε = (2.1 ± 0.2) × 10−10 and v = (5.5 ± 0.7) × 10−5 for
μ = 7.60. From Eq. (3), we then obtain the crossover scale
L∗ ∼ 110, of the same order as the numerically observed value
of L∗ ∼ 200. The difference is presumably due to simplifying
approximations made in the theory, e.g., neglecting the
dependence of the mean velocity of growth on the direction of
growth, or the curvature of the interface, etc.

We can also estimate v directly from simulations of a
system with an initial configuration where half the sample
is in the nematic phase and the other half is in the equilibrium
disordered phase at that μ. For μ = 7.60, we find that this
velocity increases slowly with L, and tends to a limiting value
≈1.0 × 10−4 for L � 784, reasonably close to the velocity
obtained from fitting data to Eq. (1). For decreasing chemical
potential μ, we find that both the velocity v and nucleation
rate ε increase.

IV. NATURE OF THE HIGH-DENSITY
DISORDERED PHASE

There is a one-to-one correspondence between fully packed
k-mer configurations and a restricted solid on solid height
model with vector-valued heights [24,25]. The height fluc-
tuations at large length scales are well described by a
Gaussian model, and at full packing the orientation-orientation
correlation function decays as a power law with distance.
The exponent of this power law has been estimated for the
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FIG. 4. (Color online) Susceptibility χ for the square lattice as
a function of L for three values of μ, all in the HDD phase. There
is no anomalous dependence on L. Inset: The scaled probability
distribution for the order parameter P (Q) for different L’s collapses
when plotted against QL. The data are for μ = 5.95.

case k = 3 by exact diagonalization studies [26]. If these
correlations are not destroyed by small density of vacancies for
large k, then the correlations in the HDD phase would be long
ranged, qualitatively different from the known exponential
decay of correlations in the LDD phase. In this section,
we test this possibility by studying the susceptibility χ , the
order parameter correlation function CSS(i,j ), the cluster size
distribution F (s), and the size distribution of structures that
we call stacks. We also examine the formation of bound states
of vacancies.

The susceptibility is defined as χ = L2〈(nh − nv)2〉/〈nh +
nv〉2, where nh and nv are the number of x-mers and y-mers.
Figure 4 shows the variation of χ with L, for three different
values of μ in the HDD phase. χ tends to a finite nonzero
value for large L, hence, if the correlations are a power law,
then the decay exponent is larger than 2. From the central limit
theorem, it follows that the order parameter Q should scale
as L−1. This is confirmed in the inset of Fig. 4, where the
scaled probability distributions for different L’s collapse onto
one curve when plotted against QL.

The order parameter correlation function CSS(i,j ) is de-
fined as follows. Given a configuration, we assign to each site
(i,j ) a variable Si,j , where Si,j = 1 if (i,j ) is occupied by an
x-mer, Si,j = −1 if (i,j ) is occupied by a y-mer, and Si,j = 0
if (i,j ) is empty. Then,

CSS(i,j ) = 〈S0,0Si,j 〉. (4)

Figure 5 shows the variation of CSS(r) with separation r

along the x and y axes, for different chemical potentials and
systems sizes. In the HDD phase, the correlation function has
an oscillatory dependence on distance with period k, and for
r � k, appears to decrease as a power law r−η, with η > 2.
Given the limited range of r available 7 
 r 
 L/2, it is
difficult to get an accurate estimate of the exponent η.

The long-range correlations in the HDD phase are better
studied by looking at the large-scale properties of connected
clusters of parallel rods. For instance, it is known that the
exponent characterizing the decay of cluster size distribution
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FIG. 5. (Color online) Order parameter correlations CSS(r) for
the square lattice as a function of r , measured along the x and y axes,
for three different values of μ, all of them larger than μc ≈ 5.57.
The system size is L = 252. Inset: The dependence of CSS(r) on L is
shown for μ = 7.60. The solid lines are power laws r−2.5, intended
only as guides to the eye.

