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Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers
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The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high
Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy
are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-
frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature.
Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques
applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are
investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number
results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is
shown to have a stabilizing effect.
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I. INTRODUCTION

Among many classical multiphase fluid flow problems,
instability of a shear layer, also known as Kelvin-Helmholtz
instability (KHI) [1], is one of the most interesting and
challenging subjects in that the interface undergoes a complex
evolution and even a breakup depending, mostly, on the
Reynolds and Weber numbers. This phenomenon is of fun-
damental importance in studying turbulent mixing layers and
chemically reacting flows. Needless to say, fully understanding
the mechanisms behind the breakup of an interface between
two immiscible fluids is crucial in the study of atomization
and fuel injection processes.

In the past decades, numerous authors have studied the
shear-layer instability at the interface of a two-phase system
[2–14]. Most of the published works dealt with two miscible
fluids or two immiscible fluids with equal density, and a few
works have been carried out for instability dynamics of two
immiscible fluids with a density contrast. Rangel and Sirignano
[6] used a vortex discretization approach to study the effects
of density ratio and surface tension on the evolution of small
disturbances at the interface between two inviscid, immiscible
fluids neglecting gravitational force in a two-dimensional (2D)
domain. They showed that increasing either surface tension or
density ratio decreases the growth of disturbances. Using a
front-tracking technique, Tauber et al. [11] investigated the
effects of Reynolds and Weber numbers on the behavior of
two immiscible fluids with a sheared interface at density
ratios of 1 and 10. Their results showed the generation of
fingers of interpenetrating fluids at high enough Reynolds
and relatively low Weber numbers. Ceniceros and Roma [12]
studied the long-time dynamics of two immiscible fluids in a
2D shear layer using a fully adaptive mesh refinement (AMR)
technique based on the immersed boundary method. They
examined the evolution of the interface caused by a vortex
sheet at high Reynolds numbers for the case of density- and
viscosity-matched fluids in the presence of surface tension. In
a recent study, the stability of a two-phase fluid in a temporally
evolving mixing layer was examined by Fontane and Joly [13]
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in both 2D and 3D using an AMR procedure. In their study,
effects of surface tension and gravity were neglected and the
effect of density variation on the evolution of the interface
between two miscible fluids was considered at a fixed Reynolds
number of 1500. More recently, Shadloo and Yildiz [14]
considered the KHI of an inviscid, immiscible fluid using
smoothed particle hydrodynamics (SPH), and they examined
the effects of density variation across the shear layer.

In this study, we invoke the lattice Boltzmann method
(LBM) [15,16] to study the instability of a shear layer at
high Reynolds numbers. Zhang et al. [17] applied the kinetic-
based LBM [18,19] with the Bhatnagar-Gross-Krook (BGK)
collision model [20,21] to study the KHI of a density-matched
fluid and reported that their results are in good agreement with
those of Moser and Rogers [8]. Their simulations, however,
were limited to low-Reynolds-number flows (Re = 250) due
to the well-known numerical instability of BGK models at low
relaxation times (or high Reynolds numbers). We incorporate
the multiple-relaxation-time (MRT) collision model [22] into
the recently proposed two-phase LBM for immiscible fluids
at high density ratio [23] in an effort to enhance the numerical
stability at higher Reynolds numbers.

After comparing the accuracy and stability of the BGK and
MRT models, we will conduct the simulations of the KHI for
two immiscible fluids at high Reynolds numbers with a density
contrast. We will further evaluate the validity and accuracy of
the proposed MRT method by comparing our findings with
those based on an accurate AMR technique used in [12,13].

II. MRT-LBM FOR IMMISCIBLE FLOWS

To obtain the lattice Boltzmann equation for the evolution of
pressure and momentum, we start from the discrete Boltzmann
equation with a generalized collision operator � and the
intermolecular force F [18]:

Dfα

Dt
= ∂fα

∂t
+ eα · ∇fα = − �

(
fα − f eq

α

) + (eα − u) · F
c2
s

�α,

(1)

where fα is the particle distribution function, t stands for
time, eα is the microscopic velocity set, u is the macroscopic
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velocity, cs is the lattice speed of sound, and

�α = wα

[
1 + (eα · u)

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]
, (2)

with wα being the weight coefficient set [15,21]. The equilib-
rium distribution function is f

eq
α = ρ�α . Note that in the BGK

model [20,21], the relaxation operator � becomes a diagonal
matrix.

