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Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect
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We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac
effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted
to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method
(RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both
methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better
dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac
resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also
we show that the numerical results are consistent with the perturbation theory for the rotating degenerate
microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical
Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation
of a rotation-induced gap at the center of a transfer function of a CROW.
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I. INTRODUCTION

The effect of the additional phase accumulation by a light
wave propagating in a mechanically rotating optical medium
is known as the Sagnac effect [1]. Recently there has been an
increased interest in the Sagnac effect manifested in rotating
resonant microcavities and miniature photonic structures
[2–4]. Usually the analysis of such structures involves either
the use of the well known phenomenological expression of the
Sagnac phase shift in a rotating circular optical medium [5,6],
or derivations from the first principles using the Maxwell’s
equations in the rotating frame with further assumptions and
simplifications in order to get closed form results [4,7,8].
There are a few numerical techniques which were proposed
recently to analyze such problems. One such option is to use
the two-dimensional (2D) Green’s function theory for the
electrodynamics of a rotating medium [8] in legacy codes
of, e.g., the method of moments. Alternatively, two finite-
difference time-domain algorithms based on the well known
Yee’s lattice and the leapfrog scheme were proposed. The first
finite-difference time-domain (FDTD) method proposed by
Peng et al. [9] incorporates time extrapolation in calculation of
the electromagnetic fields. We believe that this approach makes
the scheme unstable as illustrated in the Appendix for the
case of the linear extrapolation. The FDTD method proposed
by Sarma et al. [10] avoids this problem by incorporating D

and B (in addition to the regular E and H fields) using time
interpolation into their algorithm. But in order to keep the latter
scheme stable there might be a need to simultaneously know
both E and H in the entire rotating medium (they must satisfy
the wave equation) when introducing sources to the simulation,
which may prove to be not practical and may generate errors.
Therefore we believe that these explicit FDTD methods are
less suitable for application in rotating medium.

In this paper we present two unconditionally stable 2D
FDTD algorithms for modeling Sagnac which are based
on the Crank-Nicolson (CN) scheme [11]. In such a scheme
the computational grid is based on Yee’s lattice, but unlike
the leapfrog scheme the values of all the fields are updated
at the same time step. This approach avoids the need for

any kind of extrapolation in time, since the Sagnac effect
is modeled by using the values of the fields at the same
time steps as for the regular CN scheme for the stationary
case. As well, the scheme is based solely on calculation
of E and H thus avoiding the need to incorporate D and
B, and to estimate simultaneously both E and H in the
entire rotating domain. Since the Sagnac effect is basically a
phase modification effect, it might be susceptible to numerical
dispersion errors inherently existing in any FDTD algorithm
as a result of space and time discretizations. Therefore, we
present two slightly different schemes in order to address this
issue. The first method, called throughout this paper rotating
Crank-Nicolson-2 (RCN-2), is second order accurate in space,
while the second method, called RCN-4, has fourth order space
accuracy. Both methods are second order accurate in time. The
use of the fourth order accurate derivatives in space helps to
decrease the numerical dispersion error, and as a result we
get a more accurate modeling of the Sagnac effect. In order
to demonstrate the effectiveness of the proposed methods and
their differences, we apply them to a problem of a rotating
microring resonator and compare the obtained results with the
classical Sagnac expression for the frequency splitting and the
results obtained in perturbation theories [4,7]. We also apply
the RCN-4 scheme to a bigger problem of a rotating Coupled
Resonator Optical Waveguide (CROW) of four resonators.

The structure of this paper is as follows. In Sec. II we present
the formulation of the proposed methods. In Sec. III we analyze
the stability and the numerical dispersion of the algorithms.
We compare the performances of the two schemes, and as
well we verify the obtained results against those predicted by
the theory in Sec. IV. In this section we also simulate the
effect of rotation on a CROW that consists of a set of coupled
resonators. Concluding remarks are provided in Sec. V.

II. FORMULATIONS

We assume a two-dimensional slowly rotating medium at
the x-y plane with a rotation rate �, so that the angular
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velocity is

�� = ẑ�. (2.1)

The assumption of slow rotation velocity implies that neither
relativistic effects nor geometrical transformations take place
and | �� × �r| � c, for the largest r in the simulated rotating
medium, and c is the speed of light in vacuum. Therefore,
operators such as �∇ are conserved in the rotating rest frame
of reference: �∇ = �∇′, and time is invariant in both systems:
t = t ′. According to a formal structure of electrodynamics,
the basic physical laws governing the electromagnetic fields
are invariant under any coordinate transformations, including
a noninertial one [12,13]. The transformation to a rotating
system is manifested only by an appropriate change of the
constitutive relations. Therefore Maxwell’s curl equations in
the rotating frame R are given by

�∇ × ⇀

E = −∂ �B
∂t

− σm
�H, (2.2a)

�∇ × �H = ∂ �D
∂t

− σ �E. (2.2b)

Assuming the material properties at rest are given by ε, μ, then
up to the first order in velocity the constitutive relations in R

take on the form [12]

�D = ε �E − c−2 �� × �r × �H, (2.3a)
�B = μ �H + c−2 �� × �r × �E, (2.3b)

where �r = x̂x + ŷy. After substituting Eq. (2.3) into the
Eq. (2.2) and assuming a constant rotation rate ( ∂ ��

