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Shock-induced interface instability in viscous fluids and metals
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We present analytic expressions for the amplitude of perturbations at the interface of two viscous fluids or two
metals subjected to a shock. We derive a scaling law by collapsing this eight-parameter problem into two (three)
nondimensional variables in the linear (nonlinear) regime. We propose a correspondence principle between
viscosity and strength, and a method for measuring viscosity at high pressure and temperature as an alternative
to the “Sakharov method.”
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When a low-density (ρl) fluid accelerates a high-density
(ρh) fluid, perturbations η(t) cos(kx) at the interface grow
exponentially with time, η(t) ∼ eγ t . The growth is much
slower in fluids with viscosities μl or μh: γviscous � γinviscid,
particularly for short wavelengths λ ≡ 2π/k. Theoretical
studies of the viscous Rayleigh-Taylor (RT) instability [1,2]
have found applications in geophysical experiments [3,4] and
breakup of viscous bubbles [5,6]. Similarly, plasticity of metals
characterized by a yield strength Y is an obvious stabilizing
property: Metals do not flow unless subjected to a large
pressure �Y , and even then the subsequent growth is much
slower than in ordinary fluids. Given Y and/or shear modulus
G of a metal there is a critical amplitude ηc

0 and wavelength λc

below which perturbations will not grow [7–9]. Both cutoffs
are inversely proportional to the acceleration g. Away from
these cutoffs there is a fastest growing mode, similar to the
viscous case, studied in detail by Terrones who extended earlier
single-material studies to two materials but did not include
plastic flow [10]. Barnes et al. performed RT experiments on
aluminum driven by high explosives at ∼100 kb [11], and
recent experiments use lasers to extend the same technique
(suppression of RT growth as a measure of strength) to
∼5 Mb [12].

One expects a similar suppression of the Richtmyer-
Meshkov (RM) instability in viscous fluids or metals when
the system is subjected to a shock, instead of a constant
acceleration, inducing a jump velocity �V (positive, in our
convention, if passing from light to heavy; negative otherwise).
Much less work has been done in this area. Three different
expressions have been given for viscous RM [13–15]. We
compare them and present a fourth one. Many of the breakup
experiments start with a shock [6]. It is common to use the
“Sakharov method,” viscous damping of a perturbed shock
front, to measure viscosity at high pressure and temperature
[16]. We propose an alternative method: viscous damping of a
perturbed interface. Its earlier proposed counterpart in metals
[17] has been successfully carried out in recent experiments
[18,19]. Drucker mentions a comparison between viscosity
and strength [8]. Several strength experiments are analyzed
in terms of viscosity [12,20]. We provide an approximate
relationship between μ and Y . Combining it with viscous
results leads to asymptotic expressions in the linear (ηk � 1)
as well as the nonlinear (ηk � 1) regimes, in agreement with
models and simulations of plastic RM growth [18,21].

We address questions of scaling: What are the parameters
that affect the growth factor η(t)/η(0)? This is an

eight-parameter problem: η0 ≡ η(0), k, ρh, ρl , μh, μl

(or Yh, Y l), �V , and t . We present an explicit expression
for η(t) finding that the problem collapses into two or three
variables only: an appropriately defined Reynolds number
and a nondimensional time. The third variable, needed only
in the nonlinear regime, is η0k. We answer questions such as:
Does the growth depend on the product, sum, or some other
combination of μh and μl? Ditto for Y .

Viscosity. Based on approximate eigenvalues, the first linear
treatment of the viscous RM instability gave [13]

η(t) = η0 + η̇0
(
1 − e−2νk2t

)
/2νk2, (1)

where η̇0 = η0�V kA is the inviscid growth rate with
A ≡ (ρh − ρl)/(ρh + ρl) and ν ≡ (μh + μl)/(ρh + ρl).
Equation (1) asymptotes to

η∞ = η0 + η̇0/2νk2 = η0(1 + �V A/2νk). (2)

Subsequently, an alternative expression was presented [15]:

η(t) = η0 + η̇0t(1 − Ct1/2) (3)

with C ≡ 16k
√

μhμlρhρl/[3
√

π (
√

μhρh +
√

μlρl)(ρh +
ρl)]. This must not be used when ρh = 0 or ρl = 0, or when
μh = 0 or μl = 0 because C depends on their product. In
contrast, ν in Eq. (1) depends on the sum and therefore viscous
effects persist as long as μh + μl �= 0.