We consider a two-dimensional nine-velocity model
(D2Q9) with the velocity set given by eα = (0,0) for
α = 0; eα = (cos θα, sin θα) for α = 1 − 4; and eα =√

2(cos θα, sin θα) for α = 5 − 8. The intermolecular forcing
F is given by (see [23] for details)

F = −∇(
p − ρc2

s

) − C∇μ, (3)

in which p is the hydrodynamic pressure, ρ is the density, and
C is the concentration. The definitions for the pressure, the
concentration, and the macroscopic velocity using the particle
distribution functions can be found later in this section [see
Eqs. (25)–(28)]. For the present model, the chemical potential
μ is explicitly given by

μ = 4βC(C − 1)(C − 0.5) − κ∇2C, (4)

where the parameters β and κ are related to the surface tension
γ and interface width ξ by β = 12γ /ξ and κ = 12γ ξ/8. Also,
the concentration profile along the direction normal to a flat
interface z is given by

C(z) = 1

2

[
1 + tanh

(
2z

ξ

)]
. (5)

As is discussed in [19,23,24], introducing a new distribution
function

gα = fαc2
s + (

p − ρc2
s

)
wα, (6)

and substituting it into the discrete Boltzmann equation,
Eq. (1), results in

Dgα

Dt
= −�

(
gα − geq

α

) + (eα − u)

·[(�α − wα)∇ρc2
s − �αC∇μ

]
. (7)

Since we are interested in the incompressible limit or low Mach
number flows (Ma � 1), the terms corresponding to u · ∇p,
which is of O(Ma3), are dropped from the above equation.
Application of the trapezoidal rule in the integration of Eq. (7)
leads to

gα(x + eαδt ,t + δt )

= gα(x,t) − 1
2 S

(
gα − g

eq
α

)|(x,t) − 1
2 S

(
gα − g

eq
α

)|(x+eαδt ,t+δt )

+δt

2
(eα − u) · [(�α − wα)∇Bρc2

s − �αC∇Bμ
]

(x,t)

+δt

2
(eα − u)·[(�α − wα)∇Cρc2

s − �αC∇Cμ
]

(x+eαδt ,t+δt )
,

(8)

where S = δt�. The superscripts C and B on the gradient
operators stand for central and biased finite differences,

respectively, and they are expressed by [23,24]

δt eα · ∇Cρ|x = ρ(x + eαδt ) − ρ(x − eαδt )

2
,

(9)

δt eα · ∇Bρ|x = −ρ(x + 2eαδt ) + 4ρ(x + eαδt ) − 3ρ(x)

2
.

In order to maintain an explicit scheme, the following
modified particle distribution function is introduced [23]:

ḡα = gα + 1
2 S

(
gα − geq

α

) − δt

2
(eα − u)

·[(�α − wα)∇Cρc2
s − �αC∇Cμ

]
. (10)

Then the modified equilibrium distribution function would be

ḡeq
α = geq

α − δt

2
(eα − u) · [

(�α − wα)∇Cρc2
s − �αC∇Cμ

]
.

(11)

From the above relations, one can infer

ḡα − ḡeq
α = (

I + 1
2 S

)(
gα − geq

α

)
, (12)

where I is the identity matrix. Using the above relations,
Eq. (8) can be recast as

ḡα(x + eαδt ,t + δt )

= ḡα(x,t) − (S + 2I)
(
ḡα − ḡeq

α

)|(x,t)

+δt (eα − u) · [
(�α − wα)∇Mρc2

s − �αC∇Mμ
]

(x,t) ,

(13)

where the mixed difference is ∇M = (∇C + ∇B)/2.
As proposed by Lallemand and Luo [22], the collision

operator can be considered as

S + 2I = M−1ŜM, (14)

where the orthogonal transformation matrix and its inverse are
given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15)
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and

M−1 = 1

36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 4 0 0 0 0 0 0

4 −1 −2 6 −6 0 0 9 0

4 −1 −2 0 0 6 −6 −9 0

4 −1 −2 −6 6 0 0 9 0

4 −1 −2 0 0 −6 6 −9 0

4 2 1 6 3 6 3 0 9

4 2 1 −6 −3 6 3 0 −9

4 2 1 −6 −3 −6 −3 0 9

4 2 1 6 3 −6 −3 0 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

The diagonal relaxation matrix is then

Ŝ = M(S + 2I)M−1 = diag(s1,s2,s3,s4,s5,s6,s7,s8,s9). (17)