∂t
= 0) and

a fixed rotation axis ( ∂�r
∂t

= 0), we get the following set of
equations for the 2D case (where ∂H

∂z
= ∂E

∂z
= 0):

μ
∂Hx

∂t
= −∂Ez

∂y
− σmHx − c−2�x

∂Ez

∂t
, (2.4a)

μ
∂Hy

∂t
= ∂Ez

∂x
− σmHy − c−2�y

∂Ez

∂t
, (2.4b)

μ
∂Hz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
− σmHz + c−2�x

∂Ex

∂t

+ c−2�y
∂Ey

∂t
, (2.4c)

ε
∂Ex

∂t
= ∂Hz

∂y
− σEx + c−2�x

∂Hz

∂t
, (2.4d)

ε
∂Ey

∂t
= −∂Hz

∂x
− σEy + c−2�y

∂Hz

∂t
, (2.4e)

ε
∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
− σEz − c−2�y

∂Hy

∂t

−c−2�x
∂Hx

∂t
. (2.4f)

It has been rigorously shown that in the 2D case these
equations can be split into two independent transverse electric
(TE) and transverse magnetic (TM) modes [8]. In this paper
we concentrate on the TM mode (Hx ,Hy ,Ez) sustained by
Eqs. (2.4a), (2.4b), and (2.4f). The case for the TE mode
(Ex ,Ey ,Hz) can be obtained from the TM case by simple
exchange of variables. Using Yee’s meshing in the 2D case,
which is shown in Fig. 1, both the RCN-2 and the RCN-4

FIG. 1. (Color online) Yee’s space lattice with the indicated
magnetic field components (Hx ,Hy) and their relative weights (for
six-point interpolation) used to account for the Sagnac effect in the
calculation of the electric field at the marked grid point (i,j ) (dashed).

schemes for the TM wave can be written as

Hn+1
x = Hn

x − a1HxDy

(
En+1

z + En
z

) − a2Hx

(
Hn+1

x + Hn
x

)
− a3HxSy

(
En+1

z − En
z

)
, (2.5a)

Hn+1
y = Hn

y + a1HyDx

(
En+1

z + En
z

) − a2Hy

(
Hn+1

y + Hn
y

)
− a3HySx

(
En+1

z − En
z

)
, (2.5b)

En+1
z = En

z + a1EzxDx

(
Hn+1

y + Hn
y

)
− a1EzyDy

(
Hn+1

x + Hn
x

) − a2Ez

(
En+1

z + En
z

)
− a3EzxSx

(
Hn+1

y − Hn
y

) − a3EzySy

(
Hn+1

x − Hn
x

)
,

(2.5c)

where the coefficients a# are given as

a1Hx = �t

2�yμ
, a2Hx = �tσm

2μ
, a3Hx = c−2�x

μ
,

(2.6a)

a1Hy = �t

2�xμ
, a2Hy = �tσm

2μ
, a3Hy = c−2�y

μ
,

(2.6b)

a1Ezx = �t

2�xε
, a1Ezy = �t

2�yε
, a2Ez = �tσ

2ε
,

(2.6c)

a3Ezx = c−2�y

ε
, a3Ezy = c−2�x

ε
,

and the operators Dx , Dy are the difference operators along
the x axis and the y axis, respectively, while the operators Sx ,
Sy are the sum operators along those axes needed to account
for rotation (together with the coefficients a3). The need for
the latter operators results from the fact that we must know
the values of the fields in the points which are not given in the
computational grid. For example, in order to calculate Ez we
need the values of Hx and Hy at the same point. A simple way
to calculate the fields in those “in-between” points is to use the
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linear interpolation by taking the average of the values in the
existing grid points, which is to use two points with a relative
weight of 1/2. But we can obtain a better approximation if we
use more points for the interpolation. The simulations carried

out in this paper use six-point interpolation for this purpose.
For example, when calculating the value of En+1

z(i,j ) in Eq. (2.5c),

the terms SxH
n+1
y and SyH

n+1
x will give the values of Hn+1

y(i,j )

and Hn+1
x(i,j ) at the point (i,j ) as

SxH
n+1
y

∣∣
(i,j ) = Hn+1

y(i,j ) = Hn+1
y(i+1/2,j+1) + 6Hn+1

y(i+1/2,j ) + Hn+1
y(i+1/2,j−1) + Hn+1

y(i−1/2,j+1) + 6Hn+1
y(i−1/2,j ) + Hn+1

y(i−1/2,j−1)

16
, (2.7a)

SyH
n+1
x

∣∣
(i,j ) = Hn+1

x(i,j ) = Hn+1
x(i−1,j+1/2) + 6Hn+1

x(i,j+1/2) + Hn+1
x(i+1,j+1/2) + Hn+1

x(i−1,j−1/2) + 6Hn+1
x(i,j−1/2) + Hn+1

x(i+1,j−1/2)

16
. (2.7b)

The latter equation is illustrated in Fig. 1, where the calculation of En+1
z(i,j ) uses the closest samples of the magnetic fields with

the relative weights of 6/16 and the further ones with the weights of 1/16. A similar procedure is used for the calculation of the
magnetic fields by Eqs. (2.5a) and (2.5b).