of critical Fortuin-Kasteleyn clusters [27] in the q-state Potts
model [28,29] has a nontrivial dependence on q. We denote
all sites occupied by x-mers by 1 and the rest by 0. For our
problem, we define a cluster as a set of 1’s connected by
nearest-neighbor bonds. Let F (s) be the probability that a
randomly chosen 1 belongs to a cluster of s sites. Clearly,
F (s) is zero, unless s is a multiple of k. Let the cumulative
distribution function be Fcum(s) = ∑s

s ′=1 F (s ′).
In Fig. 6, we plot Fcum(s) in the HDD phase for different

system sizes on the square lattice. We find that for interme-
diate range of s, for 103 
 s 
 106, Fcum(s) � As1−τ , with
τ < 1. For μ = 7.60, we estimate the numerical values to
be A = 0.037 and τ = 0.762. For small system sizes (up
to L = 1568), Fcum(s) has a system-size-dependent cutoff.
The L-independent cutoff s∗ is determined by the condition
As∗1−τ ≈ 1, giving s∗ ≈ 1.04 × 106. The density of 1’s being
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FIG. 6. (Color online) Fcum(s), the probability that a randomly
chosen 1 (a site occupied by an x-mer) belongs to a connected cluster
of size �s, in the HDD phase (μ = 7.60) for different system sizes.
The data are for the square lattice.

032103-4



NEMATIC-DISORDERED PHASE TRANSITION IN . . . PHYSICAL REVIEW E 87, 032103 (2013)

10-1

100

102 103 104 105 106

F c
um

(s
)

s

μ=7.60
μ=6.91
μ=6.50

x0.238

x0.222

FIG. 7. (Color online) Fcum(s), the probability that a randomly
chosen 1 (a site occupied by an x-mer) belongs to a connected cluster
of size �s, for different values of μ, all corresponding to the HDD
phase. The curves appear to have weakly density dependent power-
law exponents.

roughly 0.48, we expect to observe s∗ only when L exceeds
a characteristic length scale ξ ∗ ∼ 1400. This is indeed seen
in Fig. 6.

In the HDD phase, Fcum(s) depends weakly on μ (see
Fig. 7). The power-law exponent τ is estimated to be
0.778 (μ = 6.50), 0.767 (μ = 6.91), and 0.762 (μ = 7.60).
It appears that τ decreases slowly with increasing μ, while s∗
decreases with increasing μ.

One qualitative feature of the HDD phase is the appearance
of large groups of parallel rods, wormlike in appearance, nearly
aligned in the transverse direction. This is clearly seen in
Fig. 1(c). We call these groups stacks. To be precise, we define
a stack as follows: two neighboring parallel k-mers are said to
belong to the same stack if the number of nearest-neighbor
bonds between them is greater than k/2. A stack is the
maximal cluster of rods that can be so constructed. By this
definition, a stack has a linear structure without branching,
with some transverse fluctuations allowed. Examples of stacks
on square and triangular lattices are shown in Fig. 8. Any given
configuration of rods is uniquely broken up into a collection
of disjoint stacks.

(a) (b)

FIG. 8. (Color online) Some examples of the different types of
stacks, shown here as rods joined by wiggly lines, for (a) square
lattice and (b) triangular lattice. The snapshots are for μ = 7.60,
corresponding to the HDD phase. Rods of different orientations are
shown in different colors for easy visualization.
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FIG. 9. (Color online) Stack distribution in the LDD phase
(μ = 0.200), intermediate density nematic phase (μ = 3.476), HDD
phase (μ = 7.600), and at two critical points (μ = 1.3863, 5.57) are
shown. Data are for L = 280, k = 7, and the square lattice.

There are a noticeable number of large stacks in the HDD
phase. We measured the stack size distribution D(s), the
number of stacks of size s per site of the lattice, in all the three
phases and at the transition points (see Fig. 9). Interestingly,
we found that this distribution is nearly exponential in all the
three phases, as well as at the critical points, and there is no
indication of any power-law tail in this function. In the HDD
phase, the mean stack size is approximately 12, for both square
and triangular lattices, and is only weakly dependent on the
density.

It was suggested in Ref. [12] that the second phase transition
may be viewed as a binding-unbinding transition of k species
of vacancies. For studying such a characterization, we break
the square lattice into k sublattices. A site (x,y) belongs to the
ith sublattice if x + y = i(modk), where i = 0,1, . . . ,k − 1.
In a typical configuration with a low density of vacant
sites, it was argued that the vacancies would form bound
states of k vacancies, one from each sublattice. The HDD
phase can then be described as a weakly interacting gas
of such bound states if the typical distance between two
bound states is much larger than the mean size of a bound
state.