The transformation matrix is constructed by orthogonalization
of the discrete velocity set as is discussed in [22]. The rows of
the transformation matrix are the following moments in 2D:

M ≡ (|p〉,|e〉,|ε〉,|jx〉,|qx〉,|jy〉,|qy〉,|σxx〉,|σxy〉)T , (18)

where

|p〉α = |eα|0 = 1, (19a)

|e〉α = −4|eα|0 + 3
(
e2
α,x + e2

α,y

)
, (19b)

|ε〉α = 4|eα|0 − 21
2

(
e2
α,x + e2

α,y

) + 9
2

(
e2
α,x + e2

α,y

)2
, (19c)

|jx〉α = eα,x, (19d)

|qx〉α = [ − 5|eα|0 + 3
(
e2
α,x + e2

α,y

)]
eα,x, (19e)

|jy〉α = eα,y, (19f)

|qy〉α = [ − 5|eα|0 + 3
(
e2
α,x + e2

α,y

)]
eα,y, (19g)

|σxx〉α = e2
α,x − e2

α,y, (19h)

|σxy〉α = eα,xeα,y . (19i)

It is worth noting that there are several differences between
the present MRT and the prior MRT models for multiphase
flows [25–27]. One distinct feature of the present MRT model
is that the generalized relaxation matrix is multiplied by the
nonequilibrium part of the modified distribution function, as
in the MRT-LBM for single-phase flows [22], but not by the
forcing term, and there is no need to switch between phase
and moment spaces. As a result, the implementation of the
present MRT model becomes straightforward. Another key
feature is that the relaxation rates for conserved quantities,
namely, s1,s4,s6, can be set equal to zero without causing
any numerical difficulties. This is in contrast to the other
MRT implementations [25,26], in which these relaxation rates
should be set to 1 due to the multiplication of the forcing term
by the relaxation matrix and shifting back and forth between
moment and phase spaces.

Now, in order to recover the advective Cahn-Hilliard
equation [28], we utilize the LBM formulation proposed by

Lee and Liu [23]:

h̄α(x + eαδt ,t + δt )

= h̄eq
α (x,t) + δt

2
�αM∇2μ|(x+eαδt ,t) + δt

2
�αM∇2μ|(x,t)

+ δt�α(eα − u) ·
[
∇MC − C

ρc2
s

(∇Mp + C∇Mμ)

]
(x,t)

,

(20)

where M is the constant mobility and h̄α is the modified par-
ticle distribution function for the interface tracking equation,

h̄eq
α = C�α − δt

2
�α(eα − u)

·
[
∇CC − C

ρc2
s

(∇Cp + C∇Cμ)

]
. (21)

Equation (1) recovers the following macroscopic equations
[23]:

∂p

∂t
+ ρc2

s ∇ · u = 0, (22)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p − C∇μ + ∇ · �, (23)

where � is the viscous stress tensor. Also, the Cahn-Hilliard
equation is recovered from Eq. (20) [23]:

∂C

∂t
+ u · ∇C = M∇2μ. (24)

The macroscopic properties are related to the distribution
functions by

C =
8∑

α=0

h̄α, (25)

p =
8∑

α=0

ḡα + δt

2
u · ∇Cρc2

s , (26)

u = 1

ρc2
s

(
8∑

α=1

ḡαeα − δt

2
C∇Cμ

)
. (27)

The density is taken as a linear function of the composition:

ρ = Cρl + (1 − C)ρg, (28)

where ρl and ρg are the bulk densities of liquid and gas phases,
respectively.

III. NUMERICAL RESULTS

A. Parameter setup

The diagonal relaxation matrix in this study is chosen such
that

Ŝ = diag(0,1,1,0,1.7,0,1.7,s8,s8), (29)

in which s8 is related to the single relaxation time, and
therefore the kinematic viscosity, by

s8 = 1

τ + 0.5
, ν = τc2

s . (30)
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(a) Spurious currents magnified by 107 at T/Tv=100. Left: BGK; right: MRT

(b) Spurious currents magnified by 1015 at T/ =2000. Left: BGK; right: MRT

(c) Maximum kinetic energy density versus dimensionless time. Left: BGK, right: MRT

Tv

FIG. 1. (Color online) A static droplet test with γ = 0.000 1, τ = 0.03, ρg = 0.1, and ρl = 1.

