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Particle model for nonlocal heat transport in fusion plasmas
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We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as
fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate
inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the
equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at
different temperatures. The model exhibits a characteristic length of thermalization that can be associated with
an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on
the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport
properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
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I. INTRODUCTION

A key issue of contemporary statistical mechanics is to
understand the behavior of systems steadily kept out of
equilibrium. In this general framework, confined plasmas
represent one of the most relevant playgrounds where a deeper
comprehension of transport and relaxation processes would
lead to progress in the control of experimental setups. A typical
problem is that of heat transfer in the direction parallel to the
magnetic field in tokamaks [1,2]. In these devices, the plasma
is confined by a strong magnetic field so that the symmetry
of transport is split into the plane transverse to the magnetic
field where turbulence governs the heat flux and the direction
parallel to the magnetic field where turbulent effects are small
and collisional transport must be taken into account. Collisions
in such plasmas are weak binary Coulomb interactions whose
mean free path scales like the fourth power of particle velocity,
exceeding by a couple of orders of magnitude the device largest
scale in the hot core region. In practice this has little impact on
transport issues since temperature remains roughly constant
along the magnetic field so that transport effect remains weak
in that direction. The issue of parallel transport becomes
stringent when a hot plasma region is connected to a wall
component. In that case a significant temperature gradient will
build up along the field line between the hot region that acts as a
heat source and the colder plasma region at the wall that acts as
a sink [3]. When collisionality drops, classical Fourier law [4]
fails in describing heat transport, leading to an overestimation
of the heat flux. Kinetic approaches have been proposed
to study transition from strongly collisional to collisionless

regime [5,6]. In that perspective, simplified Fokker Planck
simulations have been performed since the early 1980s in order
to study and quantify the deviations from the classical Spitzer
Harm thermal conductivity [7–9]. An important effort has been
made to recast these kinetic effects into a fluid description of
heat transport, a point particularly relevant for the development
of efficient hydrodynamic tools for fusion plasma. Several
nonlocal formulations have been proposed both for magneti-
cally confined and laser created fusion plasmas [10–15]. They
consist in generalizing the Fourier’s law with a convolution
product and an appropriate delocalization kernel that takes the
finite length of the system into account, as exemplified by the
generalized constitutive equation:

J (x) =
∫

w(x,x ′)κ(x ′)∇T (x ′)dx ′, (1)

where J is the heat flux, w the delocalization kernel, k the
classical Spitzer Harm collisional conductivity, and T the
temperature. These kind of formulations have been also
generalized to describe radial turbulent transport of heat flux
(recent results in Ref. [16]).

We address the problem of weak collisional closure for heat
flux in a simplified framework without taking into account
the whole complexity of fusion devices. This allows one to
investigate the key nonequilibrium effects, such as the lack
of local thermalization, in a tractable approach that will shed
light into the minimal model required to properly tackle the
more complex issues in actual tokamaks.
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A considerable insight on the nature of nonequilibrium
steady states has been achieved by considering simple stochas-
tic models that describe interaction among “particles” at the
mesoscopic level. This class of systems has the invaluable
advantage of being pretty straightforward to simulate by
Monte Carlo type of methods and, in some cases, to allow
for an analytical solution, which is usually unfeasible in
the deterministic cases. Actually, many general properties of
nonequilibrium states are inferred by such simplified models,
thus opening the way to general concepts and approaches
[17,18]. For heat conduction problems [19–21], the simplest
level of modeling amounts to considering local energies as
random variables on a lattice [22]. In this context, a model
that can be explicitly solved is the Kipnis-Marchioro-Presutti
(KMP) lattice model, in which stochastic collisions mix the
energy of neighboring particles, conserving the total energy
[23]. This model is proven to satisfy Fourier’s law when put
in contact with two external reservoirs yielding a linear tem-
perature profile. Energy-conserving stochastic noise has been
also used in lattice model systems, as natural generalizations
of KMP and of the simple exclusion process [24]. In the same
perspective, lattices of coupled oscillators subject to energy-
and momentum-conserving noise have been also discussed
to describe anomalous heat conduction problems and the
associated steady-state correlations properties [25,26]. In this
paper, we introduce a simple one-dimensional (1D) stochastic
model that contains the minimum ingredients to study the prop-
erties of the transition from local to nonlocal transport. The
dynamics inspired by the above-mentioned KMP model [23]
is supplemented by interaction rules introduced to describe
the salient features of Coulomb interaction and leading to an
energy-dependent thermalization mean free path.

