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Coulomb expansion: Analytical solutions
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Exact and approximate analytical solutions are presented, describing expansion of a cloud of charged particles
in one, two, and three dimensions (assuming the planar, axial, and spherical symmetries, respectively). The
expansion occurs in a gas or dilute plasma, where the screening is unimportant, so that particles interact with
each other via Coulomb repulsive forces. It is shown that, irrespective of dimensionality, the density distribution
remains homogeneous across the cloud and the velocity increases linearly towards the cloud boundary. The
density evolution obeys a universal dependence, asymptotically decreasing with time as t−1. It is also shown that
in the presence of an inhomogeneous external field the interparticle repulsion becomes negligible at an early
stage of expansion and then the density decreases with time exponentially.
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Nonequilibrium dynamical processes in ensembles of
highly charged particles (charged aerosol) can evolve in very
different environments such as atmosphere and interstellar me-
dia, laboratory and industrial plasmas [1–5]. The behavior of
charged grains in the surrounding gas or plasma is determined
by various collective mechanisms. If grains are embedded in
a sufficiently dense plasma, the screening provided by free
electrons and ions ensures short-range interparticle interac-
tions, so the grain dynamics is characterized by wave modes
sustained in such multispecies systems [6,7]. In contrast, in
some cases the surrounding plasma can be so dilute that the
screening is not important at relevant spatial scales. Then
the charged grains interact with each other via long-range
Coulomb forces. Experiments performed with such “dilute”
complex plasmas [8,9] indicate that nonequilibrium dynamics
of particle clouds in this case can be very different from the
behavior of “regular” quasineutral clouds.

In this paper we study the expansion of a cloud of charged
particles occurring in a gas or dilute plasma. We start the
analysis with a one-dimensional (1D) plane problem and first
investigate a free Coulomb expansion. Then we discuss the
effect of an external field on the expansion and also present
some analytical solutions for 2D and 3D cases. We neglect the
pressure term in the equation of motion, naturally assuming
that thermal effects are negligible. Furthermore, since the
coordinate or/and density dependence of the particle charge
Q makes the problem nonlinear (and presumably intractable),
we shall consider the case when Q is constant (or an explicit
function of time).

Planar 1D problem. To describe the 1D dynamics, we
employ the Lagrangian mass coordinates (s,tL) [10], where
the Lagrangian time is tL = t and

s =
∫ x

0
dx ′n(x ′,t) (1)

is the coordinate expressed via the local number density
n(x,t). We assume that the system remains symmetric with
respect to x = 0, i.e., v(0,t) = 0. Then the material and
spatial derivatives are transformed from Eulerian coordinates
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according to the well-known rule

∂

∂t
+ v

∂

∂x
= ∂

∂tL
, (2)

∂

n∂x
= ∂

∂s
. (3)

The resulting continuity and momentum equations for the
density n and velocity v, as well as Poisson’s equation for the
self-consistent electric field E produced by charged particles,
are (the subscript L for time is now omitted)

∂n−1

∂t
= ∂v

∂s
, (4)

∂v

∂t
+ νv = QE

M
, (5)

∂E

∂s
= 4πQ. (6)

Here Q and M are, respectively, the charge and mass of
individual particles and ν is the damping rate due to friction
against a gas.

By taking the time derivative of Eq. (4), substituting
∂2v/∂s∂t from Eq. (5), and using Eq. (6) we get

∂2n−1

∂t2
+ ν

∂n−1

∂t
= 4πQ2

M
, (7)

which has a general solution

n−1(s,t) = c1(s) + c2(s)e−νt + 4πQ2

Mν
t, (8)

where c1,2(s) are to be determined from initial conditions.
Assuming the initial density to be constant, n(x,0) = n0

within the range |x| � x0, we obtain c1 + c2 = n−1
0 . Then,

substituting ∂n−1/∂t in Eq. (4) and integrating it we derive
v(s,t) = (4πQ2/Mν)s − νe−νt

∫ s

0 ds ′c2(s ′). If the particles
were initially at rest, v(s,0) = 0, then c2 = 4πQ2/Mν and
the solution of Eqs. (4)–(6) reads

n(t)

n0
=

[
1 + ω2

p

ν2
(νt − 1 + e−νt )

]−1

, (9)

v(s,t) = ω2
ps

νn0
(1 − e−νt ), (10)

E(s) = 4πQs, (11)
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where ωp =
√

4πQ2n0/M is the initial plasma frequency of
the charged cloud. We point out that the above solution is also
valid when Q is an explicit function of time (e.g., due to charge
fluctuations [6] or decharging processes [11,12]).