Equation (3) has another limitation: It can apply for “early”
times only. It may be used, if at all, only for t < 4/9C2 because
it gives dη/dt = 0 at t = 4/9C2 and becomes negative(!) for
t > 4/9C2, clearly unphysical.

Despite these shortcomings we found a few cases where
Eq. (3) did better than Eq. (1) at early times. Our procedure was
to compare Eq. (1), Eq. (3), and full Navier-Stokes solutions
with the hydrocode CALE [22]. At present CALE can treat only
constant viscosities, but this was enough for our purpose. These
simulations confirmed the above statements: Viscous effects
persist even when only one of the fluids has viscosity, the
controlling parameter is ν, and η̇ does not reverse sign at any
time. But there were also cases, mostly with μh ∼ μl , where
Eq. (3) did better than Eq. (1) at early times.

Our first attempt to improve upon Eq. (1) was to use exact
eigenvalues. In general, when one of them vanishes (say, γ+ =
0) the result is

η(t) = η0 − η̇0(1 − eγ−t )/γ−. (4)

In the approximation of [13] γ− = −2νk2, hence Eq. (1).
Using exact eigenvalues we find that γ+ = 0 still, but γ− is
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different. To our surprise, however, using exact eigenvalues
gave substantially worse results. For example, for the sim-
plest, one-fluid case we find γ− = −2[4 + (

√
297 − 17)1/3 −

(
√

297 + 17)1/3]νk2/3 ≈ −0.9126νk2. In fact the equation
η(t) = η0 + η̇0(1 − e−0.9126νk2t )/0.9126νk2 can be found in
the summary by Bakhrakh et al. [14]. Its asymptotic growth
is more than twice larger and completely ruled out by our
numerical simulations.

The only remaining option is to treat the problem as an
initial-value problem, similar to the viscous RT instability [23].
This approach is substantially more complex and to date there
are no exact results for arbitrary μh,l . We have succeeded,
however, in deriving an exact and general expression for the
asymptote η∞ and the result is Eq. (2). As for η(t), the general
Laplacian which must be inverted is too complicated to carry
out analytically. We found, however, the following expression
extremely accurate in describing our CALE results:

η(t) = η0 + η̇0

4νk2
erfc(−√

τ )

+ η̇0

νk2

4∑

i=2

Zi

D′(Zi)
e(Z2

i −1)τ erfc(−Zi

√
τ ), (5)

where erfc(z) is the complimentary error function
1 − err(z), τ ≡ νk2t , Z2 = 1/4, Z3,4 = (−7 ± 4i

√
11)/9,

D′(Z2) = −155/64, and D′(Z3,4) = 8(1111 ∓ 28i
√

11)/729.
Together with Z1 = 1 and D′(1) = 4, they satisfy
the four sum rules

∑4
i=1 1/D′(Zi) = ∑4

i=1 Zi/D
′(Zi) =∑4

i=1 Z2
i /D

′(Zi) = ∑4
i=1 Z3

i /D
′(Zi) − 1 = 0.

Equation (5) has several surprising properties: The Atwood
number A does not appear in it except for η̇0 = η0�V kA.
It is an exact expression only if νh = νl (νh,l ≡ μh,l/ρh,l),
but it is also an extremely good approximation for arbitrary
νh,l . Its asymptote, η∞, agrees with Eq. (2), the only exact
formula for arbitrary νh,l . What is surprising is that there
are actually infinitely many solutions, each associated with
a different A and all giving approximately the same result,
within a few percent, which is the reason why A does
not appear in Eq. (5). In the exact solution for νh = νl

the six constants Zi and D′(Zi), i = 2,3,4 are determined
from Z3 + (2 − A2)Z2 + (1 + 2A2)Z − A2 = 0 and D′(Z) =
4Z3 + 3(1 − A2)Z2 + 2(3A2 − 1)Z − 1 − 3A2. The solution
we chose corresponds to A = 5/6 because it gives particularly
simple expressions.

