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Monotonic entropy growth for a nonlinear model of random exchanges
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We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market.
This model, based on binary collisions, also may be viewed as a particular case of Ulam’s redistribution of energy
problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear
energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified.
The original nonlinear process is actually a result of a specific “coarse graining” of this linear evolution, when
after the collision one variable is integrated away. This coarse graining is of the same type as the real space
renormalization group transformation and leads to an additional entropy growth. The combination of these two
factors produces the required result which is obtained only by means of information theory inequalities.
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It is widely known that for a stochastic Markov process
described by a linear master equation for a distribution
function p(x,t) defined on some space of x’s there exists
a Lyapunov function which monotonically decreases while
we approach equilibrium. This function is just the relative
entropy K = ∑

x p(x,t) ln p(x,t)/p0(x), where p0(x) is an
equilibrium distribution [1] (see also earlier works by Schlögl
[2] and, e.g., [3] for more recent related studies). This relative
entropy has the meaning of the “information gain” that we
obtain when the knowledge about the true distribution p(x,t)
becomes available if we a priori knew only the equilibrium
one p0(x). K may be also viewed as a total entropy production
that takes place during the whole relaxation process [1–3].

There is no such general result for nonlinear evolution
equations, where monotonicity of possible Lyapunov functions
should be proved independently for each problem. There are,
however, situations when it is just the Boltzmann entropy
which monotonically grows when we approach equilibrium,
the most known example being the Boltzmann equation itself
where this monotonicity is established by the famous H

theorem [4].
Quite recently an interesting nonlinear evolution was

proposed and analyzed as a gaslike economic model in a series
of papers [5]. This is a discrete-time evolution for distributions
p(x) with continuous x � 0 and on each step of iterative
procedure p(x) → p′(x), where

p′(x) =
∫ ∞

0

∫ ∞

0
dudv

θ (u + v − x)

u + v
p(u)p(v) (1)

and the θ function ensures that u + v > x. This model assumes
that economic transactions occur by binary “collisions” be-
tween agents who exchange money in the same way as particles
in a gas exchange their energy [6] and after each collision
the total amount of money they both possessed is distributed
between them absolutely at random. For initial distributions
with finite mean “energy” 〈x〉 this process converges to
exponential equilibrium distribution p0 = α exp(−αx), where
1/α = 〈x〉 [5].

The structure of Eq. (1) is very transparent: We first ran-
domly choose two values u and v with probability p(u)p(v),
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then multiply it by a transition probability W (u,v → x), given
here by W (x) = 1/(u + v) for 0 < x < u + v, and finally sum
over all possible choices of u,v to obtain the new distribution
p(x). Thus for uniform probability density W (x) the factor
1/(u + v) in Eq. (1) arises simply from the normalization
condition

∫
W (x)dx = 1. It is easy to prove also that 〈x〉 is

conserved under this nonlinear transformation [5].
In fact, this process is an example of what is known as

Ulam’s redistribution of energy problem, stated as follows:
“Consider a vast number of particles and let us redistribute
the energy of these particles... First, pair the particles at
random. Second, for each pair, redistribute the total energy
of the pair between these particles according to some given
fixed probability law of redistribution...” [7]. Ulam believed
that the distribution of energy would then converge to some
final distribution independent of the initial one and later
his conjecture was indeed proved in Ref. [7]. For uniform
redistribution law this process is essentially the same as the
money exchanges described by Eq. (1). However, the nonlinear
transformation (1) first introduced in Ref. [5] in an economic
context seems more suited for our study than the equation for
the moments of p(x) used in Ref. [7].

Since the process (1) is very similar in spirit to the
evolution that leads to the Boltzmann equation we expect that
the entropy S(p) = − ∫

dxp(x) ln p(x) should monotonically
increase under this transformation. While this conjecture was
first formulated already in Ref. [5], the analytical proof of
this growth seems to be still lacking, mainly because standard
methods do not directly work for discrete-time evolution.
Note that since entropy is obviously maximized by the
exponential distribution p0 ∼ exp(−αx) under the constraint
〈x〉 = constant (see, e.g., [8]) it is monotonicity that has to be
proved.

