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Magnetic resonance pore imaging, a tool for porous media research
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The internal structure of porous materials is of importance in many areas such as medicine, chemical
engineering, and petrophysics. While diffraction methods such as x ray are widely used to study the internal pore
space, these methods suffer from the loss of the phase information in the detected signals. Recently, an advanced
diffusive diffraction NMR method was proposed [F. B. Laun et al., Phys. Rev. Lett. 107, 048102 (2011).] which
is predicted to preserve the phase information, thus overcoming this severe limitation of diffraction methods in
general. Here we provide experimental confirmation that the suggested approach is indeed able to acquire the
diffractive signal including its phase which allows the direct image reconstruction of the pore space, averaged
over all pores. We furthermore prove that this approach may combine the advantages of magnetic resonance
imaging, namely, its robust and straightforward image reconstruction via a Fourier transformation with the much
improved spatial resolution of pulsed gradient spin echo NMR.
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Diffraction methods, such as x ray [1], neutron scattering
[2], and pulsed gradient spin echo (PGSE)-NMR [3], are estab-
lished tools for characterizing ordered and disordered porous
materials. These techniques are able to obtain properties of
the structure factor, a function which concisely describes the
material in the Fourier space [1]. It is conventional wisdom
that only the modulus of the structure factor can be measured
[1,3], which prevents one from obtaining images by a simple
inversion of acquired data. Recent advances of NMR based
diffraction methods appear to lift this severe limitation. A
general approach suggested by Laun et al. predicts that a
modification of a single PGSE-NMR experiment is sufficient
to acquire structure factors for arbitrary geometries [4].
Shemesh et al., on the other hand, introduced a synergistic
approach using two PGSE experiments [5]. It enables one to
obtain the full structure factor for certain pore symmetries
[6]. Here we provide experimental confirmation that the full
structure factor and averaged pore images can indeed be
acquired with a single PGSE experiment, as suggested by
Laun et al. [4]. This led us to the design of a hybrid between
magnetic resonance imaging (MRI) [7,8] and PGSE-NMR
diffraction [3], which we call magnetic resonance pore imaging
(MRPI). It combines the advantages of both methods, namely,
direct imaging, inherited from MRI, with the high resolution of
PGSE-NMR. Thus, in the context of porous media research,
MRPI is able to provide information about the pores which
is of particular importance when their shape determines the
global properties of the material.

The method is an improvement of the “diffusive-
diffraction” PGSE-NMR experiment [3] which comprises two
magnetic field gradients and two radio frequency (RF) pulses.
While the RF pulses create and refocus coherence of the
nuclear spins, the gradients (of width δ and magnitude G)
label spins with a spatially dependent phase. This phase is
quantified by a scattering vector q = (2π )−1γ δG [9], with
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γ being the gyromagnetic ratio. If spin-bearing molecules
remain at the same position all the time, the effect of the two
gradients will compensate each other. However, if diffusing
molecules are allowed to sample the voids in a porous system
for a sufficiently long time in between the two gradients,
diffraction-like patterns may be observed [3]. In the limit of
an infinitely long gradient separation time and closed pores,
the obtained NMR signal can be expressed as (see Ref. [10])

E∞(q) =
∫

ρ(r) exp{i2πq · r}d r
∫

ρ(r ′) exp{−i2πq · r ′}d r ′

= S∗
0 (q)S0(q) = |S0(q)|2. (1)

S0(q) is the structure factor which contains all information
about the spin density ρ(r) but in a space reciprocal to
real space [1]. If the voids of a porous material are filled
with a fluid which gives rise to a detectable signal, then its
density function ρ(r) holds the information about the pore
geometry. It is therefore highly desirable to measure S0(q)
as it would directly return ρ(r) upon Fourier transformation.
Unfortunately, the inverse Fourier transformation of the signal
E∞(q) will not return ρ(r) since the diffusive-diffraction
PGSE-NMR experiment is unable to measure S0(q), only its
squared modulus. This loss of the phase information is one of
the similarities diffusive-diffraction PGSE-NMR experiments
share with other diffraction methods and is commonly referred
to as the “phase problem” [1].

