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The Lévy walk model is a stochastic framework of enhanced diffusion with many applications in physics and
biology. Here we investigate the time-averaged mean squared displacement δ2 often used to analyze single particle
tracking experiments. The ballistic phase of the motion is nonergodic and we obtain analytical expressions for
the fluctuations of δ2. For enhanced subballistic diffusion we observe numerically apparent ergodicity breaking
on long time scales. As observed by Akimoto [Phys. Rev. Lett. 108, 164101 (2012)], deviations of temporal
averages δ2 from the ensemble average 〈x2〉 depend on the initial preparation of the system, and here we quantify
this discrepancy from normal diffusive behavior. Time-averaged response to a bias is considered and the resultant
generalized Einstein relations are discussed.
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In recent years there has been growing interest in the physics
of weak ergodicity breaking [1–3]. In statistical mechanics
the ergodic hypothesis states that ensemble averages and time
averages are equal in the limit of long measurement times.
Weak ergodicity breaking is found in systems whose temporal
dynamics is governed by broad power law distributed waiting
times with a diverging mean [1,2]. Weak ergodicity breaking
allows for the exploration of the whole phase space (unlike
strong ergodicity breaking) yet ergodicity is not attained since
the diverging time scale of the dynamics always exceeds
the measurement time [4]. The lack of a time scale for the
dynamics leads to distributional limit theorems for time-
averaged observables which are not trivial [3,5–8], while in
the ergodic phase the distribution of the time averages are
delta functions centered on the ensemble averages and in that
sense are trivial. Weak ergodicity breaking is observed in many
systems ranging from blinking quantum dots [9,10] (where
sojourn times in on and off states are power law distributed)
to models of glassy dynamics [1], and diffusion of molecules
in the cell environment [11–13].

An observable that was extensively studied is the mean
squared displacement (MSD) of a diffusing particle [13]. Let us
first define the time averages. Experimentalists routinely track
individual trajectories of particles and use the information
for precise measurements of diffusion constants. The time-
averaged MSD is defined through the path x(t) in terms of

δ2 = 1

T − �

∫ T −�

0
[x(t + �) − x(t)]2dt, (1)

with the lag time � much smaller than the measurement time
T . In the case of Brownian motion, due to the stationary
increments, limT →∞ δ2 = 2D� is precisely the same as the
MSD averaged over a large ensemble of particles 〈x2〉 = 2D�,
indicating ergodicity in the MSD sense. Here D is the diffusion
constant. Now consider a weak force F acting on the particle,
which will induce a net drift 〈x〉F ∝ �. Throughout this Rapid
Communication 〈· · ·〉 denotes ensemble averages while · · ·
stands for time averaging. For Brownian particles the response
to the field is related to the fluctuations via the celebrated
Einstein relation 〈x〉F = F 〈x2〉/(2T ) [2,14], where T is
the temperature and throughout this Rapid Communication

kB = 1. Since the Brownian process is ergodic, the Einstein
relation will hold also for the time-averaged response, defined
according to

δF = 1

T − �

∫ T −�

0
[x(t + �) − x(t)]dt, (2)

thus δF = Fδ2/(2T ).
Very recently Akimoto investigated temporal averages of

anomalous diffusion and response to bias within the framework
of deterministically generated Lévy walks [15]. In this well
investigated and widely applicable process the diffusion is
anomalous. Here two interesting issues arise. The first is the
question of ergodicity of these processes, and the second the
applicability of the Einstein relation to the time averages.
Though time-averaged response to a bias was found to be
intrinsically random, surprisingly the “temporal averaged
MSDs are not random” [15]. This is diametrically opposed
to results in previous examples of weak ergodicity breaking
where temporal averages are intrinsically random [5–7,16].
For that reason we analytically investigate the previously
ignored nontrivial fluctuations of the time-averaged MSD
showing that the fluctuations are universal. We then formulate
an Einstein relation for the time averages. We show that the
Einstein relation for time averages differs considerably from
the corresponding Einstein relation for the ensemble averages.