We should point out that both the coefficients a# and the operators in Eqs. (2.5) are represented by sparse matrices and the
electromagnetic fields are column vectors. The choice between the second order and the forth order accuracies in space is done
by the use of the appropriate implementation of the differentiating operators Dx , Dy using central differences. By rearranging
Eqs. (2.5a) and (2.5b) and substituting them into Eq. (2.5c), we arrive at the following set of equations:

Hn+1
x = (1 − a2Hx)

(1 + a2Hx)
Hn

x − (a1HxDy − a3HxSy)

(1 + a2Hx)
En

z − (a1HxDy + a3HxSy)

(1 + a2Hx)
En+1

z , (2.8a)

Hn+1
y = (1 − a2Hy)

(1 + a2Hy)
Hn

y + (a1HyDx + a3HySx)

(1 + a2Hy)
En

z + (a1HyDx − a3HySx)

(1 + a2Hy)
En+1

z , (2.8b)[
I − (a1EzxDx − a3EzxSx)

(1 + a2Ez)

(a1HyDx − a3HySx)

(1 + a2Hy)
− (a1EzyDy + a3EzySy)

(1 + a2Ez)

(a1HxDy + a3HxSy)

(1 + a2Hx)

]
En+1

z

=
[

(1 − a2Ez)

(1 + a2Ez)
+ (a1EzxDx − a3EzxSx)

(1 + a2Ez)

(a1HyDx + a3HySx)

(1 + a2Hy)
+ (a1EzyDy + a3EzySy)

(1 + a2Ez)

(a1HxDy − a3HxSy)

(1 + a2Hx)

]
En

z

+
[

(a1EzxDx + a3EzxSx) + (a1EzxDx − a3EzxSx)

(1 + a2Ez)

(1 − a2Hy)

(1 + a2Hy)

]
Hn

y

−
[

(a1EzyDy + a3EzySy) + (a1EzyDy + a3EzySy)

(1 + a2Ez)

(1 − a2Hx)

(1 + a2Hx)

]
Hn

x . (2.8c)

Note that Eq. (2.8c) contains only the value of the electric
field at the next time step n + 1. Therefore, after solving it
and putting the value of En+1

z into Eqs. (2.8a) and (2.8b)
we get the magnetic fields Hn+1

x and Hn+1
y . Thus, the

major computational obstacle is the solution of Eq. (2.8c)
which was previously treated in the literature as the regular
(stationary, nonrotating case) Crank-Nicolson scheme with
the application of the Douglas-Gunn algorithm [14], which
results in factorization of the left-hand side of the equation.
Unfortunately, we cannot perform similar factorization here
because of the additional terms accounting for the rotation.
Therefore, we need another approach. Rewriting Eq. (2.8c) in
a short form as

(I − M ′)En+1
z = MEn+1

z = V n, (2.9)

where V n is the resulting vector of the right-hand side of the
equation that depends solely on the fields at the previous time
step, and M = I − M ′ is the matrix on the left-hand side.
Note that this matrix is sparse. Since solving Eq. (2.9) at each
time step is computationally expensive, we use the Neumann

series expansion to approximately calculate the inverse as

M−1 = (I − M ′)−1 =
∞∑

n=0

M ′n. (2.10)

This expansion converges if ‖M ′‖ < 1 in some consistent
norm [15]. Once the inverse is calculated, it can be used
for marching in time in Eqs. (2.8a)–(2.8c) without the need
to fully solve Eq. (2.9) at each time step. One disadvantage
of such approach is that the condition ‖M ′‖ < 1 limits the
value of the time step for which Eq. (2.10) can be used, since
the norm grows with �t . If a greater time step is required
then Eq. (2.9) may be solved by the conventional iterative
or direct methods, such as successive over-relaxation (SOR)
or Gaussian elimination. However, using greater time steps
increases the numerical dispersion error, and since the purpose
of the proposed method is to account for the Sagnac phase shift
in rotating systems, one should not use a very high value of �t

as the Sagnac effect may be screened by the numerical phase
errors. The later is of special importance for low rotation rates.

Another disadvantage of using Eq. (2.10) is that the
summation must be truncated in any practical implementation.
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The use of the approximately computed propagation matrix
may compromise the stability of the schemes as well as
increase their numerical dispersion errors. In the simulations
carried out in this paper we used the first five terms of the
series, which resulted in the maximum error of 0.01% in
the calculated values of the fields in the computational grid,
without any observable instability within the run times. We
believe that the number of terms used in the series must be
increased when one uses greater computational grids than
those in this paper in order to preserve the same accuracy and
stability. We emphasize that the excitation of the presented
scheme is straightforward since both E and H are evaluated at
the same time step. For instance, assuming certain spatial and

temporal distributions of En+1
z along a specific plane at the grid

(for example, a waveguide’s cross-section electric field profile,
with a modulated Gaussian pulse temporal dependence), the
corresponding values of Hn+1

x and Hn+1
y can be calculated

from Eqs. (2.8a) and (2.8b), which will immediately satisfy
the wave equation in the rotating medium.