We illustrate with an example: ρh = 4 g/cm3, ρl =
1 g/cm3, �V = 0.1 cm/ms, λ = 2.5 cm, η0 = 30 μm, μh =
0.32 Pa s, and μl = 2μh. Figure 1 shows η(t) as calculated by
Eqs. (1), (3), (5), and CALE. Equation (1) overestimates η(t) at
early times but its asymptote, Eq. (2), is reproduced by Eq. (5)
and by CALE. Equation (3) shows better agreement with CALE

but only at early times—its behavior after 89 ms (4/9C2) is
unphysical. Only Eq. (5) agrees with CALE both at early and late
times. The reader should be surprised at this because Eq. (5)
is exact only for νl = νh and A = 5/6, while in this example
νl = 8νh and A = 3/5. We repeat that other Zi solutions give
essentially the same η(t) when substituted in Eq. (5).

Equation (5) displays simple scaling: Out of the eight
independent variables only two combinations are relevant:
�V A/νk and νk2t . It is customary to define a Reynolds

FIG. 1. Comparison of Eqs. (1), (3), and (5) with a CALE

simulation of the problem discussed in the text.

number as a ratio of inertial to viscous forces. We propose
Re = |�V | A/νk so that η(t)/η0 = f (±Re,τ ). Equation (2)
reads η∞ = η0(1 ± Re/2). Note that η∞ = 3η0 or −η0 when
Re = 4, a case discussed below.

Strength. We now consider shocks in ideal elastic-plastic
solids characterized by a constant shear modulus G and yield
strength Y . Early work, primarily experimental, is summarized
in [14]. Here we follow up on the suggestion that strength
may be treated as viscosity because they found that using
a μ − Y relationship in our analytic viscous formulas gave
reasonable results for RT strength experiments [20]. There
are strength effects which cannot be duplicated by viscosity
such as the Drucker and Miles cutoffs ηc

0 and λc [24]. Since
both are proportional to 1/g, they vanish in the RM case where
g → ∞,

∫
g dt = �V , yielding η̇0 = η0�V kA as in the fluid

case.
We find that no μ − Y relationship can provide exact

agreement between ηY and ημ—only a qualitative agreement
can be obtained, within 30%–40%, made possible by two
opposing trends: ηY grows faster but saturates earlier, while
ημ grows slower but saturates later. The relationship

Y ≈ 2 |η̇0| kμ/3 (6)

provides that qualitative agreement. Equation (6) means that η

between two fluids of viscosities μh,l will evolve similar to the
case of two metals whose yield strengths Yh,l satisfy Eq. (6).
Actually, only the sum Yh + Y l is important. We have verified
this by direct numerical simulations.

A comparison between ημ (in black) and ηY (in red) is
given in Fig. 2. The lower curves refer to the same problem
as in Fig. 1, so the same CALE curve is reproduced in black.
In red is the problem with strength where Yh,l are related to
μh,l by Eq. (6): Yh = 0.24 Pa and Y l = 2Yh = 0.48 Pa. The
shear moduli are taken to be 103 times larger—they control
mostly the oscillations after ηY reaches its maximum [14,21].
The two upper curves in Fig. 2 refer to the same problem but
with the shock generated in the heavy fluid inducing the same
|�V |, now taking μl = 0. There is growth after the phase
reversal (�V and hence η̇0 are negative), and a reshock occurs
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FIG. 2. (Color) Four growth factors calculated by CALE: black
for μ and red for Y . The lower curves refer to the same problem
as in Fig. 1 and have Re ≈ 13. The upper curves refer to a problem
with �V replaced by −�V (shock generated in the heavy fluid)
and μl = 0, hence Re ≈ 38. Reshock occurs at 270 ms. The inset
shows the interfaces for the μ and Y problems at 270 ms, the vertical
scale greatly enhanced for clarity. In both problems, Y h,l and μh,l are
related by Eq. (6).

at 270 ms, just as ημ and ηY cross. The inset shows the two
interfaces at this time; they have the same amplitude but the
shape of the Y problem is triangular. This difference in shape
persists after reshock but the amplitudes continue to track each
other.