The Lévy walk model is a generalization of the classical
Drude model describing a particle moving with constant
velocity and changing its direction randomly. While in the
Drude model exponential waiting times between turning events
due to strong collisions result in a Markov process, the
Lévy walk model postulates power law distributed waiting
times between randomization events resulting in long flights
[17–19]. The Lévy walk [18] describes enhanced transport
phenomena in many systems, ranging from chaotic diffusion to
animal foraging patterns [16,20–26]. For some very recent ap-
plications, see also Refs. [27–30]. The ubiquity of Lévy walks
makes it particularly interesting to characterize and quantify
their ergodic properties, leading to a better understanding of
the physics at the core of such processes.

Lévy walk: Model and ensemble-averaged MSD. Superdif-
fusion based on power law waiting times is naturally described
by the Lévy walk model [17]. We consider a particle alternating
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its velocity between +v0 and −v0 at random times. The
times 0 < τ < ∞ between turning events are independent,
identically distributed random variables with a common
probability density function (PDF) ψ(τ ). The position of the
particle is x = ∫ t

0 v(t ′)dt ′, so that the particle starts at t = 0
with velocity +v0, travels a distance v0τ1 with τ1 drawn from
ψ(τ ), and after that is displaced −v0τ2. The process is then
renewed. The PDF of flight times τ is power law distributed,
ψ(τ ) ∼ Aτ−(1+α)/|�(−α)|. When 0 < α < 1, the mean 〈τ 〉
diverges, while for 1 < α < 2 it is finite though 〈τ 2〉 = ∞.
Our working example in simulations will be ψ(τ ) = ατ−(1+α)

for τ > 1. Importantly, the displacements ±v0τ are broadly
distributed, though they never become larger than ±v0t .

The ensemble-averaged MSD is [17,31,32]

〈x2〉 ∼
{

v2
0(1 − α)t2, 0 < α < 1,

2Kαt3−α, 1 < α < 2.
(3)

The case 0 < α < 1 is called the ballistic phase, while we
refer to the parameter range 1 < α < 2 as enhanced diffusion
which is subballistic. Here the anomalous diffusion coefficient
is given by

Kα = v2
0

A(α − 1)

〈τ 〉�(4 − α)
. (4)

Note that this transport coefficient was derived for a process
which started at time t = 0. For both ballistic and enhanced
regimes simulations reveal fluctuations of δ2 at finite T ,
which surprisingly are more pronounced in the latter case
(Fig. 1). Before we turn to these fluctuations, we will study
the ensemble averages 〈δ2〉, i.e., the mean of the distributions
of the δ2, denoted by the dashed lines in Fig. 1.

Averaging Eq. (1) we notice a relation between 〈δ2〉 and the
ensemble-averaged position correlation function,

〈δ2〉 =
∫ T −�

0

〈x2(t + �)〉 + 〈x2(t)〉 − 2〈x(t)x(t + �)〉
T − �

dt.

(5)

The correlation function 〈x(t1)x(t2)〉 is related to the velocity
correlation function as

〈x(t1)x(t2)〉 =
∫ t1

0
dt ′1

∫ t2

0
dt ′2〈v(t ′1)v(t ′2)〉. (6)

Since v(t1) = v(t2) [or v(t1) = −v(t2)], when the number of
transitions n in the time interval (t1,t2) is even (or odd), we
have

〈v(t1)v(t2)〉 =
∞∑

n=0

(−1)nv2
0pn(t1,t2), (7)

where pn(t1,t2) is the probability for n transitions of direction
in the time interval (t1,t2). The behavior of the velocity
correlation function Eq. (7) was studied by Godrèche and
Luck [33] and it is described by two limits depending on the
value of α.