III. STABILITY AND NUMERICAL DISPERSION

Both stability and numerical dispersion of the algorithms
can be analyzed using the Fourier transform method [14]. We
can rewrite Eq. (2.5) in the matrix form for the free space case
as

⎡
⎢⎣

1 0 (a1HxDy + a3HxSy)

0 1 −(a1HyDx − a3HySx)

(a1EzyDy + a3EzySy) −(a1EzxDx − a3EzxSx) 1

⎤
⎥⎦

⎛
⎜⎝

Hn+1
x

Hn+1
y

En+1
z

⎞
⎟⎠

=

⎡
⎢⎣

1 0 −(a1HxDy − a3HxSy)

0 1 (a1HyDx + a3HySx)

−(a1EzyDy − a3EzySy) (a1EzxDx + a3EzxSx) 1

⎤
⎥⎦

⎛
⎜⎝

Hn
x

Hn
y

En
z

⎞
⎟⎠ . (3.1)

The last equation is general and holds for both RCN-2 and RCN-4 schemes. After applying the Fourier transform to the last
equation, and further considering the RCN-2 scheme with the interpolation as shown in Eq. (2.7) we get⎛

⎜⎝
1 0 A13

0 1 A23

A31 A32 1

⎞
⎟⎠

⎛
⎜⎝

H̃ n+1
x

H̃ n+1
y

Ẽn+1
z

⎞
⎟⎠ =

⎛
⎜⎝

1 0 A∗
13

0 1 A∗
23

A∗
31 A∗

32 1

⎞
⎟⎠

⎛
⎜⎝

H̃ n
x

H̃ n
y

Ẽn
z

⎞
⎟⎠ , (3.2)

where the asterisk denotes the complex conjugate and

A13 = − j�t

�yμ0
sin

(
βy�y

2

)
+ c−2� (m�x)

μ0
cos

(
βy�y

2

)[
3

4
+ 1

4
cos (βx�x)

]
, (3.3a)

A23 = j�t

�xμ0
sin

(
βx�x

2

)
+ c−2� (n�y)

μ0
cos

(
βx�x

2

)[
3

4
+ 1

4
cos(βy�y)

]
, (3.3b)

A31 = − j�t

�yε0
sin

(
βy�y

2

)
+ c−2� (m�x)

ε0
cos

(
βy�y

2

)[
3

4
+ 1

4
cos (βx�x)

]
, (3.3c)

A32 = j�t

�xε0
sin

(
βx�x

2

)
+ c−2� (n�y)

ε0
cos

(
βx�x

2

)[
3

4
+ 1

4
cos(βy�y)

]
, (3.3d)

where (m,n) is the coordinate of any point in the x-y plane. So the fields’ evolution in time is given by the matrix

P =

⎛
⎜⎝

1 0 A13

0 1 A23

A31 A32 1

⎞
⎟⎠

−1 ⎛
⎜⎝

1 0 A∗
13

0 1 A∗
23

A∗
31 A∗

32 1

⎞
⎟⎠ . (3.4)

The amplification factor of the scheme is given by the spectral radius of the matrix P . Numerical calculations show that |λ1,2,3| = 1
(up to an accuracy of 10−15) for any combination of �x, �y, �t , �, and (m,n), as long as the condition �R < c is satisfied,
where R =

√
(m�x)2 + (n�y)2. The same result holds for the RCN-4 scheme. Therefore, both schemes are unconditionally

stable and strictly nondissipative.
The dispersion relation of the RCN-2 scheme is given by

tan2(ω�t/2)

(c�t)2
u = sin2(βx�x/2)

�x2
+ sin2(βy�y/2)

�y2
+

(
�y

c

)
sin(βx�x)

c�x

tan (ω�t/2)

�t

[
3

4
+ 1

4
cos(βy�y)

]

−
(

�x

c

)
sin(βy�y)

c�y

tan(ω�t/2)

�t

[
3

4
+ 1

4
cos (βx�x)

]
, (3.5a)
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and the dispersion relation of the RCN-4 scheme is given by

tan2(ω�t/2)

(c�t)2
u =

[
9
8 sin(βx�x/2) − 1

24 sin(3βx�x/2)
]2

�x2
+

[
9
8 sin(βy�y/2) − 1

24 sin(3βy�y/2)
]2

�y2

+
(

�y

c

) [
13
12 sin(βx�x) − 1

24 sin(2βx�x)
]

c�x

tan(ω�t/2)

�t

[
3

4
+ 1

4
cos(βy�y)

]

−
(

�x

c

) [
13
12 sin(βy�y) − 1

24 sin(2βy�y)
]

c�y

tan(ω�t/2)

�t

[
3

4
+ 1

4
cos(βx�x)

]
, (3.5b)

where u in Eqs. (3.5a) and (3.5b) is given by

u = 1 −
(

�y

c

)2

cos2

(
βx�x

2

)[
3

4
+ 1

4
cos(βy�y)

]2

−
(

�x

c

)2

cos2

(
βy�y

2

)[
3

4
+ 1

4
cos (βx�x)

]2

,

and |β| = √
β2

x + β2
y is the numerical propagation phase constant. As seen from the Eqs. (3.5a) and (3.5b), the dispersion

relations depend on the rotation rate � and on the coordinates of the point in the computational grid. As we take the limit of
�x,�y,�t → 0, Eqs. (3.5a) and (3.5b) converge to the dispersion relation for the rotating free space as(