Needless to say, Eq. (6) does not mean that strength depends
on η0, �V , k, etc. It is only a correspondence principle to
convert μ-derived results to Y . Substituting it in Eq. (2) one
obtains

η∞ = η0 + η̇0 |η̇0| (ρh + ρl)/3k(Yh + Y l) (7)

to be compared with η0 + 0.29ρη̇2
0/kY for a single fluid [21].

Let us apply Eq. (7) to the case η∞ = −η0, i.e., the perturbation
stops growing after a complete phase change. For strength, the
requirement in a single fluid is

Yη∞=−η0 = η0(�V )2kρ/6. (8)

As shown in Fig. 12 of [17], this happens for the Steinberg-
Guinan (SG) model in aluminum. Using ρ = 2.7 g/cm3,
η0 = 0.02 cm, λ = 1 cm, and �V = 3.5/15 = 0.23 cm/μs
(all taken from [17]), the right-hand side of Eq. (8) gives 3
kb, agreeing with the Y0 (2.9 kb) of SG. This after-the-fact
comparison builds confidence that Eq. (6) is a reasonable
relationship. Equation (6) appears to work for the RT case also
when we replace the inverse time scale |η̇0| k by

√
gkA, as

long as the amplitude and wavelengths are above the cutoffs.
A similar relation was proposed by Colvin et al. with the
strain rate serving as the inverse time scale calculated from
experimental conditions or numerical simulations [20].

Compressibility. The theory and simulations discussed so
far have been limited to incompressible fluids—we used
ideal equations of state with high adiabatic indices so the
densities change very little. By running highly compressible

problems and comparing with Eq. (5) we found that using the
postshock viscosity νafter is a reasonable way of accounting
for compressibility, the same way that Richtmyer and Meyer
and Blewett prescribed using the postshock Atwood number
Aafter [25]. Note that since ν ∼ μ/ρ and ρafter > ρbefore,
compressibility decreases ν and therefore increases the growth
when μ = const. The same effect will arise when shocks heat
the fluids and, in general, reduce their viscosities.

As an example, we ran a compressible CALE problem
setting adiabatic indices equal to 5/3. The postshock densities
increased 1.6 times and the growth factor fg was 23.3. Using
νpreshock, Eq. (5) predicted too small a growth factor: 18.8.
Using νpostshock, which of course is 1.6 times smaller than
νpreshock, gave fg = 23.5 in good agreement with CALE.

The only method proposed so far to measure viscosities
at high pressures and temperatures is the Sakharov method
reviewed extensively in [16]: Measure the decay of a corru-
gated shock in a viscous fluid. We believe the viscous RM
instability is a more effective way because η∞ ∝ 1/ν from
Eq. (2). The growth depends on the sum of the viscosities on
either side of the interface, but choosing one of the fluids
to be inviscid isolates the viscosity of the other. We have
verified, by numerical simulations, that the method proposed
for strength [17] works equally well with viscosity.

Nonlinearity. Layzer’s nonlinear model for a single inviscid
fluid [26] and its extension to two fluids [27] are natural
candidates for a nonlinear viscous model—keep the viscous
term in the Bernoulli equation. This was done by Sohn [28].
However, we find that this model is even more limited than
the inviscid model, the limitations and failures of which were
reported in [29]. [We should point out that in the linear limit
this viscous model reduces to our model and that Sohn’s linear
RM solution [Eq. (11) in [28]] is in error—the correct η(t) was
given in [13], reproduced here as Eq. (1)].