Let dij be the Euclidean distance between a randomly
picked vacant site on the ith sublattice, and the vacant site
nearest to it on the j th sublattice. The average of dij , averaged
over all pairs (ij ), with i �= j , will be denoted by d̄ij , and d̄ii

will denote the value of dii , averaged over i.
In Fig. 10, we show the variation of d̄ij and d̄ii with

density ρ. We see that d̄ii and d̄ij both vary approximately as
(1 − ρ)−1/2, with d̄ii ≈ 1.18d̄ij . The data are for L = 168 and
k = 7. There is no noticeable dependence of the data on L.
We see no signature of d̄ij saturating to a finite value, for the
densities up to 0.995, when d̄ij � 35.

We conclude that the bound state, if it exists at all, is very
weakly bound. Near ρ∗

2 , the typical spacing between vacancies
is much less than the size of the bound state, and the transition
can not be treated as binding-unbinding transition when the
average distance between bound states becomes comparable
to their size.
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FIG. 10. (Color online) The average spacing between vacancies
d̄ii and d̄ij , on the square lattice as a function of density ρ. The solid
lines show the functions K(1 − ρ)−1/2, for K = 1.36 and 1.15. The
data are for L = 168 and k = 7.

V. CRITICAL BEHAVIOR NEAR
THE SECOND TRANSITION

We now discuss the critical behavior near the second
transition. Several thermodynamic quantities are of interest.
We define the nematic order parameter m as follows. For
the square lattice, m = (nh − nv)/N , where nh and nv are
the number of lattice sites occupied by x-mers and y-mers,
respectively, and N is the total number of lattice sites. For
the triangular lattice, m = (n1 + ωn2 + ω2n3)/N , where ω is
the complex cube root of unity, and n1,n2,n3 are the number
of sites occupied by k-mers oriented along the three allowed
directions. The density ρ is defined by the fraction of sites
that are occupied by the k-mers. The order parameter Q, its
second moment χ , compressibility κ , and Binder cumulant U

are defined as

Q = 〈|m|〉
〈ρ〉 , (5a)

χ = L2〈|m|2〉
〈ρ〉2

, (5b)

κ = L2[〈ρ2〉 − 〈ρ〉2], (5c)

U = 1 − 〈|m|4〉
a〈|m|2〉2

, (5d)

where a = 3 for square lattice and a = 2 for triangular lattice.
Q is zero in the LDD and HDD phases and nonzero in the
nematic phase.

The data used for estimating the critical exponents are for
k = 7, and for five different system sizes L = 154, 210, 336,
448, and 952 for the square lattice and L = 210, 336, 448, and
560 for the triangular lattice. The system is equilibrated for
107 Monte Carlo steps for each μ, following which the data
are averaged over 3 × 108 Monte Carlo steps. These times are
larger than the largest autocorrelation times that we encounter
obtained by measuring the autocorrelation function

AQQ(t) = 〈Q(τ )Q(τ + t)〉
〈Q2〉 , (6)
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FIG. 11. (Color online) The temporal variation of the auto-
correlation functions for (a) the global order parameter Q and
(b) the local order parameter S. The data are for μ = 7.60 and the
autocorrelation times corresponding to the solid lines are (a) 220 000
and (b) 52 000. Inset: Data as above but in the LDD phase (μ = 0.20),
with (c) corresponding to AQQ(t) (d) corresponding to ASS(t). The
autocorrelation times are (c) 440 and (d) 310. All data are for k = 7.

where the averaging is done over the reference time τ . The
function ASS(t) is defined similarly. The largest autocorrela-
tion time is for the largest density and is close to 2.2 × 105

Monte Carlo steps (see Fig. 11). To estimate errors, the
measurement is broken up into 10 statistically independent
blocks.