ω

c

)2 [
1 − �2(x2 + y2)

c2

]
= β2

x

[
1 + 2

βx

(
�y

c

)
ω

c

]
+ β2

y

[
1 − 2

βy

(
�x

c

)
ω

c

]
= |β|2 − 2

ω

c

[
�β · ( �� × �r)

c

]
. (3.6)

To clarify the dispersion features and their dependence on location, we express �r as a sum of parallel and perpendicular (with

respect to
⇀

β) components: �r = �r‖ + �r⊥ where
⇀

β ‖ �r‖ and
⇀

β⊥�r⊥. Then Eq. (3.6) reduces to (we keep only terms that are first order
in �) (

ω

c

)2

= |β|2 − 2
ω

c2
�β · ( �� × �r⊥)

| ��×�r|�c−−−→ ω

βc
= 1 − β̂ · ( �� × �r⊥)

1

c
. (3.7)

Here
⇀

β = ββ̂. The Sagnac effect in Eqs. (3.5)–(3.7) is
expressed via the first order terms in �x

c
and �y

c
. There is a good

correspondence between the rotation-induced modification of
the propagation constant β and the modified phase of the
Green’s function for the rotating medium [8] (where the second
order terms were neglected). First, we take a closer look at the
dispersion for the stationary case (� = 0). Figure 2 shows
the phase velocity normalized to the vacuum speed of light
as a function of the angle of propagation in the grid for the
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FIG. 2. (Color online) Phase velocity normalized to c for growing
S values when � = 0, �x = 0.06 μm, λ = 1.5 μm vs the angle of
propagation in the grid: CN-4 (red), CN-2 (green), and Yee’s FDTD
(blue).

schemes RCN-2, RCN-4 without rotation (designated CN-2
and CN-4, respectively) and the regular Yee’s algorithm with
the second order accuracies both in time and space. The plots
are shown for three cases: S = 1/8, 1/4, 1/2 where S = c �t

�x

and �x = 0.06 μm. The dispersion of the Crank-Nicolson
based schemes is of an opposite direction than that of the
regular FDTD. In those schemes the dispersion increases
with �t , whereas it decreases in Yee’s FDTD. Also, the
RCN-2 scheme has similar anisotropy in dispersion as Yee’s
algorithm. In terms of anisotropy, the RCN-4 scheme has
the best behavior of the three, as its curves are almost flat.
Therefore in applications where the light travels in a circular
path, such as in ring resonators, using the RCN-4 scheme
makes it easier to estimate the numerical dispersion error,
which may prove critical when modeling the Sagnac effect at
relatively low rotation rates. The decrease in phase velocity
means that the waves travel more slowly in the grid and the
accumulated Sagnac phase shift and hence their resonance
frequency splitting (when traveling in the opposite directions)
will be lower. A similar plot as in Fig. 2 can be obtained
for the numerical group velocity. The group velocity has the
same behavior as the phase velocity; therefore we do not show
it here. In order to demonstrate the x-y dependence of the
dispersion relation on the rotation, in Fig. 3 we plot the phase
velocity in the rotating medium normalized to c, found from
Eq. (3.7). Note that the dispersion depends only on the normal
distance from the rotation axis (normal with respect to the
wave number).

We see that at the plane x = y the phase velocity equals c,
but as we go further from this plane, the velocity increases for
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FIG. 3. (Color online) Phase velocity normalized to c for a wave
traveling along the direction of θ = 45◦ in the grid, for λ = 1.5 μm
and � = 1012 rad/s along the plane y = − x.

x<y and it decreases for x>y. Figure 4 shows the errors (in
percent) in phase velocities of the RCN-4 and RCN-2 schemes,
relative to the exact phase velocity of the rotating medium for
a wave traveling along the direction of θ = 45◦, with S = 1/2,
�x = 0.06 μm, λ = 1.5 μm, and � = 1012 rad/s. The error
is almost twice as large for the RCN-2 scheme.

Unfortunately, as was stated earlier, the Sagnac effect is
sensitive to numerical dispersion errors; therefore techniques
to eliminate those errors are required. One such technique
would be to select such �x, �y, and �t that those errors
are zero for a specific set of frequencies or directions of
propagation in the grid as shown in Ref. [16] for the regular
explicit FDTD schemes. However, the structure of Eqs. (3.5a)
and (3.5b) is such that similar dispersion reduction schemes
cannot be applied, since the equations cannot be satisfied with
any choice of a time step in order to get at least one frequency
for which the dispersion is zero. We believe this is the result
of the implicit nature of the schemes and hence the only way
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FIG. 4. (Color online) Phase velocity error (%) for RCN-2 and
RCN4 for a wave traveling along the direction of θ = 45◦ in the grid,
for λ = 1.5 μm and � = 1012 rad/s along the plane y = − x.

to reduce dispersion in the proposed two schemes is to use
smaller time steps at the expense of a longer run time.