The ballistic phase. For α < 1 the dynamics is free of a
time scale since 〈τ 〉 = ∞ so that the particle will get stuck
in a velocity state (either +v0 or −v0) for a duration of the
order of the measurement time. Hence the dominating term in
Eq. (7) is n = 0 and only the persistence probability p0(t1,t2)
is important in the scaling limit of the problem [33],

〈v(t1)v(t2)〉 	 v2
0p0(t1,t2) = v2

0
sin πα

π
B

(
t1

t2
; α,1 − α

)
,

(8)

where B(z; a,b) is the incomplete Beta function and t2 � t1.
This velocity correlation function cannot be expressed as
a function of the time difference |t2 − t1|, reflecting the
nonstationarity of the process. Inserting Eq. (8) in Eq. (6)
and integrating we get

〈x(t1)x(t2)〉 = v2
0

sin πα

π

[
t1t2B

(
t1

t2
; α,1 − α

)

− 1

2
(t2)2B

(
t1

t2
; 1 + α,1 − α

)

− 1

2
(t1)2B

(
t1

t2
, − 1 + α,1 − α

)]
− α

(v0t1)2

2
,

(9)

which reduces to the first line of Eq. (3) when t1 = t2.
In the limit α → 0 the particle remains in state +v0 or
−v0 for the whole duration of measurement time, hence we
expect and indeed get 〈x(t2)x(t1)〉 = v2

0 t2t1, which describes
a deterministic motion. In contrast, for Brownian motion
we have 〈x(t1)x(t2)〉 = 2D min(t1,t2) reflecting independent
increments of the process. Compared with the diffusive case,
the Lévy walk exhibits strong correlations due to the long
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FIG. 1. (Color online) δ2 of ten sample trajectories vs lag time �, T = 104, α = 1/2 (left); T = 105, α = 5/4, dashed lines indicate
ensemble averages 〈δ2〉, Eqs. (10) and (15). Larger times T and smaller lag times � result in smaller fluctuations. For comparable times T , the
fluctuations in the enhanced case are larger than in the ballistic case.
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sticking times in the positive or negative velocity states. For
� 
 t1 we find 〈x(t1)x(t1 + �)〉 ∼ 〈x2(t1)〉[1 + (�/t1)], thus
the correlations are strong in the sense that they are increasing
with �.

Inserting the correlation function Eq. (9) in Eq. (5) and
integrating, we find, in the limit �/T 
 1,

〈δ2〉 ∼ v2
0

[
�2 − sin πα

πα

2�2
(

�
T

)1−α

6 − 11α + 6α2 − α3

]
. (10)

The leading term 〈δ2〉 ∼ (v0�)2 was found in Ref. [15] and
corresponds to a deterministic, ballistic motion with velocity
v0. To see this, insert [x(t + �) − x(t)]2 = (v0�)2 in Eq. (1),
which yields δ2 = (v0�)2.

More important are the fluctuations of the time-averaged
MSD which quantify the ergodicity breaking. To explore this
issue note that a particle not changing its direction at all
δ2 = (v0�)2 corresponds to a ballistic path. If the particle
changes its velocity only once in the interval (0,T ), it is easy to
show [34] that δ2 = (v0�)2 − (2/3)v2

0�
3/T for T � �. Thus

a single switching event reduces δ2 by a term χ2 proportional
to v2

0�
3/T . If we have two transitions between +v0 and −v0

states, the correction term is twice as large [35]. Altogether
we deduce that for a random amount nT of switching events
within the observation time T ,

δ2 = (v0�)2 − χ2nT . (11)

Notice that this result is valid for a single trajectory, and both δ2

and nT are random. Once we find χ2, this equation gives the
sought after fluctuations of the time-averaged MSD, as will
become clear soon. Further, we see that the natural random
variable is the shifted MSD (v0�)2 − δ2, which is plotted in
Fig. 2 versus the lag time �. Now the fluctuations are clearly
visible, unlike the presentation in Fig. 1.

We now determine χ2. From renewal theory [2,36] the
average number of switchings (renewals) is 〈nT 〉 ∼ T α/

A�(1 + α). Comparison of the average of Eq. (11) with
Eq. (10) thus yields

χ2 = 2 sin παA�(1 + α)

πα(6 − 11α + 6α2 − α3)

v2
0�

3−α

T
, (12)

a result valid for � 
 T [37].
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FIG. 2. (Color online) Deviations from ballistic motion of the
time-averaged MSDs (v0�)2 − δ2 vs the lag time � for ten tra-
jectories; α = 1/2, v0 = 1, T = 108. The dashed line denotes the
theoretical ensemble average Eq. (10).