It should be noted here that for nonuniform redistribution
laws in Ulam’s problem we do not expect that entropy always
grows. Indeed, in the general case the limiting distribution is
no longer exponential [7]; hence the entropy is not maximal in
equilibrium. A simple example is a special law when the total
energy of colliding particles is shared equally among them. In
this case all particles will have the same energy in equilibrium
[7] and the entropy definitely gets lower during relaxation.
For this reason here we consider only uniform redistribution
described by random market model of Eq. (1).
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One can, of course, try to rewrite Eq. (1) in a form similar
to Markov chain evolution

p′(x) =
∫ ∞

0
duP (x,u; p)p(u), (2)

where “transition probability”

P (x,u; p) =
∫ ∞

0
dv

θ (u + v − x)

u + v
p(v) (3)

itself depends on p(x). Stochastic processes that may be
related to such equations are now sometimes called nonlinear
Markov processes [9] though this terminology was criticized
in Ref. [10]. Regardless of what we call it, if we substitute
some solution p(x) of Eq. (1) into P (x,u; p) we will
end with the linear equation (2) but with time-dependent
transition probabilities. Close to equilibrium we may take
P � P (x,u; p0) which now satisfies detailed balance condi-
tion P (x,u; p0)/P (u,x; p0) ∼ exp(−αx + αu) and hence will
definitely lead to the monotonic entropy growth. But far from
equilibrium this approach seems to be of little help.

For this reason in this Brief Report we will give a proof
of the monotonic entropy growth for Eq. (1) within quite a
different approach, which is based almost entirely on known
information theory inequalities and utilizes the fact that certain
coarse-graining transformations always result in the entropy
growth.

The main idea of the proof is (i) to introduce an auxiliary
linear evolution, defined on a larger space of two variables,
for which entropy growth can be easily proved and then (ii) to
show that (1) is actually a result of a certain coarse graining
of this linear evolution.

For this purpose let us introduce a “two-particle” distri-
bution function f (x,y) which after one step of evolution
transforms into f ′(x,y),

f ′(x,y) =
∫ 1

0
dξ f (ξ (x + y),(1 − ξ )(x + y)). (4)

This is obviously a linear transformation and it is easy to see
that it conserves positivity of f (x,y), its norm, and the mean
“energy” 〈x + y〉.

The physical meaning of Eq. (4) is rather clear since
f (x,y) describes pairs of particles. Particles, which after the
collision have energies x and y, before the collision might have
any energies u and v provided u + v = x + y; i.e., we may
take u = ξ (x + y) and v = (1 − ξ )(x + y), where 0 < ξ < 1
denotes a fraction of the total energy that the first particle had.
Then Eq. (4) is just the sum over all possibilities (all of them
having equal probabilities) that result in the values x and y.

It should be noted, however, that (4) alone does not describe
correctly evolution of the two-particle probability distribution
in Ulam’s problem. It takes into account only collisions within
fixed pairs of particles and if we choose initial distribution as
a δ function localized at some point (x0, y0) then after the first
iteration it will be uniformly smeared along the isoenergetic
line x + y = x0 + y0 and will not change afterwards. Though
the expected true two-particle equilibrium distribution

f0(x,y) = α2 exp[−α(x + y)] (5)

is certainly a fixed point of the transformation (4), this
evolution alone cannot explain relaxation to Eq. (5) from

arbitrary initial f (x,y) because this requires new random
pairings of particles at each step, not included in Eq. (4). That
is why (4) has a lot of additional spurious “equilibriums”—any
function that depends only on x + y does not change under this
transformation. For these reasons only one iteration of Eq. (4)
really makes sense and its only purpose is to produce nonlinear
equation (1) after some “projection” procedure, described
below.

But let us first show that entropy grows for the transforma-
tion (4). The regular way to prove such monotonicity theorems
is to start from the relative entropy or Kullback-Leibler
(KL) distance D(μ||ν) = ∑

μ ln μ/ν between two probability
distributions μ and ν. It is well known from information
theory that D(μ||ν) cannot increase under “coarse graining”
of these distributions, when some variables are integrated out.
This immediately follows from the chain rule for relative
entropy [11] and some examples of how this works may be
found, e.g., in Refs. [12,13]. Consider now the distribution

