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Nonlinear interaction of intense laser pulses and an inhomogeneous electron-positron-ion plasma
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The nonlinear interaction of an ultraintense short laser beam and an inhomogeneous electron-positron-ion
(EPI) plasma is investigated. It is found that the presence of positrons and inhomogeneity results in strong
modulational and filamentational instabilities, which induce strong nonlinear interactions between the laser beam
and the inhomogeneous EPI plasma. Light beam focusing, filamentation, trapping, and nonlinear interaction
between the trapped light spots and the inhomogeneous plasma are observed. Interestingly, we find that the
inhomogeneity of the plasma can not only boost a mechanism for light beam self-focusing and filamentation but
also provide an effective way to localize and trap the beam in the region one wanted.
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The nonlinear interaction between an ultraintense short
laser beam and plasma is of great interest in various funda-
mental research and technological applications [1–3]. These
include relativistic optical guiding, harmonic excitation, wake-
field generation, laser pulse frequency shifting, pulse com-
pression, and particle acceleration. Especially, the nonlinear
dynamics of intense laser pulses in electron-positron-ion (EPI)
plasma have receive a great deal of attention [4–10]. Light
beam compression, focusing, and trapping in self-created
density holes, light beam filamentation, stable localized
solutions, and self-modulational instability in EPI plasmas are
discussed. In fact, propagation of an intense short laser beam
in plasma can also lead to pair production, resulting in a three-
component EPI plasma [4,11,12]. Abundant production of
electron-positron (EP) pairs in the collision of a multipetawatt
laser beam and a solid target is predicated, and the result
shows that the positron density can be up to 1026 m−3 [13,14].
Recently, EP plasma has been produced in a laboratory by
irradiating a solid gold target with an intense picosecond laser
pulse [15–17]. The results show that the positron density can
be up to 1016 cm−3. The results also predict that, with the
increasing performance of high-energy ultrashort laser pulses,
a high-density (up to 1018 cm−3) relativistic pair plasma is
achievable. Thus, from these theoretical and experimental
investigations we can expect that the investigation of nonlinear
interaction of a pair plasma and high-intensity electromagnetic
fields is significant for future high-intensity laser experiments.
However, the previous investigations about the propagation
of a laser beam in EPI plasma were mainly limited to
homogeneous cases. In fact, up to now, few investigations have
been devoted to the effect of plasma inhomogeneity on pulse
propagation [18–25]. It was shown that axial [18–21] or radial
[23–25] inhomogeneity can further boost the self-focusing
and compression mechanism and localize the pulse intensity
compared with a homogeneous plasma.

In this Brief Report, taking into account the effects of equi-
librium density inhomogeneity and positron concentration, we
study the nonlinear propagation of the intense laser pulses in
an inhomogeneous EPI plasma. Starting from the Maxwell
equations and Poisson’s equation, we show that the system of
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governing equations can be reduced to a modified nonlinear
Schrödinger equation (NLSE) with a density inhomogeneity
effect. Linear, Gaussian, and cosine density inhomogeneities
along the axial direction are discussed. It is shown that the
presence of positrons and inhomogeneity results in strong
modulational and filamentational instabilities, which induce
strong nonlinear interaction between the laser beam and the
inhomogeneous EPI plasma. Rich and interesting phenomena
are observed. We find that the inhomogeneity can not only
boost a mechanism for light beam self-focusing and filamen-
tation but also provide an effective way to localize and trap the
pulse in the region we wanted.

We investigate the propagation of intense laser pluses in
a smooth inhomogeneous EPI plasma. We assume that the
electron and the positron densities are homogenous in the
radial r direction but inhomogeneous in the axial z direction.
The local equilibrium state of the three-component system is
characterized by the dimensionless local charge neutrality,

ne0(z) = αnp0(z) + (1 − α)ni0(z), (1)

where ne0(z), np0(z), and ni0(z) are the unperturbed number
densities of the electrons, positrons, and ions, respectively.
The coefficient α = np0(0)/ne0(0) denotes the ratio of positron
density to the electron density at z = 0. The electrons and
positrons are denoted by the subscripts e and p, respectively.
The ions do not respond to the dynamics under consideration
and provide a neutralizing background due to their relatively
large inertia.