IV. NUMERICAL RESULTS

A. Single ring resonator

In this section we verify the ability of the proposed schemes
to model the Sagnac effect and check the obtained results
for consistency using the perturbation theory for rotating
degenerate cavities derived in the previous work [7]. The
simulations carried out in this section were performed in
the structure of a ring resonator made of material with the
refractive index n = 3 and having a radius of R = 2 μm and
width of w = 0.4 μm. The computational grid consists of
320 × 320 points with �x = �y = 0.02 μm, thus making
it 6.4 μm × 6.4 μm in size. The excitation is done by
inserting a profile of a modulated Gaussian pulse having center
frequency and duration such that we get a number of excited
resonant modes inside the resonator. The pulse is placed at
“3 o’clock” in the resonator along the x axis. The electric field
Ez is sampled at each time step at the opposite point inside
the ring. The time step used is �t = 5/3 × 10−5 ps, so that
S = 1/4. Total time of the simulation is 140 ps, thus making it
approximately 8.4 × 106 time steps. In order to minimize run
time, our algorithm was implemented on a Tesla C2075 GPU
(Nvidia) with JACKET software. Typical run time was about 9 h
for a single resonator with the RCN-4 algorithm. Clearly, since
we deal with an implicit procedure, running time is longer than
that of an equivalent explicit approach. Unfortunately, run time
data for other approaches that apply to rotating systems is not
currently available in the literature.

Taking the Fourier transform of the sampled values of the
field we get the spectrum from which the individual resonances
of the resonator can be extracted. We also used Berenger’s
split-field formulation of the perfectly matched layer to
implement the absorbing boundary conditions (ABC) [17].
Because of the rotation these ABCs suffer from reflections
which are of order �R/c, yet they give good results [9]. Further
research is required to develop the ABCs in the rotating frame.

First, we check the linear dependence of the Sagnac fre-
quency splitting on the rotation rate. The classical expression
for the splitting is given by [18]

δω(�) = ω0
�R

cn
, (4.1)

where ω0 is the stationary resonant frequency, R is the ring’s
radius, n is the refractive index of the medium, and c is
the vacuum speed of light. In order to confirm the linear
dependence of the splitting on the rotation rate, a number
of simulations were performed using the RCN-4 scheme for
the resonant mode M = 23. The first simulation was done
for the zero rotation rate, that is, the stationary case, and
four simulations with rotation rates which are multiples of
�0 = 5 × 1010 rad/s. Figure 5 shows the distribution of the
electric field at the end of the simulation (where � = 4 × �0)
together with the edges of the resonator. Figure 6 shows the
spectrum as a function of frequency. The resonant frequency
of a stationary resonator can be found (the peak in the middle)
as f0 = 201.5447 THz with the effective index neff = 2.7225.
The splitting at �0 equals 42.9 GHz as shown in the figure. As
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FIG. 5. (Color online) Distribution of Ez at t = 140 ps for M =
23, using RCN-4 with � = 4 × �0 = 2 × 1011 rad/s.

the rotation rate increases to � = 4 × �0 the Sagnac splitting
increases linearly with �.

Further, we compare the performance of the two schemes,
RCN-2 and RCN-4. Figure 7 shows the spectrum in the band
of M = 23 for both schemes with two stationary resonances
and a couple of split resonances for � = 1012 rad/s. The
resonances obtained by RCN-2 are slightly lower than those of
RCN-4, which is the result of a stronger numerical dispersion
experienced by the first scheme. The difference between the
splittings of the two schemes is small because the number of
points per wavelength inside the resonator is 27.3, which is a
relatively high number, but if we look at a much higher mode,
the superiority of RCN-4 becomes more obvious.

Figure 8 shows the results of a simulation for the mode
M = 37, for which the number of points per wavelength inside
the medium is 17. Here the numerical dispersion is noticeably
more severe for the RCN-2 scheme since it lowers all the
resonant frequencies twice as much as previously for M = 23.
Also, the splitting is reduced by 0.5% from 133.04 GHz for
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FIG. 6. (Color online) Spectrum vs frequency showing the res-
onances for stationary resonator and with linearly growing rotation
rates for M = 23 using RCN-4 scheme.
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FIG. 7. (Color online) Resonances of both RCN-2 (left) and
RCN-4 (right) schemes for M = 23 (neff = 2.7225, λ/neff/�x =
27.3) with � = 0 (Stationary) and � = 1012 rad/s.

the RCN-4 scheme to 132.32 GHz for RCN-2. Using a coarser
grid or looking at higher resonances will result in a much
greater difference between the two schemes.

In order to answer the question of which value of the
refractive index (group or effective) should be used in Eq. (4.1)
we take a look at Fig. 9. It shows the values of the Sagnac
splitting obtained by RCN-4 with � = 1012 rad/s and those
where Eq. (4.1) was used with resonant frequency and the
group index was obtained by stationary RCN-4 simulation.
We see a very good correspondence between the curve for
RCN-4 with rotation (lowest) and the one (which is slightly
above) obtained using the group refractive index in the classical
expression. The relative difference between the numerical
RCN-4 results and the classical Sagnac expression when
using the effective index of material is shown in Fig. 10.
For higher modes, or alternatively higher frequencies, the
difference becomes less substantial. We also checked the
results for consistency with the perturbation theory for rotating
degenerate microcavities [7]. The theory requires only the
knowledge of all the stationary linearly independent modes
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FIG. 8. (Color online) Resonances of both RCN-2 (left) and
RCN-4 (right) schemes for M = 37 (neff = 2.8748, λ/neff/�x = 17)
with � = 0 (Stationary) and � = 1012 rad/s.
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of the cavity with the same resonant frequency. Since we
are dealing with a ring resonator, it has only two linearly
independent modes for each resonant frequency (where each
mode travels in the opposite direction). Therefore we used a
stationary RCN-4 scheme to find the distribution of the mag-
netic fields [H (1,2)