To quantify the fluctuations we introduce the dimensionless
random parameter

ξ = δ2 − (v0�)2

〈δ2〉 − (v0�)2
= nT

〈nT 〉 , (13)

which has mean equal one. The fluctuations of the number of
switchings nT are well known from renewal theory [2,3,36]
as they are determined by the waiting time distribution ψ(τ )
only. The case α < 1 implies that Lévy’s central limit theorem
holds, which gives the PDF of ξ ,

g(ξ ) = �1/α(1 + α)

αξ 1+1/α
lα,1

[
�1/α(1 + α)

ξ 1/α

]
. (14)

Here lα,1(t) denotes the one sided Lévy stable PDF whose
Laplace transform is given by exp(−uα) [2,36,38]. Figure 3
shows excellent agreement between the PDF Eq. (14) and the
respective simulation results. As mentioned above, Ref. [15]
showed that transport, i.e., time-averaged response to external
bias, is random. Equation (14) shows that also the time-
averaged diffusivity of the process is random, though one must
consider the shifted MSD defined in Eq. (13) to observe the
fluctuations typical for weak ergodicity breaking.

The enhanced diffusion phase. For 1 < α < 2 the dynamics
has a finite time scale 〈τ 〉 and therefore one may naively expect
the normal behavior 〈δ2〉 = 〈x2〉. Similarly to the ballistic
phase, we find the correlation function [39]

〈x(t1)x(t1 + �)〉 = Kα

(α − 1)
t3−α
1 h(θ ),

with

h(θ ) = α + (1 + θ )3−α + (α − 3)(1 + θ )2−α − θ3−α,

where θ = �/t1. Inserting this expression in Eq. (5) we find

〈δ2〉 = 〈x2〉
α − 1

. (15)

Thus, except for the normal diffusion limit of α → 2, the
ensemble-averaged MSD differs from the time-averaged MSD
by a factor. Numerical evidence for a difference between 〈x2〉
and 〈δ2〉 was presented earlier [15] in the context of diffusion
generated by deterministic maps. Equation (15) quantifies
this deviation with α = 1/(z − 1) and 3/2 < z < 2 being the
nonlinearity parameter of the deterministic map in Ref. [15].

To explain this effect note that 〈x2〉 is calculated for a
process which starts at time t = 0. Physically this corresponds
to a particle immersed in a system at time t = 0 when the
process begins. Alternatively we may measure or calculate
the stationary MSD 〈x2〉st of a process which started long
before the measurement begins at t = 0. In this case, since 〈τ 〉
is finite, the system is in the stationary state throughout the
measurement time, i.e., from t = 0 on. Hence one may use the
Green-Kubo formalism to obtain the stationary MSD 〈x2〉st =
2Kαt3−α/(α − 1), as was done earlier in Refs. [40,41].
Thus we find that 〈δ2〉 = 〈x2〉st �= 〈x2〉. The assessment of
the ergodic properties of the process in the sense of equal
time- and ensemble-averaged MSD is therefore a subtle issue
which depends on the initial preparation of the system. Such
a behavior is not found for normal diffusion processes.
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FIG. 3. (Color online) PDF of ξ = [(v0�)2 − δ2]/[(v0�)2 − 〈δ2〉] for α = 0.5 (left) and α = 0.7 (right). Simulations (histograms) comply
with theory (solid lines); T = 106, � = 1, sample size 104. When α = 0.5, the peak of the PDF is on ξ = 0; for α → 1 the peak tends to ξ = 1
and fluctuations of ξ vanish.