In order to describe the nonlinear propagation of intense
light in such a plasma, we start with the Maxwell equations.
The wave equation (in the Coulomb gauge ∇ · A = 0) and the
Poisson equation of the system take the forms [1,5,7]

∂2 A
∂t2

− ∇2 A = αnpvp − neve (2)

and

∇2ϕ = ne − αnp − (1 − α)ni0(z). (3)

Here A and ϕ are the vector and scalar potentials, respectively,
ne (np) is the electron (positron) number density, and ve

(vp) is the electron (positron) velocity in the electromagnetic
fields. The system is closed by invoking the equation of
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motion,

∂ pe,p

∂t
+ (ve,p · ∇) pe,p

= ∓
[
−∇ϕ − ∂ A

∂t
+ ve,p × (∇ × A)

]
− Te,p

ne,p

∇ne,p,

(4)

for each of the mobile components. Here pe ( pp) is the electron
(positron) momentum, and Te (Tp) is the electron (positron)
temperature. Equations (1)–(4) are dimensionless, with the
following scalings:

t ∼ ωet, r ∼ ωe

c
r, ve,p ∼ ve,p

c
,

pe,p ∼ pe,p

m0c
, Te,p ∼ Te,p

m0c2
, ni0(z) ∼ ni0(z)

ni0(0)
, (5)

ne,p ∼ ne,p

ne0,p0(0)
, Â ∼ e

m0c2
Â,

where Â ≡ [A; ϕ], ωe = [4πe2ne0(0)/m0]1/2 is the electron
plasma frequency, e is the magnitude of the electron charge,
and m0 is the rest mass of electrons.

For the propagation of a circularly polarized electromag-
netic wave with a frequency ω0 and wave number k(r) = k(z) ẑ
along the axial direction, the vector potential can be repre-
sented as

A = 1

2
a(r,t)(x̂ + i ŷ) exp

(
i

∫
k(r) · d r − iω0t

)
+ c.c.

(6)
Since the dimensionless quiver velocity is given by ve,p =
pe,p/γe,p, where γe,p = (1 + p2

e,p)1/2, Eq. (4) in the transverse
direction is satisfied by [1]

pe,p = ±A (7)

and

∇[±ϕ − γe,p − Te,p ln ne,p] = 0. (8)

It is noted that Eq. (7) governs the high-frequency response of
the electrons and the positrons with the same frequency ω0 as
that of the incident waves, and a(r,t) is slowly varying along
the spatial r and time t . From Eq. (7), the electron and positron
velocities are

ve = A
γ

, vp = − A
γ

, (9)

where γ = (1 + |A|2)1/2 ≡ γe,p. Equation (8) describes the
electron and positron low-frequency response (neglecting the
electron inertia for slow motion). The second term in Eq. (8) is
the usual expression for the relativistic ponderomotive force.
The expressions for the electron and positron number densities
can be obtained by integrating Eq. (8):

ne = ne0(z) exp

[
−γ − 1

Te

+ ϕ

Te

]
, (10a)

np = np0(z) exp

[
−γ − 1

Tp

− ϕ

Tp

]
. (10b)

Using Eq. (9), Eq. (2) becomes

∂2 A
∂t2

− ∇2 A + αnp + ne√
1 + |A|2

A = 0. (11)

Substituting Eq. (6) and the dispersion relation ω2
0 − k2 =

αnp0(z) + ne0(z) into Eq. (11), we obtain

iω0
∂a

∂t
+ i(k · ∇)a + 1

2
∇2a + αnp0(z) + ne0(z)

2
a

− 1

2

αnp + ne√
1 + |a|2

a = 0. (12)

Noting that all terms in this dynamic vary on a slow time scale,
it is now convenient to induce new variables, t = τω0 and
r = r ′ + vgτω0, and denote vg = k/ω0 as the group velocity
of light. Thus, Eq. (12) takes the form

i
∂a

∂τ
+ 1

2
∇2a + αnp0(z) + ne0(z)

2
a − 1

2

αnp + ne√
1 + |a|2

a = 0.

(13)

For convenience, r ′ in Eq. (13) is still expressed by r . We
assume that the unperturbed electrons and positrons obey the
same distribution in the axial direction, viz., ne0(z) = np0(z) =
n0(z). From Eqs. (1), (10), and (3) we have

ϕ = (1 −
√

1 + a2)(αβp − βe)/(αβp + βe), (14)

where βe = 1/Te, βp = 1/Tp. Then, Eq. (13) takes the form

i
∂a

∂τ
+ 1

2
∇2a +

{
α + 1

2
− α exp[β(1 −

√
1 + |a|2)]

2
√

1 + |a|2

− exp[αβ(1 −
√

1 + |a|2)]

2
√

1 + |a|2

}
n0(z)a = 0, (15)

where β = 2αβpβe/(αβp + βe) denotes the temperature pa-
rameter. The plasma inhomogeneity is expressed by the
term n0(z). When n0(z) = 1, the system is reduced to the
homogeneous case.