The dimensionless relaxation time τ in our model is different
from the usual relaxation time by −0.5, and thus, the minimum

value of τ is 0. This facilitates the interpolation of τ as an
inverse linear function of the composition to get a monotonic
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FIG. 2. Evolution of the maximum kinetic energy of the flow field at early times.

profile of the dynamic viscosity across the phase interface [23].
We have

1

τ
= C

τl

+ (1 − C)

τg

, (31)

where τl and τg are the bulk relaxation times of liquid and gas
phases, respectively.

B. Spurious currents

A circular drop with an initial radius R = 25 in lattice unit
is placed at the center of a periodic domain with 101×101 grid
points, and the maximum kinetic energy density of the fluid
is measured using both the BGK and MRT models. The input
parameters are the same as those used in [29], except for the
lower relaxation time in the present study. The gas and liquid
densities are ρg = 0.1, ρl = 1, and τ = 0.03, γ = 0.000 1, and
ξ = 4. The time T is made dimensionless using the viscous
time Tv = ηgR/γ , with ηg being the dynamic viscosity of the
gas phase. The spurious currents at T/Tv = 100 and T/Tv =
2000 are shown in Fig. 1, together with the evolution of the
maximum kinetic energy in the flow versus time.

Previously [29], we have shown that given the interface
thickness, density ratio, viscosity, and surface tension, faster
convergence toward the equilibrium state can be achieved
via stronger mobility and elimination of traveling waves
caused by the dynamic pressure. In Fig. 1, both the BGK
and MRT models are capable of eliminating the spurious
currents to the machine precision, and their convergence
rates are nearly identical. It is noteworthy, however, that
the MRT model is successful at damping high-frequency
oscillations in the kinetic energy emerging from the traveling
waves generated by the inclusion of curvature at early times,
whereas the oscillations tend to persist in the BGK model
as clearly demonstrated in Fig. 1(c). These high-frequency
oscillations at the initial stages, which appear to contribute
to the numerical instability of BGK models, become more
pronounced as the relaxation time decreases. The implication
of this rapid damping of the traveling waves is not trivial as the
convergence toward the equilibrium state is hardly achieved
in most transient flow calculations. The major parameter that
controls these oscillations is s2. This is rather expected since
s2 is the relaxation time associated with the energy mode [22],
and under-relaxing s2 allows the energy mode to relax to

its equilibrium state faster, as shown in Fig. 2. However, it
should not be interpreted that having a low relaxation rate
for s2 is always the optimum choice for stability. In our
Kelvin-Helmholtz instability simulations, we obtained more
stable results by setting s2 equal to 1.

C. Kelvin-Helmholtz instability for a single-phase fluid

In this section, temporal growth of an initially small
disturbance in the form of a cosine wave is examined and
the results are compared with the recent study by Fontane
and Joly [13]. The dimensionless velocity profile across the
shear layer consists of a base flow and small perturbations for
initiation of KHI:

u(y) = tanh
(y

δ

)
+ εu′(y) cos(αx)

(32)
v(y) = εv′(y) cos(αx),

where δ is half the shear-layer depth or vorticity thickness,
α = 2π /λ is the wave number with λ being the wavelength, ε

is the perturbation amplitude, and u′ and v′ are the complex
eigenfunctions of the Rayleigh stability equation [2,30].
Inviscid stability analysis is carried out to determine these
eigenfunctions [30]. For the most unstable mode, we found
αδ = 0.444 92.

We seed the initial disturbances similar to [13]. The
computations are performed in a 256×257 grid with the
periodicity of λ in the streamwise direction and free-slip
boundary condition at the top and bottom boundaries. The
Reynolds number of the flow is defined as

Re = U0δ

ν
, (33)

where U0 is half the velocity difference across the shear layer.
The surface tension is neglected and the dimensionless time is
defined by t = T U0/δ.