To prevent the loss of phase information in PGSE-NMR,
a minimal but ingenious modification of the experiment was
suggested by Laun et al. [4] which extends one of the two
gradient pulses to length δL, with reduced amplitude as shown
in Fig. 1(a). If this pulse scheme, also referred to as long-
narrow PGSE-NMR [11], is used for samples which consist
of closed pores, the elongation of the first gradient pulse will
lead to a successive phase accumulation over time depending
on the trace of the molecules within the pore. At any given
time the phase of a single molecule may be expressed by its
averaged position up to this time. Since the molecules undergo
restricted Brownian motion, their average positions for long
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FIG. 1. Effective gradient scheme of the experiment as suggested
by Laun et al. [4] (a) and its replacement used for this work (b).
The actual applied gradients were alternating, interspersed with RF
pulses (c). This results in a CPMG-like pulse sequence with a leading
90◦ excitation pulse followed by a train of 180◦ pulses. Gradients
are in fact trapezoidal with a width of δ = 3.045 ms (including ramp
times). Note that the schemes are not to scale and many more pulses
replacing the long gradient have been used than shown.

enough times will coincide with the position of the center of
mass of the pore (rcm), which allows Eq. (1) to be rewritten
(in the limit of δL → ∞) as

E∞(q) ∝ exp{i2πq · rcm}
∫

ρ(r ′) exp{−i2πq · r ′}d r ′

∝ exp{i2πq · rcm}S0(q). (2)

When comparing this result with corresponding expressions
known from magnetic resonance imaging [8], it is evident that
long-narrow PGSE-NMR is akin to MRI since Eq. (2) contains
the full structure factor S0(q).

Variants of the long-narrow experiment have been con-
ducted at 400 MHz proton resonance frequency on a standard
Bruker Micro 2.5 imaging system. A closed-pore system was
designed with about 470 aligned water-filled glass capillaries
of radius a = (10 ± 1) μm. MRI and standard PGSE-NMR
experiments ensured that signal originated only from within
the capillaries and not from the space in between them.
Key parameters of the experiment are the total duration
T = 200 ms of the gradients, the maximum gradient strength
of 1.45 T/m, and the sample temperature of 40 ◦C. This
results in DT/a2 = 6.4, a factor which relates the mean
squared displacement due to diffusion (D being the free
diffusion coefficient of water) to the characteristic length,
the pore radius a. This factor is a measure of how often
molecules have traveled across the pore during application
of the gradients. The experimental challenge is to make this
factor sufficiently large without suffering too much signal loss
due to relaxation effects. Only in this case the exponential
prefactor converges sufficiently enough to the expression given
by Eq. (2). Depending on the molecular mobility and the pore
sizes themselves, this may require a length of the long gradient
pulse of 100 ms or more.

We solved this problem primarily by replacing the long
gradient pulse as shown in Fig. 1(a) with alternating gradients
interspersed with a train of 180◦ RF pulses, spaced apart
by 2τ = 5.56 ms, as depicted in Fig. 1(c). This results in
a Carr-Purcell-Meiboom-Gill (CPMG)-like pulse sequence
structure [12], for which relaxation is now controlled by T2

rather than T ∗
2 . This allows the long gradient pulse to be

sufficiently extended. While T ∗
2 is only 25 ms, T2 is about

2 s, which enabled us to deploy a train of 36 gradient pulses
in place of the continuous long gradient while preserving the
NMR signal. It is important to note that these modifications
do not alter the nature of the approach as suggested by Laun
et al. [4]. It merely compensates for unavoidable imperfections
of the experimental setup. While further experimental details
will be published elsewhere, theoretical aspects related to this
approach have been discussed in detail very recently by Laun
et al. [13]. We further note that independent experimental
results have been obtained using the unaltered long-narrow
experiment in a triangular domain [14].

We have applied this adapted experiment to the bundle
of 470 capillaries described above. Diffusion of the water
molecules is confined in directions perpendicular to the
symmetry axis of these capillaries, thus the experiment should
return a structure factor corresponding to this confinement.
Most notably, and unlike data obtained from single PGSE-
NMR experiments to date, the real part in Fig. 2 indeed reveals
a function which clearly features both positive and negative
values while the imaginary part is close to zero as required for
a sample with cylindrical symmetry.

Equation (2) contains both the structure factor as well as the
exponential prefactor in the limit of δL → ∞. For a particular
sample and finite δL, Eq. (2) needs to be modified accordingly,
resulting in

E(q) = exp

{
−γ 2G2T a4ξ−1If

D

}
J1(2πqa)

πqa
(3)

for a cylindrical domain [13]. The second fraction in Eq. (3)
holds the structure factor for cylinders oriented perpendicular
to the wave vector q. J1 and a denote the cylindrical Bessel
function of first order and the radius of the capillaries,
respectively. The leading exponential function in Eq. (3)
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FIG. 2. (Color online) Real (+) and imaginary (×) part of the
NMR signal as a function of the scattering wave vector q, measured
on a bundle of uniformly aligned water-filled capillaries. Note that
each point represents the value at the echo maximum. The solid line
represents simulated data obtained by a random walk model.
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TABLE I. The first three zeros of J1(x) and the zeros of the NMR
signal E(q) obtained from the long-narrow and diffusion-diffractive
PGSE-NMR experiments together with the derived capillary radius
a = x

2πq
.