The modulational instability of an arbitrary large amplitude
electromagnetic pump wave governed by Eq. (15) can be
investigated by standard techniques. Accordingly, we let
a = (a0 + a1) exp(iδτ ), where a0 is a real constant, a1 (�a0)
denotes the amplitude of the perturbation, and δ is the nonlinear
frequency shift caused by the nonlinear interaction. Then, for
a smooth inhomogeneous plasma (i.e., n0(z) is slowly varying
along the axial z), the nonlinear frequency shift δ can be
obtained from Eq. (15):

δ =
⎧⎨
⎩α + 1

2
−

α exp
[
β
(
1 −

√
1 + a2

0

)]
2
√

1 + a2
0

−
exp

[
αβ

(
1 −

√
1 + a2

0

)]
2
√

1 + a2
0

⎫⎬
⎭ n0(z). (16)

Letting a1 = (X + iY) exp[i
∫

K (r) · d r − i�τ ], where X and
Y are real constants and �(K ) is the frequency (wave vector) of
the low-frequency modulations, and linearizing Eq. (15) with
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FIG. 1. (Color online) The modulational instability growth rate �

vs the wave number K for different values of the positron-to-electron
density ratio α.

respect to X and Y , we obtain the modulational instability
growth rate � = −i�:

� = K√
2

({
α
(
1 + β

√
1 + a2

0

)
exp

[
β
(
1 −

√
1 + a2

0

)]
+ (

1 + αβ

√
1 + a2

0

)
exp

[
αβ

(
1 −

√
1 + a2

0

)]}
× a2

0

2
(
1 + a2

0

) 3
2

n0(z) − K2

2

) 1
2

. (17)

where K = |K |. In Fig. 1, we show the growth rate � as
a function of K for the positron-to-electron density ratio
α = 0.05,0.10, 0.20, 0.50, 0.75, and 1.00 in the homogeneous
case, i.e., with n0(z) = 1 in terms of Eq. (17). The plasma
parameters are a0 = 0.1, βe = βp = 100. We see that the
growth rate increases with α. In pure EP plasma (α = 1) we
obtain the largest instability increment, and the modulational
instability reaches a maximum due to the largest positron
concentration. On the other hand, the presence of positrons has
a strong effect on modulational instability. When the positrons
are absent (α = 0), the system is stable. The phenomenon can
be understood in terms of the ponderomotive force, which
appears because of the interaction between the high-frequency
laser wave and the background plasma. The force acting on
particles is directed along the decrease of the laser field energy
density and does not depend on the sign of the electric charge
of particles. Its magnitude is proportional to the gradient
of the intensity of the laser and is inversely proportional to
the plasma particles’ mass. Because of the large ion mass,
the ponderomotive forces acting on ions are much smaller
compared with the forces acting on electrons and positrons;
thus it can be neglected here. If the laser wave amplitude has a
maximum at some points, then the ponderomotive force tends
to push electrons away from those points and leaves behind
an ambipolar field. The ambipolar field prevents the motion
of electrons. If the positron presents, positrons are pushed
away together with electrons, and the ambipolar field will
be decreased. Due to the decreasing of the ambipolar field
induced by the increasing positron population, more electrons

FIG. 2. (Color online) The modulational instability growth rate
� vs the wave number K and the axial direction z. The initial
parameters are a0 = 0.1,βe = βp = 100, α = 0.5. (a) n0(z) = 1 +
bz, b = −0.02; (b) n0(z) = exp(−z2/Lz),Lz = 16π ; (c) n0(z) =
0.5(1 − cos z).

will be expulsed away by the ponderomotive force, and then
the modulational instability of the system can be enhanced.