We see that the expansion is characterized by a uniform
stretching—the density remains constant in space and de-
creases monotonically with time. Therefore, Eq. (1) is reduced
to a simple relation s = n(t)x and the cloud boundary xb (> 0)
is determined by the condition sb = n(t)xb(t) = n0x0. At
νt ∼ 1, the time scaling of the density decay crosses over
from n ∝ t−2 to n ∝ t−1, viz.,

n(t)

n0
�

⎧⎨
⎩

(
1 + 1

2ω2
pt2

)−1
, νt � 1 (12)(

1 + ω2
pt/ν

)−1
, νt � 1. (13)

Correspondingly, v increases linearly with x and attains the
maximum at xb. For νt � 1, the maximum velocity tends
to a constant value of vb = x0ω

2
p/ν, which corresponds to a

balance of the electric and friction forces. In the absence of
friction, the velocity grows linearly with time, vb = x0ω

2
pt .

We note that the functions c1,2(s) in Eq. (8) can be derived
also for a general case, when the initial density n0(x) is
not constant and/or the initial velocity v0(x) is not zero.
We get c1(s) + c2(s) = n−1

0 (s) and c2(s) = 4πQ2/Mν2 −
v′

0(s)/ν, where the functions n0(s) and v′
0(s) ≡ dv0(s)/ds can

be obtained from n0(x) and v0(x), respectively, by employing
the relation x(s) from Eq. (1). It is noteworthy that the
asymptotic (νt � 1) solutions for n and v do not depend on
the initial conditions and coincide with Eqs. (9) and (10) in
this limit.

Role of external forces. The use of Lagrangian mass
coordinates requires that velocity remains zero at s = 0, which
implies that for a 1D problem the force Fext(x) associated
with an external field should be an odd function of x. Let us
consider a linear force, which we write in the form Fext =
Mαx. After the transformation from Eulerian coordinates, the
external force results in an additional term α

∫ s

0 ds ′n−1(s ′,t)
on the right-hand side of Eq. (5). This in turn leads to the
term −αn−1 to be added to the left-hand side of Eq. (7).
Obviously, when α < 0 (which corresponds to an external
potential well) the density exhibits damped oscillations,
while for α > 0 the external force accelerates the Coulomb
expansion.

Let us illustrate the expansion with α > 0. For simplicity,
we consider the case of a weak damping

√
α � ν and again

assume homogeneous steady initial conditions. Then a general
solution of the modified Eq. (7) is

n−1(s,t) � c1e
√

αt + c2e
−√

αt − ω2
p

n0α
.

By employing the initial conditions we derive the following
expressions for the density and velocity:

n(t)

n0
=

[
cosh

√
αt + ω2

p

α
(cosh

√
αt − 1)

]−1

, (14)

v(s,t) =
√

αs

n0

(
1 + ω2

p

α

)
sinh

√
αt, (15)

while E(s) remains (explicitly) unaffected. When α → 0,
Eqs. (14) and (15) are naturally reduced to Eqs. (9) and (10),

respectively (taken in the limit ν → 0). One can also see that
even for ωp � √

α the external field rapidly overcomes the
effect of the self-consistent field (at

√
αt � 3) and then the

density decays exponentially.
Thus an inhomogeneous external field always inhibits the

Coulomb expansion: For α < 0 the cloud remains confined
in a potential trap produced by the field, while for α > 0 the
mutual repulsion rapidly becomes negligible in comparison
with the external forces. The latter has been observed in
the experiment of Ref. [9], where it was possible to analyze
only the initial stage of expansion occurring in the plasma
sheath.

Spherically and cylindrically symmetric problems. We see
that the solution for a 1D case has certain characteristic
features: For homogeneous steady initial conditions, the
density of the expanding cloud remains homogeneous and
the velocity increases linearly towards the boundary (and
asymptotically, this is true for arbitrary initial conditions). One
can expect that this similarity is universal and independent of
dimensionality.