In biophysical experiments the time-averaged MSDs of
trajectories measured up to a certain observation time are often
distributed [42,43]. In single particle tracking experiments
in the living cell the origins of these fluctuations and of
the anomalous transport are still an object of controversy
[13,44,45]. Recent careful statistical analyses revealed mul-
tiscaling of the moments of active motion of small polymeric
particles in living cells [26]. Multiscaling is a non-Gaussian
feature which is consistent with Lévy walks rather than with
the Gaussian and ergodic Langevin picture. Reference [26]
suggests Lévy walks as a first simplified approach to the active
transport in this specific setting. Time averages are made over
finite times which are limited by biological function, e.g.,
the measurement time cannot be larger than the lifetime of
the cell. Hence the usual infinite long time limit and ideas
on stationarity are not relevant in many single biomolecule
experiments. In our simulations we find large fluctuations
intrinsic to the Lévy walk model for α = 5/4 (see the left
panel of Fig. 1) among the δ2 even for �/T = 10−3. To check
whether δ2 remains random, we investigated the fluctuations
which vanish in the long time limit, though slowly (in contrast
to Lévy flights, see Ref. [46]). Thus we find that

lim
T →∞

δ2

〈x2〉 = 1

|1 − α| , (16)

both for the ballistic and enhanced diffusion phase.
Response to bias and generalized Einstein relation. Now we

assume a small constant force F acting on the particle, a case
that leads to an anomalous drift. Thereby the force accelerates
the particle according to Newton’s law of motion, similarly to
the Drude model, while the waiting times for the collisions are
still drawn from ψ(τ ). We consider the time average Eq. (2)
and find, using 〈x〉F ,

〈δ〉F =
{

(1 − α)FT �/(2M), 0 < α < 1,

KαFT 2−α�/
(
Mv2

0

)
, 1 < α < 2.

(17)

These results differ from their corresponding ensemble average
〈x〉F in that they depend on both the lag time � and the
measurement time T . In contrast, 〈x〉F clearly depends only
on the measurement time, namely, 〈x〉F = F (1 − α)/(2M)t2

for 0 < α < 1 and 〈x〉F = FKα/(Mv2
0)t3−α for 1 < α < 2

[14]. The equivalence of time and ensemble averaging is thus
broken. This is a consequence of the nonlinear dependence of
〈x〉F on time and thus in fact a very general behavior valid for
any system whose response to the driving force is anomalous.
The limit of normal diffusion α → 2 renders 〈δ〉F a function
of the lag time only so that ergodicity is retained.

Using Eqs. (10), (15), and (17), we find the generalized
Einstein relation for the time averages,

〈δ〉F
〈δ2〉

= |1 − α|F
2Teff

(
T

�

)γ

. (18)

Here γ = 1 in the ballistic phase, while in the enhanced phase
γ = 2 − α. The effective temperature is defined with the aver-
aged kinetic energy of the particle Teff/2 = Mv2

0/2 (kB = 1).
Our relation Eq. (18) is very different from the standard
Einstein relation for the ensemble averages 〈x〉F /〈x2〉 =
F/(2Teff) [2], the normal diffusion limit α → 2 being the
exception.

Conclusion. Since the days of Einstein huge attention has
been given to ensemble-averaged response functions (e.g.,
mobility) and its relation to fluctuations via fluctuation dissi-
pation relations. In this Rapid Communication we have shown
that for a widely applicable class of anomalous processes
the time averages do not obey simple Einstein relations,
contrary to the ensemble averages. Due to the lack of a time
scale in the dynamics, we find a different type of Einstein
relation, Eq. (18), which depends on the measurement time
and thus exhibits aging. This type of Einstein relation entails
a mobility effectively increasing with the measurement time,
reflecting the large excursions in the Lévy walk. Further, we
have unraveled the nature of the fluctuations of the time-
averaged MSDs of the Lévy walk which exhibit Mittag-Leffler
universality in the ballistic phase, Eqs. (13) and (14). In the
enhanced phase the fluctuations were comparably large though
slowly decaying, and revealed a delicate sensitivity to the
initial preparation of the system, characteristics that cannot
be found for normal processes.

Note added: After this work was completed, related work
on the enhanced phase was published [47].
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