0x (r) and H
(1,2)
0y (r)] from which we obtained

E
(1,2)
0z (r) using the identity �∇ × H

(m)
0 = −iω0ε0εrE

(m)
0 where

ω0 is the resonant frequency, εr is the relative permittivity
of the medium, and m refers to one of the two independent
modes. The need to employ this identity comes from the
fact that the perturbation theory uses frequency domain, while
the fields we get from the RCN-4 are given in time domain;
therefore there might be a phase term associated with them.
The use of the identity overcomes this problem. In case
we deal with an odd numbered resonance M , finding the
two independent modes can be done by using excitations
at two different places in the resonator. First we run a
simulation where the excitation is placed at 12 o’clock
in the resonator to obtain H

(1)
0x (r), H

(1)
0y (r), and E

(1)
0z (r). At the
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FIG. 10. Relative frequency splitting difference in percent be-
tween the classical Sagnac with n = neff and RCN-4 scheme for
� = 1012 rad/s.
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FIG. 11. (Color online) Distribution of the electric field E
(1)
0z for

M = 23 calculated using RCN-4 scheme with � = 0. The excitation
was placed at 12 o’clock in the resonator as indicated.

second run the excitation is placed at 3 o’clock in the resonator
to obtain H

(2)
0x (r), H

(2)
0y (r), and E

(2)
0z (r). This way we get two

linearly independent degenerate modes of the resonator shifted
by a quarter of a wavelength or π/2 relative to each other. For
example, the distributions of E

(1)
0z (r) and E

(2)
0z (r) for M = 23

are illustrated in Figs. 11 and 12, respectively.
The same procedure was performed for the modes M = 11,

M = 31, and M = 39. The Sagnac frequency splitting values
for these resonant modes found using the perturbation theory
are marked in Fig. 9. A good agreement with the splitting
predicted by the RCN-4 scheme is evident (the error is less than
1%). Hence, we conclude that the Sagnac effect is modeled
correctly by the proposed discretization of the Maxwell’s
equations. We should mention that using only two points in
the grid to calculate the fields in the “missing” points, unlike
Eq. (2.7) which uses six points, would result in lower values
for the Sagnac splitting than predicted by the theory.
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FIG. 12. (Color online) Distribution of the electric field E
(2)
0z for

M = 23 calculated using RCN-4 scheme with � = 0. The excitation
was placed at 3 o’clock in the resonator as indicated.
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The dependence of the Sagnac frequency splitting on
the group indices of a dispersive medium was previously
predicted in Ref. [19]. This result also holds for a medium
with only structural dispersion, such as the ring resonator
simulated here. This dependence can be shown as follows. The
two counterpropagating waves inside the rotating resonator
accumulate the phases as

ω0

c
neff(ω0)L + �φ = ω0 + δω(�)

c
neff[ω0 + δω(�)]L,

(4.2a)
ω0

c
neff(ω0)L − �φ = ω0 − δω(�)

c
neff[ω0 − δω(�)]L,

(4.2b)

where L = 2πR is the resonator’s circumference, neff(ω0) is
the effective index of the stationary mode with a resonant
frequency ω0, and δω(�) and �ϕ are the Sagnac frequency
splitting and phase shift respectively, where the latter is
given by �ϕ = ω0L�R/c2 [18]. Subtracting Eq. (4.2a) from
Eq. (4.2b) and expanding the effective indices at the new
resonant frequencies using a Taylor’s series up to the first
order as

neff[ω0 ± δω(�)] ∼= neff(ω0) ± δω(�)
dneff

dω

∣∣∣∣
ω=ω0

, (4.3)

we get the following expression for the Sagnac frequency
splitting:

δω(�) = c

L

�φ

neff(ω0) + ω0
dneff
dω

∣∣
ω=ω0

= ω0
�R

cng

. (4.4)

This expression is identical to that in Eq. (4.1) with the
refractive index replaced by the group refractive index.
Therefore, in a rotating ring resonator with high dispersion
we must employ Eq. (4.4) in order to model the Sagnac effect
more accurately.

B. CROW

In this section we apply the RCN-4 to a CROW consisting
of four resonators in the form of a racetrack. The distances
between the input (output) waveguides and the first (last)
resonator is 120 nm, while the distance between two adjacent
resonators is 360 nm. All four ring resonators are made of
material with the refractive index n = 3 and having a radius
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FIG. 13. (Color online) Distribution of Ez at t = 35 ps, using
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FIG. 14. (Color online) Drop spectra of a CROW for M = 24.

of R = 2 μm, width of w = 0.4 μm, and the straight section
length is 0.8 μm. We launched a modulated Gaussian pulse at
the input while sampling the electric field at the Through and
Drop ports. The center frequency of the pulse corresponds to
the radial mode of M = 25 of a single resonator, but the pulse
was wide enough to also contain the adjacent modes M = 24,
26. The simulation was performed for a stationary CROW
and for four rotation rates, which were multiples of �0 =
1011 rad/s. The simulations ran up to t = 35 ps, where
afterwards the field samples were negligibly small, so that
we could use zero-padding to acquire the desirable spectrum
resolution at the postprocessing phase. The distribution of the
Ez field at the end of the simulation is shown in Fig. 13 for
� = 1.5 × �0.