To verify this assumption, we write the system of governing
equations in Eulerian coordinates

∂n

∂t
+ 1

rD−1

∂(rD−1nv)

∂r
= 0, (16)

∂v

∂t
+ v

∂v

∂r
+ νv = QE

M
, (17)

1

rD−1

∂(rD−1E)

∂r
= 4πQn, (18)

where D = 1,2,3, and use the following ansatz for n, v,
and E:

n(t)

n0
=

(
r0

rb(t)

)D

, (19)

v(r,t) = r

rb(t)
ṙb(t), (20)

E(r,t) = 4π

D
Qn(t)r, (21)

with r � rb (for simplicity, we again consider a homogeneous
initial distribution). This ansatz ensures that Eqs. (16) and (18)
are satisfied identically. From Eq. (17) we derive the equation
for the function N (t) = rb(t)/r0 ≡ [n(t)/n0]−1/D ,

N̈ + νṄ = ω2
p

D
N−D+1. (22)

For D = 1, when N = (n/n0)−1 and Eq. (22) is reduced to
Eq. (7), we obtain the solution corresponding to Eqs. (9)–(11).
For D = 2 and 3, one cannot solve Eq. (22) analytically in
a general case. However, several important cases can still be
considered.

(i) One can find the asymptotic solution of Eq. (22) at
νt � 1, when the second time derivative is negligible. This
yields ND(t) ≡ n0/n(t) = 1 + ω2

pt/ν, which coincides with
Eq. (14). Hence the asymptotic density evolution does not
depend on D.

(ii) Equation (22) can be integrated exactly for ν = 0.
The first integrals are Ṅ2 = ω2

p ln N for D = 2 and
Ṅ2 = 2

3ω2
p(1 − N−1) for D = 3 and the respective solutions
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are

erfi
√

ln N = 1√
π

ωpt, D = 2,

√
N (N − 1) + ln(

√
N + √

N − 1) =
√

2

3
ωpt, D = 3,

where erfix = 2√
π

∫ x

0 dx ′ex ′2
is the imaginary error function.

While the short-time evolution (ωpt � 1) is the same for
all D and coincides with Eq. (12), the asymptotic behavior
essentially depends on dimensionality: n ∝ (t2 ln t)−1 for D =
2 and n ∝ t−3 for D = 3. Here we note a very interesting
link to self-similar solutions obtained for the expansion
of ultracold neutral plasmas (assuming a Gaussian spatial
distribution) [13–15]. In particular, these results suggest that
the asymptotic behavior of the average density in expanding
3D neutral plasmas also obeys a dependence proportional
to t−3 [13].

(iii) One can also get an approximate general solution of
Eqs. (16)–(18), provided certain conditions are satisfied: For
this, we transform Eqs. (16)–(18) to Lagrangian mass coor-
dinates s2D = 2π

∫ r

0 dr ′r ′n(r ′,t) or s3D = 4π
∫ r

0 dr ′r ′2n(r ′,t).
Also, we introduce ṽ = 2πrv and Ẽ = 2πrE for a 2D
problem and ṽ = 4πr2v and Ẽ = 4πr2E for a 3D problem.
The resulting set of equations for n, ṽ, and Ẽ is identical
to Eqs. (4)–(6), except for the additional term ṽ2/2πrD

in the velocity equation, which turns out to be negligible
at any t provided ν � ωp. In this case, the solutions for
n(t) and E(r,t) are given by Eqs. (9) and (21), respec-
tively, whereas the general dependence for the velocity

is

v(r,t) = ω2
pr

Dν

n(t)

n0
(1 − e−νt ). (23)

The field at the cloud boundary varies with time as [n(t)]1−1/D ,
i.e., it decreases monotonically for D = 2 and 3. Corre-
spondingly, the velocity at the boundary varies as (1 − e−νt )
[n(t)]1−1/D , i.e., for D = 2 and 3 it attains a maximum at
tmax ∼ ν−1 ln(ν/ωp) (for ν/ωp � 1).

A remarkable fact is that, irrespective of dimensionality
and initial conditions, for any ν �= 0 the density decays
asymptotically as n ∝ t−1. This implies that the expansion
of “asymmetric” clouds (which do not possess the initial
symmetries considered in this paper) may follow the same
scaling law. Interestingly, the cloud expansion observed in
the experiment of Ref. [16] was attributed by the authors
to an ambipolar diffusion. The latter is characterized by
exponential density decay, but Fig. 2 of that paper shows that
in fact the asymptotic decay was very close to the dependence
proportional to t−1, suggesting the Coulomb expansion as the
dominating process.

We conclude that expansion of a cloud of charged particles
is described by analytical solutions such that the density
distribution remains homogeneous across the cloud and the
velocity increases linearly towards the cloud boundary. Such
similarity is universal for planar, axially symmetric, and
spherically symmetric clouds. The presented solutions can
be useful for the analysis of experiments and numerical
simulations investigating the dynamics of charged grain or
aerosol clouds. It would be very interesting to verify whether
the derived scaling laws also work for asymmetric expanding
clouds.
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