The comparison between the performance of the BGK and
MRT models is made in Fig. 3. Wiggles start to emerge
in the vorticity contour for the BGK model at Re = 2000
in Fig. 3(a), and they completely overshadow the vorticity
contours at Re = 2500 in Fig. 3(b). On the other hand, the MRT
model successfully captures the Kelvin-Helmholtz billows in
Fig. 3(c). A similar observation was made by Dellar [31],
who attributed the enhanced stability of the MRT model to
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(a)Re=2,000 (BGK) (b)Re=2,500 (BGK) (c)Re=2,500 (MRT)

FIG. 3. Vorticity contours for single-phase flow at t = 26 (dimen-
sionless contour increment is 1/6).

the increased bulk viscosity. Utilizing the MRT model, we
could reach a Reynolds number as high as 100,000 at which
the wiggles start to appear. The current MRT model is also
compared with the AMR approach by Fontane and Joly [13],
and the results are illustrated in Fig. 4. As it is seen, the MRT
results are in good agreement with those reported in [13].

D. Kelvin-Helmholtz instability of two immiscible fluids

The majority of the previous studies on KHI dealt with
two miscible fluids utilizing the Boussinesq approximation,
and a few works have been done for immiscible fluids with a
density contrast. Most of the published papers did not take into
account either the effects of density ratio or surface tension,
and some of them only considered inviscid fluids. One of
the aims of this study is to fill this gap by investigating the
effects of density, viscosity, and surface tension especially
at high Reynolds numbers. Following Ceniceros and Roma
[12], we choose four dimensionless groups for describing the
physics of the problem: density ratio, viscosity ratio, Reynolds
number

Re = Uλ

νg

, (34)

and Weber number

We = ρgU
2λ

γ
, (35)

where νg is the kinematic viscosity of the gas phase and U =
2U0 is the reference velocity in accordance to Refs. [11,12].
As a diffuse interface approach, LBM requires an additional
parameter, the Péclet number

Pe = Uλ

Mβ
. (36)

Also, the dimensionless time is defined by t = UT/λ.
First we compare our results with those of the AMR

scheme [12] for density-matched fluids. We prescribe a vortex
sheet in a similar way as specified in [12]. Initially, the

(a)MRT-LBM (256×257 grid) (b)AMR [13]

FIG. 4. Single-phase Kelvin-Helmholtz billows with Re = 1500
at t = 26 (dimensionless contour increment is 1/6).

(a) Coarse mesh (128×257)

(b) Medium mesh (256×513)

(c) Fine mesh (512×1025)

(d) AMR [12]

FIG. 5. (Color) Vorticity contour and interface location (red line)
for Re = 5000, We = 400, Pe = 1000, and ξ = 3. Left: t = 0.7, right:
t = 3.5.

interface is perturbed with a uniformly concentrated vorticity
distribution in a domain of size (λ × 2λ). The interface location
in dimensionless form is given by

φ(x,y) = y

λ
+ 0.01 sin

(
2π (x + y)

λ

)
. (37)

The vorticity is a Dirac δ function concentrated at the interface:

ω0(x,y) = δh(φ(x,y)). (38)

Invoking a sharp interface approach, Ceniceros and Roma
[12] approximated the δ function with a cosine func-
tion. Here we adopt a smoothed version of the cosine
function [32]:

δh(φ) =

⎧⎪⎪⎨
⎪⎪⎩

π+2 sin[π(2φ+1)/4]−2 sin[π(2φ−1)/4]
4π

,|φ| < 1.5
5π−2π |φ|−4 sin[π(2|φ|−1)/4]

8π
,1.5 � |φ| � 2.5

0,2.5 < |φ|.
(39)

Initially, the upper wall has a slip velocity of U0 to the left while
the lower wall is moving to the right with U0. To reduce the
compressibility effects as much as possible, the Mach number
Ma = U0/cs of the density-matched flow is set to 0.026.

First, the grid convergence is verified on three different
systematically refined grids and the vorticity contours are
compared with the AMR results [12] for Re = 5000 in Fig. 5
and for Re = 10,000 in Fig. 6. The Weber number is 400
and the Péclet number and the interface thickness are fixed
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(a) Coarse mesh (128×257)

(b) Medium mesh (256×513)

(c) Fine mesh (512×1025)

(d) AMR [12]

FIG. 6. (Color) Vorticity contours and interface location (red line)
for Re = 10,000, We = 400, Pe = 1000, and ξ = 3. Left: t = 1.0,
right: t = 2.5.

at Pe = 1000 and ξ = 3, respectively. As can be seen in
Figs. 5 and 6, the contour plots of vorticity and density are
approaching the AMR results as the grid resolution increases.
While satisfactory results are obtained with the moderate
size 256 × 513 grid, the MRT simulations on the finest
grid (512 × 1025) are in better agreement with those using
AMR technique. The symmetric interface rollup is accurately
predicted using both moderate and fine grids. Hence, most of
the simulations are carried out in a domain with the moderate
grid unless the need for a finer mesh is anticipated.