In Fig. 2, we show the growth rate � as a function of K
and the light propagation direction z for the inhomogeneous
cases with α = 0.5 in terms of Eq. (17). In order to investigate
the effects of electron and positron distribution on the
modulational instability, three types of inhomogeneous cases
are discussed: a slow variation of the electron and positron
density along axial direction n0(z) = 1 + bz, where b is a
characteristic inhomogeneity parameter [Fig. 2(a)]; a Gaussian
density distribution n0(z) = exp(−z2/Lz), Lz = 16π , where
Lz is the simulation box length [Fig. 2 (b)]; and a cosine
distribution n0(z) = 1/2(1 − cos z) [Fig. 2(c)]. It is clear that
the inhomogeneity has a strong influence on modulational
instability. The higher the density is, the stronger the
modulational instability becomes. Figures 1 and 2 indicate that
the interaction between the laser beam and the inhomogeneity
of EPI plasma would induce rich and interesting phenomena.

In order to investigate the effects of positron concentration
and the inhomogeneity on the propagation of large amplitude
electromagnetic beams, we assume axial symmetry around
the z direction and solve Eq. (15) numerically for the
time evolution of the amplitude of vector potential. As
an initial condition, we take a modulated beam of the
form a = 0.1[1 + 0.02 sin(2πz/Lz) + 0.02 cos(4πz/Lz) +

FIG. 3. (Color online) The light amplitude a in log10 scale at
six different times τ for the homogeneous case. The horizontal axis
represents the distribution along the radial (r) coordinate, and the
axial (z) distribution is on the vertical axis. The top row is for α = 0,
the bottom row is for α = 0.5.
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FIG. 4. (Color online) (top) The light amplitude a and (bottom)
the normalized electron number density as functions of r and z at six
different times τ for n0(z) = 1 + bz, b = −0.02, α = 0.5.

0.02 cos(6πz/Lz)] exp(−r2/32), where Lz is the simulation
box length and r is the radial space coordinate.

Figure 3 shows the time evolution of the light amplitude a

for the cases without (the top row, α = 0) and with (the bottom
row, α = 0.5) positrons in homogeneous plasma. It is clear
that, when the positrons are absent, the light beam cannot be lo-
calized and is finally defocused. However, when the positrons
are present, the light beam first self-focuses and then breaks
up into localized filaments due to modulational instability.

Figures 4–7 show the numerical simulations of time
evolution of a and ne for inhomogeneous cases. For a
linear axial density distribution n0(z) = 1 + bz (see Fig. 4),
the self-focusing and the localization of the light and the
creation of electron density holes (where the light is trapped)
take place in the region with high density (z � 30), where
modulational instability is stronger [see Fig. 2(a)]. For the
Gaussian (Figs. 5 and 6) and cosine (Fig. 7) types of
density distribution, however, the self-focusing and the light

FIG. 5. (Color online) (top) The light amplitude a in log10 scale
and (bottom) the normalized electron number density as functions of
r and z at six different times τ for n0(z) = exp(−z2/Lz),Lz = 16π ,
α = 0.2.

FIG. 6. (Color online) (top) The light amplitude a in log10 scale
and (bottom) the normalized electron number density as functions of
r and z at six different times τ for n0(z) = exp(−z2/Lz), α = 0.5.

localization and the creation of electron density holes only
present at the highest-density regions, where modulational
instability is strongest [see Figs. 2(b) and 2(c)]. Interestingly,
for the Gaussian density distribution with the larger positron
proportion (α = 0.5; Fig. 6), the localized light spots experi-
ence a process of breaking up into two pieces and merging
into one spot alternately. For the cosine density distribution
(Fig. 7), merging of the periodically localized eight light spots
occurs; correspondingly, the electron density holes trapping
the light also exhibit the same process. These phenomena
indicate that a strong nonlinear interaction between light and
an inhomogeneous plasma can exist.

To summarize, the nonlinear propagation of arbitrary large
amplitude light pulses in an inhomogeneous EPI plasma is
studied. We find that the positron concentration and plasma
inhomogeneity have a strong influence on the modulational
and filamentational instabilities in EPI plasma. Light beam
focusing and trapping in self-created density holes induced by
modulational and filamentational instabilities depend on the

FIG. 7. (Color online) (top) The light amplitude a in log10 scale
and (bottom) the normalized electron number density as functions of
r and z at six different times τ for n0(z) = 0.5(1 − cos z), α = 0.5.
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inhomogeneous nature. The light beam localization occurs at
the highest-density regions, where the modulational instability
is strong. On the other hand, the inhomogeneity of the plasma
can not only boost a mechanism for light beam self-focusing
and filamentation but also provide an effective way to localize
and trap the pulse in the region we wanted. The present results
should be useful in understanding the dynamics of intense laser
pulses in EPI plasma.
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