μ(ξ,x,y) = f (ξ (x + y),(1 − ξ )(x + y)), (6)

defined on the space ξ ∈ [0,1], x,y ∈ [0,∞) and define
ν(ξ,x,y) in the same way through the equilibrium distribution
f0(x,y) from Eq. (5). It is easy to check that both μ and
ν are positive and normalized to unity. Then define the
coarse-graining procedure μ → μ̃ as averaging over the ξ

variable, i.e.,

μ̃(x,y) =
∫ 1

0
dξ μ(ξ,x,y) = f ′(x,y), (7)

according to Eq. (4), and, obviously, ν̃(x,y) = f0(x,y).
The above statement about the monotonic behavior of KL

distance can be written as∫ 1

0
dξ

∫ ∞

0
dxdy μ(ξ,x,y) ln

μ(ξ,x,y)

ν(ξ,x,y)

�
∫ ∞

0
dxdy μ̃(x,y) ln

μ̃(x,y)

ν̃(x,y)
. (8)

In the integral on the left-hand side we now make a change of
variables

u = ξ (x + y), v = (1 − ξ )(x + y), z = x − y (9)

with the obvious property x + y = u + v. Then the integration
measure and ranges of integration transform as follows:

∫ 1

0
dξ

∫ ∞

0
dxdy = 1

2

∫ ∞

0
dudv

∫ (u+v)

−(u+v)
dz

1

u + v
(10)

and since according to Eq. (6) the integrand does not depend on
z, integration over z exactly cancels the Jacobian 1/2(u + v).

Then, using also exact expressions for μ̃, Eq. (7), and ν̃, we
can rewrite Eq. (8) as∫ ∞

0
dudv f (u,v) ln

f (u,v)

f0(u,v)

�
∫ ∞

0
dxdy f ′(x,y) ln

f ′(x,y)

f0(x,y)
. (11)

Thus the relative entropy could not increase under the
transformation (4). Certainly the same inequality will be valid
if we substitute any normalized fixed point solution of Eq. (4)
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instead of the exponential distribution f0(x,y), but choosing
f0 is more suitable for what follows.

The same way of reasoning may be applied actually for
any linear Markov evolution of the form (2) with P (x,u)
independent of p(x). One should take μ(x,u) = P (x,u)p(u),
ν(x,u) = P (x,u)p0(u), where p0(u) is an equilibrium distri-
bution, and then integrate them over u to obtain μ̃ = p′(x) and
ν̃ = p0(x). Then from equation similar to Eq. (8) it follows
that K = ∫

dxp(x) ln p(x)/p0(x) monotonically decreases on
each iteration, which is, of course, well known. The main idea
behind this proof is that any such evolution may be viewed
as some kind of coarse graining since it includes integration
over initial data (cf. [14]). Note that for nonlinear evolution,
when P (x,u; p) depends on the distribution function p(u), as
in Eq. (2), and hence changes on each step, this approach does
not work, because now p0 is not an instantaneous equilibrium
and ν̃ 
= p0(x).

Now, since we have chosen the equilibrium distribution
in the exponential form, f0 ∼ exp[−α(x + y)], Eq. (11) may
be rewritten, as usual, as F � F ′, where F = 〈x + y〉 − S/α

is the free energy and the entropy is given by S(f ) =
− ∫

dxdyf (x,y) ln f (x,y). But our linear transformation con-
serves the mean energy 〈x + y〉; hence the monotonicity of the
free energy results in the entropy growth

S ′ � S. (12)

Thus we have proved the monotonic entropy growth for our
auxiliary linear transformation (4). This is an almost evident
result and it is only the first step of the proof for the original
nonlinear problem.

Now we need to relate the linear process (4) to the initial
nonlinear evolution (1). For this purpose consider in Eq. (4) a
special factorized initial condition

f (x,y) = p(x)p(y) (13)

and define the transformed probability p′(x) as the marginal
probability for the transformed distribution; i.e.,

p′(x) ≡
∫ ∞

0
dyf ′(x,y). (14)

Since f ′(x,y) is symmetric under the permutation of variables
x and y it actually does not matter which one variable to
integrate out.

Then we have

p′(x) =
∫ ∞

0
dy

∫ 1

0
dξ p(ξ (x + y))p((1 − ξ )(x + y))

=
∫ ∞

0
du

∫ ∞

0
dv

θ (u + v − x)

u + v
p(u)p(v), (15)

where we have made the change of variables (ξ,y) → (u,v)
similar to Eq. (9), u = ξ (x + y), v = (1 − ξ )(x + y), with the
Jacobian 1/(u + v). The condition u + v > x arises from the
positivity of y = u + v − x. Clearly this is exactly the required
nonlinear Eq. (1).