We continue with our simulations of shear-layer instability
of two immiscible fluids with different densities. In this part,
the initial velocity is chosen such that the Mach number is equal
to 0.05. Figure 7 shows the temporally growing mixing layer at
different density ratios and moderate Reynolds numbers. We
can observe the generation of a small wave at the interface
with a thick tip for Re = 200. As the Reynolds number
increases, the tip stretches into a narrow ligament of liquid
with a thin tip. This long finger of interpenetrating fluids is
also observed in the previous studies [11,12]. At high enough
Reynolds numbers in Fig. 8, a small ligament is detached from
the liquid phase. However, for the density-matched fluids we
do not see any breakup pattern. The reason for the chaotic
breakup of the interface at higher Reynolds numbers in Fig. 8
becomes clear as one considers the Reynolds number of the
liquid. As the density ratio increases, inertial forces in the

ρl/ρg = 2

ρl/ρg = 10

ρl/ρg = 40

(a) Re=200 (b) Re=500 (c) Re=1,000

FIG. 7. Snapshots of KHI at different density ratios and moderate
Reynolds numbers (ηl/ηg = 10, We = 400, ξ = 4, t = 3.5).

liquid are more dominant than viscous forces, causing a highly
deformed interface and eventually catastrophic breakup of
the interface. On the other hand, we notice the flow field is
no longer symmetric for two fluids with different densities.
This asymmetry of the interface topology as the density ratio
increases was also reported by Tauber et al. [11]. It should be
mentioned that the computations in Fig. 7(c) for ρl /ρg = 40,

ρl/ρg = 2

ρl/ρg = 10

(a) Re=2,000 (b) Re=5,000 (c) Re=10,000

FIG. 8. Snapshots of KHI at higher Reynolds numbers (ηl/ηg =
10, We = 400, ξ = 4, t = 3.5).
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(a)We=20 (b)We=40 (c)We=∞

FIG. 9. Effect of Weber number (ρl/ρg = 10, ηl/ηg = 10, Re =
2000, ξ = 4, t = 3.5).

and in Figs. 8(b) and 8(c) for ρl/ρg = 10 are performed using
a fine (512×1025) grid, because the results for the moderate
grid were found to be under-resolved.

The stabilizing effect of surface tension is demonstrated in
Fig. 9 for Re = 2000. Lower Weber numbers result in a more
stable phase interface and prevent the interface pinch-off. We
observe a well-shaped wave at the interface in Fig. 9(a). As the
Weber number increases, the wave elongates further and its tip
gets narrower, and finally, interface pinch-off is observed in
the absence of surface tension in Fig. 9(c).

It is worth noting that the contour plots of concentration
shown in Figs. 7–9 span from 0.1 to 0.9 with an increment
of 0.1. As it is seen in these figures, the interface thickness
remains within the prescribed value of ξ = 3–5 lattice
units.

IV. SUMMARY AND CONCLUSION

A consistent version of the MRT-LBM for immiscible
multiphase flows, in the sense that the relaxation matrix can
be applied in the same manner as the single-phase MRT-LBM,
was developed and verified for its accuracy and stability. The
Kelvin-Helmholtz instability of immiscible two-phase fluids
was investigated, and comparison of the results with prior
AMR studies at high Reynolds numbers was made. It is found
that the Reynolds number is the most important factor in
stabilizing/destabilizing the interface. On the other hand, a
finger of interpenetrating fluids is observed at low surface
tension values. As the interfacial force is increased, the length
of the finger is shortened and at a high enough surface tension
the interface roll-up is completely suppressed. A convoluted
interface in the shape of a spiral was observed for two fluids
with the same density and viscosity. At low Reynolds numbers,
increasing the density ratio turns the interface deformation
into a standing capillary wave shape. For higher Reynolds
numbers, increasing the density ratio destabilizes the flow
field, turning the interface into a highly deformed thin finger
of interpenetrating fluids with an asymmetric structure.
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