The quantities in Eq. (5) are determined as a function of
μ using Monte Carlo simulations. The nature of the second
transition from the ordered nematic phase to the HDD phase is
determined by the singular behavior of U , Q, χ , and κ near the
critical point. Let ε = (μ − μc)/μc, where μc is the critical
chemical potential. The singular behavior is characterized by
the critical exponents ν, β, γ , and α, defined by Q ∼ (−ε)β ,
ε < 0, χ ∼ |ε|−γ , and κ ∼ |ε|−α , and ξ ∗ ∼ |ε|−ν , where ξ ∗ is
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FIG. 12. (Color online) The Binder cumulant U as a function of
chemical potential μ for different lattice sizes of a square lattice.
The curves intersect at μc = 5.57 ± 0.02. Inset: Data collapse for
square lattices when U is plotted against εL1/ν with ν = 0.90 and
ε = (μ − μc)/μc.
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FIG. 13. (Color online) The variation of the order parameter Q

with chemical potential μ for different systems sizes of a square
lattice. Inset: Data collapse for square lattices when scaled Q is plotted
against εL1/ν with ν = 0.90, β/ν = 0.22, and ε = (μ − μc)/μc.

the correlation length and |ε| → 0. The exponents are obtained
by finite size scaling of the different quantities near the critical
point:

U � fU (εL1/ν), (7a)

Q � L−β/νfQ(εL1/ν), (7b)

χ � Lγ/νfχ (εL1/ν), (7c)

κ � Lα/νfκ (εL1/ν), (7d)

where fU , fQ, fχ , and fκ are scaling functions.

A. Square lattice

We first present results for the square lattice. The data for
the Binder cumulant U for different system sizes intersect at
μc = 5.57 ± 0.02 (see Fig. 12). The density at this value of
chemical potential is ρ∗

2 = 0.917 ± 0.015, consistent with the
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FIG. 14. (Color online) The variation of χ , the mean of the square
of the order parameter, with chemical potential μ for different system
sizes of a square lattice. The curves cross at μc when χ is scaled by
L−γ /ν , with γ /ν = 1.56. Inset: Data collapse for square lattices when
χL−γ /ν is plotted against εL1/ν with ν = 0.90, and ε = (μ − μc)/μc.
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FIG. 15. (Color online) The variation of compressibility κ with
chemical potential μ for different system sizes of a square lattice.
Inset: Data collapse for square lattices when the scaled κ is plotted
against εL1/ν with ν = 0.90, α/ν = 0.22, and ε = (μ − μc)/μc.

variational estimate 0.87 � ρ∗
2 � 0.93 in Ref. [17]. The value

of U at the transition lies in the range 0.56 to 0.59. This is
not very different from the value for the Ising transition Uc ≈
0.61 [30]. The data for different system sizes collapse when
scaled as in Eq. (7a) with ν = 0.90 ± .05 (see inset of Fig. 12).
To compare with the first transition from the LDD phase to
the nematic phase, ρ∗

1 = 0.745 ± 0.010, and the numerical
estimate for the exponent ν is consistent with the known exact
Ising value 1 [14].

The data for order parameter χ and κ for different system
sizes are shown in Figs. 13–15, respectively. Q decreases
to zero at high densities. Our best estimates of effective
critical exponents are β/ν = 0.22 ± 0.07 (see inset of Fig. 13).
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FIG. 16. (Color online) Finite size scaling of the triangular lattice
data of (a) U , (b) Q, (c) χ , and (d) κ as in Eq. (7) with ν = 5

6 ,
β/ν = 2

15 , γ /ν = 26
15 , and α/ν = 2

5 . The critical chemical potential is
μc = 5.147.
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FIG. 17. (Color online) F (s), the probability that a randomly
chosen site belongs to an s-site connected cluster of horizontal rods,
in the HDD phase for different system sizes. The data are for the
triangular lattice for μ = 7.60.

γ /ν = 1.56 ± 0.07 (see inset of Fig. 14), and α/ν = 0.22 ±
0.07 (see inset of Fig. 15). The estimated error bars are our
subjective estimates, based on the goodness of fit. These differ
substantially from the values of the exponents of the two-
dimensional Ising model (ν = 1, β = 1

8 , γ = 7
4 , and α = 0).

However, as discussed in Sec. IV, it seems like there is a
characteristic length scale ξ ∗ ∼ 1400 in the HDD phase, and
we can not say much about the asymptotic value the critical
exponents at length scales L � ξ ∗.