Zeros of J1(x) Long-narrow PGSE-NMR

x = 2πaq q (μm−1) a (μm) q (μm−1) a (μm)

First 3.8317 0.075 8.1 0.066 9.2
Second 7.0156 0.146 7.6 0.117 9.5
Third 10.1735 0.197 8.2 0.170 9.5

expresses the signal attenuation, while taking into account the
finite length of the long gradient. ξ−1 is a geometry-dependent
factor which is 7/94 for the cylindrical domain, G is the time
average of the long gradient amplitude, and If is the second
moment of the normalized temporal gradient profile which is
equal to 1.93 for the pulse sequence used in this work. Further
details on the parameters and expressions used in Eq. (3)
can be found in Laun et al. [13] and Grebenkov [15]. It is
possible to extract the capillary radius a by fitting the real
part of the NMR signal as shown in Fig. 2 to Eq. (3). We
obtained a = (8 ± 1) μm, which is smaller than the actual
radius. This deviation can be understood if the finite width of
the narrow gradient (which in our case is composed of two
gradients with an effective length of about 8 ms) is taken into
account, explaining the failure to detect molecules at or near
the pore wall. Instead, the center of mass position of molecules
averaged over the diffusion path during the application of
the narrow gradient pulse is detected which makes the pores
appear to be smaller [16]. Likewise, Table I shows that zeros
of the NMR signal E(q) from the long long-narrow data are
shifted towards higher q values compared to the zeros of
the diffusive-diffractive PGSE-NMR experiment which was
carried out with a narrower gradient pulse of about 2 ms. The
pulse is narrower because it is not composed of two gradients
which allows the center of mass to be closer to the pore
wall which consistently yields a larger radius (last column in
Table I). A detailed analysis of the interplay between a nonideal
long and a nonideal narrow gradient pulse with respect to the
obtained intensity profiles is provided by Laun et al. [13].

To further validate our study, we simulated the experiment
with a Monte Carlo algorithm, resulting in the solid line
in Fig. 2. The agreement between the simulated and NMR
data is remarkable. Our method, although closely related to
scattering techniques, proves to return the full structure factor.
Moreover, this is achieved using a single, straightforward
NMR experiment.

The measurement of a one-dimensional structure factor
may be sufficient for cases in which the pores exhibit certain
symmetries. However, it is desirable to extend the approach
towards higher dimensions for arbitrary pore shapes. While
the radon transformation or back projection can be used for
image reconstruction [5,14] it comes at the cost of a large
number of one-dimensional profiles needing to be taken.
We therefore developed an approach which is inspired by
the similarities between common MRI and the long-narrow
experiment. Its two-dimensional (2D) equivalent, shown in
Fig. 3, leads to an experiment which is known in conventional
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FIG. 3. 2D MRPI pulse scheme. Gradients Gx and Gy are stepped
independently.

MRI as phase-encoded imaging and carries with it a convenient
and unambiguous way of image reconstruction. Instead of
one, now two orthogonal gradients Gx and Gy are stepped
independently. The experiment retains its CPMG-like structure
as for the one-dimensional case (though this is omitted in
Fig. 3 for clarity) and entirely resembles a conventional
2D MRI experiment. However, there are two remarkable
differences. First, the long gradients transform the experiment
from one which measures displacements into one which
measures positions with respect to the center of mass for
each pore. Second, MRI data are acquired by sampling k
space [8], while it is q space which is traversed here. Hence, we
choose the name MRPI, which accounts for these differences
to MRI.

We have applied a two-dimensional MRPI experiment to the
aforementioned sample, thus obtaining data in which q space
is traversed on a Cartesian plane in a 32 × 32 matrix. The result
as shown in Fig. 4(a) is the real part of the two-dimensional
structure factor which inherits its point symmetry from the
object it is describing—the water confined by the capillary
walls. As for the one-dimensional structure factor shown in
Fig. 2, the imaginary part of the acquired signal (not shown) is
close to zero in the two-dimensional data set. It is most intrigu-
ing to see in Fig. 4(b) that a simple two-dimensional Fourier
transformation reconstructs the actual pore shape, averaged
over all pores with an intensity profile again determined by the
interplay of the nonideal gradient pulses as discussed by Laun
et al. [13]. Remarkably, the nominal resolution of this image
is 1.3 μm/pixel, however, it was achieved with moderate
gradients provided by a standard microimaging system (we
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FIG. 4. (Color online) Real part of the two-dimensional structure
factor as acquired with MRPI from water in a bundle of capillaries
(a) and the corresponding averaged pore image obtained by a
subsequent 2D Fourier transformation of these data (b).
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note that the effective resolution is reduced due to diffusion
during the narrow gradient pulse). Further considerations
with respect to available gradient strength and the resulting
applicability of the method for various pore sizes and pore
fluids are discussed in Laun et al. [13]. Generally one needs to
satisfy the condition that molecules diffuse several times across
the pore while maintaining a small diffusive displacement
during the narrow gradient. Despite these challenges, further
development of the method and the careful choice of the pore
space fluid (from gases to viscous hydrocarbons) may allow
MRPI to be applied broadly. Furthermore, although the method
is most promising for closed-pore systems, it may be applicable
for connected pore spaces in selected cases [11].