In the same spirit we aim at bringing new understanding of
transport properties of plasma starting from such simplified
models. Indeed in the fusion plasma community there is
an urgent need for understanding and predicting the heat
flux impacting the materials, a crucial point for the device
performance. On the other hand, data interpretation from
the large kinetic codes usually employed in the theoretical
analysis is not straightforward due to the complexity of the
magnetic topology and the many physical mechanisms at
play. Simplified models would provide a better insight and
guidance for that interpretation. However, one must then
aim at removing any free parameter that cannot be fixed by
available experimental evidence. Determining the appropriate
and accurate transport properties then relies on dedicated
investigation of the underlying mechanisms [Eq. (1)], as
addressed in the present paper.

The paper is organized as follows. In Sec. II the stochastic
model is presented, and the interaction rule between parti-
cles as well as the probability of the energy exchange are
introduced. In Sec. III we study the equilibrium properties of
the system as a function of its average energy. In particular,
the thermal diffusivity is computed using both the Green
Kubo formula and nonequilibrium simulations. Then, in
Secs. IV and V, we analyze the transport properties of the
stochastic model using the telegraph equation. This mean-field
description is obtained using a generalized Fourier’s law
with a delocalization kernel exponentially decaying in time
and space. Finally, spatial correlations in the nonequilibirum

FIG. 1. (Color online) Sketch of the 1D particle model. The
dynamic step is represented with red (drak gray) horizontal arrows;
the interaction step is represented with green (light gray) vertical
arrows.

steady state are investigated in Sec. VI and conclusions and
discussions are presented in Sec. VII.

II. DESCRIPTION OF THE MODEL

We aim at characterizing plasma heat transport with a
probabilistic model. This model is sketched in Fig. 1. At each
lattice site i = 1, . . . ,N we have a pair of particles of energies
E+

i and E−
i : the plus and the minus sign indicates particles

moving in opposite directions with constant velocity. Their
discrete-time dynamics consists of two steps. At each time t ,
we first perform a free convection of energy:

E±
i (t) −→ E±

i±1(t ′). (2)

We assume periodic boundary conditions assumed as for
a ring geometry. Taking inspiration from the KMP model,
we consider that the energy exchange mechanism between
particles occurs at each lattice site i at any time t and amounts
to a random redistribution of the total energy of the particles.
In formulas

E+
i (t + 1) = r[E+

i (t ′) + E−
i (t ′)] = 2rEi(t

′),
(3)

E−
i (t + 1) = (1 − r)[E+

i (t ′) + E−
i (t ′)] = 2(1 − r)Ei(t

′),

where we have defined the energy on the site i as Ei(t) =
[E+

i (t) + E−
i (t)]/2 and with r a random number uniformly

distributed in [0,1].
In order to include an important ingredient coming from

the physics of the interactions among plasma particles, we
mimic an effective Coulomb-like cross section by assuming
that the energy exchange may occur with a rate P inversely
proportional to the square of the energy of the interacting
particles. Specifically,

P = C

1 + (Ei/Eint)2
, (4)

where Eint is an energy scale, 0 < Ei < +∞, and C is a
suitable constant. For Ei � Eint, the interaction probability
is energy independent meaning that low-energy particles are
strongly interacting. In this asymptotic limit, rule (4) is
expected to yield a standard diffusion mechanism. On the
other hand, for Ei � Eint the collision rate vanishes and thus
particles travel almost ballistically.

In tokamaks, plasma particles interact with hot and cold
localized sources (e.g., fast particle heated region, hot-cold
turbulent structures, etc.) that are schematized as external
reservoirs. We can introduce two heat sources located at the
lattice sites ih and ic (typically ih ∼ N/4 and ih ∼ 3N/4)
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and with inverse temperatures βh,βc, respectively. To keep
the interaction rule as simple as possible and in analogy
with other models of heat baths [20], we assume a strong
coupling with the sources: at each time step, energies E±

i , at the
source sites i = ih,ic are assigned new random values drawn
from the Maxwell-Boltzmann distributions βh exp(−βhε) and
βc exp(−βcε), respectively.

In the simulation hereby discussed, the update is syn-
chronous on all lattice sites; one could make it sequential by
updating randomly chosen sites from a uniform distribution,
but we do not expect significant modifications with respect to
the synchronous rule.

A related mean-field model has been discussed in Ref. [27].