B. Triangular lattice

For the triangular lattice, we find that the second transition
is continuous with μc = 5.147 ± 0.050 and ρ∗

2 = 0.905 ±
0.010. The data for U , Q, χ , and κ for different system sizes
collapse onto one scaling curve when scaled as in Eq. (7)
with exponents that are indistinguishable from those of the
three-state Potts model (see Fig. 16) (ν = 5

6 , β = 1
9 , γ = 13

9 ,
and α = 1

3 ).
As in the case of the square lattice, we probe the correlations

in the triangular lattice by looking at the large-scale properties
of connected clusters of parallel rods. We denote all sites
occupied by horizontal rods by 1 and the rest by zero. In
Fig. 17, F (s), the probability that a randomly chosen 1 belongs
to a cluster of s sites, is shown for different system sizes L in
the HDD phase. Unlike the square lattice case, here there is
no extended regime of s where F (s) seems to grow as a power
of s. This suggests that for the triangular lattice, the HDD and
LDD phases are qualitatively similar, and the HDD phase has
a finite correlation length ∼60.

VI. SUMMARY AND DISCUSSION

In this paper, we studied the problem of hard, rigid rods
on two-dimensional square and triangular lattices, using an
efficient algorithm that is able to overcome jamming at high
densities. The algorithm is more efficient than algorithms with
only local moves. In addition to overcoming jamming at high
packing densities, it is easily parallelized, which makes it

suitable for studying hard-core systems with other particle
shapes, and also in higher dimensions.

We showed the existence of a second transition from the
ordered nematic phase to a disordered phase as the packing
density is increased. By studying the order parameter, its
second moment, compressibility, and Binder cumulant, we
find that the second transition is continuous on both square
and triangular lattices. We also investigated the nature of
correlations in the HDD phase by measuring distribution of
connected clusters of parallel rods, as well as the distribution
of stacks.

We are not able to give a very clear answer to the question as
to whether the HDD and LDD phases are qualitatively different
or not. But, the available evidence suggests that while the HDD
phase has a large correlation length ξ ∗, it is not qualitatively
different. This is based on the evidence that vacancies in
the HDD phase do not form a bound state. In that sense, a
k-mer system with k = 7 at high densities is similar to the
k = 2 case, where, also, the monomers do not form a bound
state and unbound monomers lead to an exponential decay of
correlations at any nonzero vacancy density.

Additional support for this scenario comes from the fact
that if the hard-core constraint is relaxed, and two k-mers are
allowed to share a site, but with a cost in energy, then exact
calculation on an artificial lattice (the random locally treelike
layered lattice) shows [31] two phase transitions at densities
ρc1 and ρc2 for a range of values of the repulsive energy.
The difference between these critical densities decreases as
the repulsive energy is decreased, and below a particular
value of the repulsive energy, the intermediate nematic phase
disappears. Thus, in this special case, which is the only known
exactly solved model of k-mers showing two phase transitions,
the LDD and HDD phases are the same.

An interesting feature of the HDD phase is the appearance
of a large characteristic length scale ξ ∗ ∼ 1400 on the square
lattice, as inferred from the fact that the cluster size distribution
seems to follow a power-law distribution F (s) ∼ s−τ , with
τ < 1 for s < ξ ∗2. The amplitude of this power-law term is
rather small. This is related to the fact that for the k-mer
problem, various perturbation series involve terms such as k−k

[12], which then leads to large correlation lengths. The HDD
phase has power-law correlations at least for lengths up to ξ ∗.

For the triangular lattice, the correlation length ξ ∗ is much
smaller, as near the critical point, clusters of each type of rod
cover only about a third of the sites, which is substantially
below the corresponding percolation threshold.

On the square lattice, our best estimates of the numerical
values of the critical exponents are different from those of
the Ising universality class. However, because the correlation
lengths in the HDD phase are large, we can not rule out
a crossover to the Ising universality class at larger length
scales. For the triangular lattice with k = 7, the estimated
exponents for second transition are consistent with those of
two-dimensional three-state Potts universality class.

We expect that the nature of the transition will not depend
on the rod length k. For example, the first transition at ρ∗

1 is
Ising like, whenever it occurs. Several interesting questions
remain. For example, the entropy per site in the fully packed
k-mer problem is expected to vary as (c ln k)/k2, for k large,
where c is a constant. The argument in Ref. [12] relates this
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constant to the coefficient a that appears to the way ρ∗
2 varies

with k, for large k: ρ∗
2 = 1 − a/k2 + · · · for large k. It would

be interesting to determine c and a exactly, or to test these by
simulations with larger k. Also, further studies are needed
to determine if the correlations in the HDD phase decay
exponentially for distances greater than ξ ∗. This seems like
a promising area for further study.
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