Evidently, MRPI integrates seamlessly with proven con-
cepts of MRI. Therefore, one may expect to find advantages

and established approaches of MRI to work for MRPI as
well. This may include efficient ways to sample q space by
employing advanced schemes such as sparse or spiral sampling
as known from conventional MRI. Furthermore, it seems pos-
sible to develop techniques similar to chemical shift imaging
(CSI) [17] which may map structure factors or even averaged
pore images onto low resolution images. More importantly,
one does not rely on a particular symmetry or shape of the pore
system. We therefore anticipate MRPI to extend the toolbox
for future porous media research substantially.

We thank Professor Sir Paul T. Callaghan and Dr. Andrew
Coy for useful discussions and acknowledge the Ministry
of Business, Innovation & Employment of New Zealand for
financial support.

[1] J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray
Physics (Wiley, Chichester, 2011).

[2] D. Svergun, L. Fegin, and G. Taylor, Structure Analysis by Small-
Angle X-Ray and Neutron Scattering (Plenum, New York, 1987).

[3] P. T. Callaghan, A. Coy, D. Macgowan, K. J. Packer, and F. O.
Zelaya, Nature (London) 351, 467 (1991).

[4] F. B. Laun, T. A. Kuder, W. Semmler, and B. Stieltjes, Phys.
Rev. Lett. 107, 048102 (2011).

[5] N. Shemesh, C.-F. Westin, and Y. Cohen, Phys. Rev. Lett. 108,
058103 (2012).

[6] T. A. Kuder and F. B. Laun, Magn. Reson. Med.,
doi:10.1002/mrm.24515 (2012).

[7] P. C. Lauterbur, Nature (London) 242, 190 (1973).
[8] P. T. Callaghan, Principles of Nuclear Magnetic Resonance

Microscopy (Clarendon, Oxford, 1991).

[9] P. T. Callaghan, C. D. Eccles, and Y. Xia, J. Phys. E 21, 820
(1988).

[10] D. G. Cory and A. N. Garroway, Magn. Reson. Med. 14, 435
(1990).

[11] P. T. Callaghan, Translational Dynamics & Magnetic Resonance
(Oxford University Press, Oxford, UK, 2011).

[12] S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).
[13] F. B. Laun, T. A. Kuder, A. Wetscherek, B. Stieltjes, and

W. Semmler, Phys. Rev. E 86, 021906 (2012).
[14] F. B. Laun, T. A. Kuder, B. Stieltjes, and W. Semmler,

http://ocs.som.surrey.ac.uk/index.php/mrpm11/index/pages/view
/confschedule.

[15] D. S. Grebenkov, Rev. Mod. Phys. 79, 1077 (2007).
[16] P. P. Mitra and B. I. Halperin, J. Magn. Reson. A 113, 94 (1995).
[17] P. Mansfield, Magn. Reson. Med. 1, 370 (1984).

030802-4

http://dx.doi.org/10.1038/351467a0
http://dx.doi.org/10.1103/PhysRevLett.107.048102
http://dx.doi.org/10.1103/PhysRevLett.107.048102
http://dx.doi.org/10.1103/PhysRevLett.108.058103
http://dx.doi.org/10.1103/PhysRevLett.108.058103
http://dx.doi.org/10.1002/mrm.24515
http://dx.doi.org/10.1002/mrm.24515
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1088/0022-3735/21/8/017
http://dx.doi.org/10.1088/0022-3735/21/8/017
http://dx.doi.org/10.1002/mrm.1910140303
http://dx.doi.org/10.1002/mrm.1910140303
http://dx.doi.org/10.1063/1.1716296
http://dx.doi.org/10.1103/PhysRevE.86.021906
http://ocs.som.surrey.ac.uk/index.php/mrpm11/index/pages/view/confschedule
http://ocs.som.surrey.ac.uk/index.php/mrpm11/index/pages/view/confschedule
http://dx.doi.org/10.1103/RevModPhys.79.1077
http://dx.doi.org/10.1006/jmra.1995.1060
http://dx.doi.org/10.1002/mrm.1910010308