Using the Fourier transform we obtained the spectrum of
the Drop port, which is shown, for M = 24, in Fig. 14. As the
rotation rate increases, a rotation-induced gap (RIG) is formed
at the transmission frequencies of the Drop port [20]. Note
that the distances between the input (output) waveguide and
the first (last) resonator are not identical to the inter-resonator
distances; hence the local resonances are not identical along
the CROW. These facts, together with a (low-level) loss,
create nonsymmetric response curves. This is similar to the
structural disorder of a fabricated CROW having slightly
different resonators. The evident decrease of the drop signal
intensity as a function of rotation rate is a direct consequence
of the RIG effect, and has not been observed before in full
wave simulations.

V. CONCLUSIONS

In this paper we presented two FDTD schemes for modeling
the Sagnac effect in rotating optical elements. The RCN-4
scheme is fourth order accurate in space, and as a result,
it shows better accuracy than its second order counterpart
RCN-2. The RCN-4 scheme is shown to have lower nu-
merical dispersion with a much better directional isotropy.
Both schemes are unconditionally stable and nondissipative.
Application of the RCN-4 to a rotating ring resonator showed
good correspondence with the theory. We showed that the
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Sagnac frequency splitting depends on the group refractive
indices of the resonant modes and not solely on the effective
indices as in the classical Sagnac expression. The results were
also verified against those obtained using the perturbation
theory where only the stationary resonant modes are required,
showing good agreement with each other. Application of
the RCN-4 to a rotating CROW showed a formation of a
rotation-induced gap at the center of its transfer function as
predicted by the asymptotic methods.
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APPENDIX

In this section we study the instability problem associated
with the approach proposed in Ref. [9]. Following similar
steps, and neglecting the c−4 terms, the Maxwell’s equations
for the TM mode can be written as

∂Hx

∂t
= − 1

μ

∂Ez

∂y
− c−2�x

με

(
∂Hy

∂x
− ∂Hx

∂y

)
, (A1)

∂Hy

∂t
= 1

μ

∂Ez

∂x
− c−2�y

με

(
∂Hy

∂x
− ∂Hx

∂y

)
, (A2)

∂Ez

∂t
= 1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
− c−2�y

με

∂Ez

∂x
+ c−2�x

με

∂Ez

∂y
. (A3)

Using Yee’s lattice together with the leapfrog time discretization the latter equations are

H
n+1/2
x(i,j+1/2) − H

n−1/2
x(i,j+1/2)

�t
= − 1

μ(i,j+1/2)

En
z(i,j+1) − En

z(i,j )

�y
−

(
c−2�x

με

)
(i,j+1/2)

(
∂Hy

∂x
− ∂Hx

∂y

)∣∣∣∣
n

(i,j+1/2)

, (A4)

H
n+1/2
y(i+1/2,j ) − H

n−1/2
y(i+1/2,j )

�t
= 1

μ(i+1/2,j )

En
z(i+1,j ) − En

z(i,j )

�x
−

(
c−2�y

με

)
(i+1/2,j )

(
∂Hy

∂x
− ∂Hx

∂y

)∣∣∣∣
n

(i+1/2,j )

, (A5)

En+1
z(i,j ) − En

z(i,j )

�t
= 1

ε(i,j )

(
H

n+1/2
y(i+1/2,j ) − H

n+1/2
y(i−1/2,j )

�x
− H

n+1/2
x(i,j+1/2) − H

n+1/2
x(i,j−1/2)

�y
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−
(
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)
(i,j )

∂Ez
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n+1/2

(i,j )

+
(

c−2�x
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)
(i,j )

∂Ez
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∣∣∣∣
n+1/2

(i,j )

. (A6)

The spatial derivatives associated with rotation require the values of the fields at the time midsteps which are missing, that is,
Hn

x and Hn
y when calculating them at n + 1

2 , and E
n+(1/2)
z when calculating En+1

z . If we use the linear extrapolation in time as
suggested in Ref. [9] to evaluate the missing values based on the two previously calculated values, we get the following set of
equations after applying the Fourier transform method [14]:

H̃x sin

(
ω�t

2

)
= 1

μ

�t

�y
sin

(
βy�y

2

)
Ẽz
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3
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2
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]
, (A7)
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]
Ẽz. (A9)

The term ( 3
2e−jω(�t/2) − 1

2e−jω(3�t/2)) in the equations is complex and is the consequence of the linear extrapolation based on
values of the fields in the previous time steps. Since all other terms in the equations are real (including the amplitudes H̃x , H̃y , and
Ẽz), the three equations can only be satisfied by a complex ω which will give rise to exponentially growing fields. Therefore such a
scheme is unstable for any �t . Another way to look at it is to say that the “effective” rotation rate is �( 3

2e−jω(�t/2) − 1
2e−jω(3�t/2))

which, in case of a ring resonator, will result in two complex resonance frequency shifts. One mode will have a positive imaginary
part in the resonance frequency and it therefore will decay, while the other mode will have a negative imaginary part in the
resonance frequency resulting in exponential growth and instability.
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