Thus, on each step the nonlinear evolution of the gaslike
model may be obtained by a kind of “projection” procedure
from the linear transformation (4) by choosing the special
initial conditions (13) and by the subsequent elimination of one
variable from the resulting two-particle distribution function
(14).

Another way to look at this phenomenon is to say that our
non-linear evolution may be represented as a combination of
two processes. The first one is the linear evolution of Eq. (4)
with initial condition (13) which should be supplemented then
by the subsequent “reduction” of f ′(x,y) back to the factorized
form, which corresponds to a new random pairing of particles
and is, in its turn, the new initial condition for the next step.

But elimination of exactly half of the variables, as in
Eq. (14), is also related to some monotonicity property.
For example, for the real space decimation renormalization
transformation in spin systems, when on each step of renor-
malization we divide the lattice into two identical sublattices
and half of all spins are summed away [15], the entropy per
lattice site was shown to grow monotonically [13]. For the
sake of completeness we repeat here this simple derivation as
applied to our present system.

This monotonicity of entropy per degree of freedom results
just from the positivity of the mutual information of two sets of
variables. In our present case the mutual information of x and y

variables after the transformation (4), whose joint probability
distribution is f ′(x,y) and marginal distributions are p′(x) and
p′(y), is given by the usual formula [11]

I =
∫∫

dxdy f ′(x,y) ln
f ′(x,y)

p′(x)p′(y)
� 0. (16)

This mutual information may be written also as a difference
between the sum of entropies of subsystems (which are
identical in our case) and the total entropy of the joint
distribution

I = 2S(p′) − S(f ′), (17)

where S(p′) = − ∫
dxp′(x) ln p′(x) and S(f ′) is the entropy

of the two particle system which earlier in Eq. (12) was denoted
by S ′.

Hence from I � 0 it follows

S(p′) � 1
2S ′. (18)

Note that this inequality is not just a trivial consequence of the
information loss or decrease of the relative entropy after one
variable is eliminated. Information loss results in the decrease
of the total entropy, which looks like S ′ � S(p′) [13] and is
clearly distinct from Eq. (18).

Now we can combine this inequality with the one obtained
earlier for the linear evolution, Eq. (12), to arrive at S(p′) �
S/2. But for the factorized initial distribution Eq. (13) the
entropy S is just twice the one-particle entropy of the
distribution p(x), i.e., S = 2S(p), and hence we finally have

S(p′) � S(p). (19)

This completes the proof that the entropy S(p) =
− ∫

dxp(x) ln p(x) monotonically grows on each step under
iterations of the nonlinear transformation (1).

Let us now give an example illustrating our general proof. If
we start from the distribution p(x) = x exp(−x) with entropy
S(p) = γ + 1 � 1.5772 (γ � 0.5772 is the Euler constant),
then for the factorized initial condition (13) we have f ′(x,y) =
1/6(x + y) exp[−(x + y)] from Eq. (4). The corresponding
entropy per degree of freedom is now larger, S ′/2 = γ +
1/6 + 1/2 ln(6) � 1.6397 > S(p). After we eliminate one
variable we finally have p′(x) = 1/6(x2 + 2x + 2) exp(−x)
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(see also [5]) and the entropy now equals S(p′) � 1.6667
which in its turn is slightly larger than S ′/2. Thus we see how
entropy indeed grows on each stage of our combined evolution
that is equivalent to the initial nonlinear transformation.

In summary, we have proved the monotonic entropy growth
for a nonlinear evolution which describes pairwise interaction
of economical agents with random money exchanges and also
may be viewed as a particular case of Ulam’s redistribution of
energy problem. The proof is based on representing a single
step of the nonlinear evolution as a combination of two steps:
The first is related to an auxiliary linear two-particle process
and the second one is a kind of a coarse-graining, similar
to decimation renormalization transformation, when one of
the two variables is integrated away. Since on both steps the
entropy can be shown to increase we conclude that the entropy

is indeed monotonically increasing for the original nonlinear
problem.

The proof is based entirely on information theory inequal-
ities and possibly may be of some use for other nonlinear
problems. It is not clear however whether it is possible to
use the present approach or some of its modifications to find
Lyapunov functions for nonuniform redistribution laws in the
general Ulam problem.
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R. López-Ruiz, and X. Calbet, J. Math. Anal. Appl. 386, 195
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