We find that the model gives reasonable results only
for the bubble and only for A = 1. If A �= 1, the model
predicts “negative viscosity” for large initial amplitudes. Thus
we concentrate on the original single-fluid Layzer model
augmented by viscosity:

(2η2 + ck/2)(η̈ + 2νk2η̇) + c2k2η̇2/4 + 2gη2 = 0, (9)

where η2(t) = −ck{1 + [(1 + c)η0k − 1]e−k(1+c)(η−η0)}/4(1+
c) and c = 1 (2) for 3D (2D), as in the inviscid case [29].

Equation (9) can be solved analytically by the (η∗,t∗)
technique: Use the linear solution until η = η∗ ≡ 1/(1 + c)k
followed by the nonlinear solution (given below) which can be
easily obtained since η2 becomes constant for η0 = η∗ [29].
Setting g = 0 (this is not necessary—we will consider the RT
problem elsewhere) we find

η(t) = η0 + [2/(k + ck)] ln[1 + (1 + c)(η̇0/4νk)

× (1 − e−2νk2t )], (10)

confirming again that “the nonlinear solution is essentially the
logarithm of the linear solution” [cf. Eq. (1)].

From Eq. (10) the nonlinear asymptote is

η∞ = η0 + [2/(k + ck)] ln[1 + (1 + c)η̇0/4νk], (11)
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FIG. 3. (Color) CALE calculation of bubbles (lower curves) and
spikes (upper curves) for the A ≈ 1 problem discussed in the text,
black referring to μ and red to Y , related by Eq. (6). Blue dashed lines
are from Eq. (9) solved numerically with η0 = −0.7 cm for the spike,
and from Eq. (10) for the bubble. The inset shows the interfaces for
the μ and Y problems at 6 ms. Re = 45.

to be compared with Eq. (2). Combining this with Eq. (6) we
obtain

η∞ = η0 + [2/(k + ck)] ln
[
1 + (1 + c)η̇2

0ρ/6Y
]
. (12)

Setting c = 2 this equation agrees quite well with the asymp-
totic 2D bubble amplitudes computed by Dimonte et al. (Fig. 2
in Ref. [18]).

How about the spike? Zhang [30] proposed using the Layzer
model with η < 0 for spikes, and indeed this works for the
inviscid spike when A = 1 [29]. However, we find that the

viscous model is a poorer representation of the spike when we
solve Eq. (9) numerically with η0 < 0.

Figure 3 illustrates the above observations. The problem is
the same as the He/Xe problem used previously for its large
Atwood number,A ≈ 0.94, adding viscosity (black curves) or
strength (red curves) to the heavy “Xe,” using Eq. (6) for the
μ − Y correspondence. These four curves, calculated by 2D
CALE, are compared with the numerical solution of Eq. (9)
for the spike and with the analytic solution, Eq. (10), for the
bubble. The initial amplitude is 0.7 cm and λ = 13 cm, so η0 ≈
η∗ = 1/3k, and �V = 8.25 cm/ms. For viscosity we chose
μ = 0.2 Pa s giving Re = 45. From Eq. (6) the corresponding
Y is ≈ 160 Pa. The inset shows the interfaces as calculated by
CALE at t = 6 ms when they have moved 50 cm. The μ − Y

correspondence does better for the bubble than for the spike
in the nonlinear regime (there is no bubble or spike difference
in the linear regime). Equation (10) is a good model for the
bubble, but the spike is overestimated. This may be because
(1) A = 1 vs 0.94, (2) we have used νafter, and (3) nonlinear
effects suppress η̇0 [19].

Conclusions. The viscous RM instability in the linear and
incompressible regime is well described by Eq. (5) and, to
a lesser degree, by the much simpler Eq. (1). Equation (2)
is exact. The μ − Y surrogacy is approximate and based on
similarity of ημ(t) and ηY (t) when μ and Y satisfy Eq. (6).

Generally, we find μ to have a weaker effect in nonlinear
problems, which can be understood by comparing Eqs. (2)
and (11): η∞ ∼ 1/ν in the linear regime, but ∼ ln(1/ν) in the
nonlinear regime, and similarly for Y . RM experiments with
viscosity, as an alternative to the Sakharov method, will be
more discriminating with small η0. We hope our findings will
spur further experimentation.
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