III. STUDY OF THE EQUILIBRIUM PROPERTIES:
CHARACTERISTIC THERMALIZATION SCALE

A. Relaxation to equilibrium

In order to study the equilibrium, we consider a domain
without sources and let the system evolve starting from an
arbitrary random state. Let us denote by f (E,t) the distribution
function of energies of all particles at time t . As an example,
we consider the case such that the energies of the particles
are initialized with f (E,0) being a step distribution function
centered on the average energy E0 (see the curve labeled
t = 0 in Fig. 2). As expected, after a certain number of time
steps, f (E,t) approaches a Maxwell-Boltzmann distribution
f0(E) = β exp(−βE) where β = 1/T = 1/E0; see Fig. 2(a).
To monitor this convergence to equilibrium we considered
the distance d(t) = 〈‖f (E,t) − f0(E)‖〉. The ‖ · ‖ denotes L1

norm while 〈·〉 means an average over several trajectories.
At long enough times, this distance decays exponentially
to zero d = F exp(−t/τr ); see Fig. 2(b). Actually, a closer
inspection of the data suggests that the equilibration process
occurs in two stages, compatible with a double exponential fit.
We can argue that the first time scale is associated to some
transient equilibration that may depend on the chosen initial
conditions. What actually governs the asymptotic behavior of
the relaxation to equilibrium is the final stage characterized by

FIG. 3. (Color online) Characteristic times of the interaction as
a function of system average temperature E0. Blue dots: relaxation
time to equilibrium; see Sec. III A. Red squares: fitting value of τ in
Eq. (14). Green diamonds: cutting time τc = 1/ωc. Lines: power law
fit.

a time scale that we denote τr . Numerical evidence suggests
that the latter time scale is proportional to the square of the
average energy, τr ∝ E2

0 (see the lower line in Fig. 3). This
is a consequence of the choice of the interaction rate P in
Eq. (4). More precisely, the relaxation time τr can be seen as the
number of events required for probability of having interacted
to be of order 1, that is for independent events τrP = 1.

B. Fluctuations around equilibrium

In the spirit of linear-response theory, properties of the
fluctuations of equilibrium currents yield information on
transport coefficients. In the present context we are interested
in the correlation function of the heat current J , cJ (τ ) =
〈J (t)J (t − τ )〉, whose time integral is related to the thermal
diffusivity by the Green-Kubo formula [28]

D = 1

kBT 2N

∫ ∞

0
cJ (τ )dτ, (5)

FIG. 2. (Color online) Relaxation to equilibrium for N = 1000 particle sites, E0 = 10, and Eint = 5. (a) Initial (thick blue), transient (green),
and equilibrium (thin red) distribution of energy; symbols: equilibrium exponential distribution f0. (b) Distance to equilibrium distribution
versus time. Full blue: simulation results; dotted red: fit with exponential decay with decay time τr ; dashed green: fast transient relaxation of
initial conditions.
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FIG. 4. (Color online) Power spectrum of total heat flux for different average energies E0. Simulation parameters: N = 1000 and Eint = 5.
The black line represents the ω−2 asymptotic behavior. (a) Results without sources and fits with Lorentzian. The vertical lines correspond to
the respective cutting frequency ωc. (b) Results with sources. The vertical dashed line indicates the characteristic frequency associated with
system size ωsystem. Units on the vertical axis are arbitrary.

where T is the equilibrium temperature of the system defined
above and N the number of sites, defining the length of the
system. We ignore here the difference between diffusivity
and conductivity since they only differ by a proportionality
constant. More generally, the time behavior of cJ yields
information on relaxation processes and thus on nonsta-
tionary energy transport. By Wiener-Khintchin theorem, this
description is equivalent to considering the power spectrum
Sp[J ](ω) = F[cJ (τ )] where F denotes the Fourier transform.

In our model, the heat flux at site i is defined as
ji(t) = E+

i−1(t) − E−
i (t) as can be found by writing the lattice

continuity equation Ei(t + 1) − Ei(t) = −ji+1 + ji . The total
heat flux traveling in the system is the sum of all the local
contributions J (t) = ∑

i ji(t).
The application of Green-Kubo formula for open, finite

systems is still a matter of debate [29], so it is relevant to
perform a comparison between different statistical ensembles.
In a first series of experiments, we considered the micro-
canonical system with the sources turned off. In Fig. 4(a) we
plot the power spectra of J for different values of the system
energy E0. The data are fitted with a Lorentzian shape, i.e.,
Sp[J ](ω) ≈ C/(ω2 + τ−2

c ), assuming that the time correlation
function cJ decays exponentially with a single1 characteristic
time scale τc. From the data we found that τc ∼ E2

0 , see the
lower line in Fig. 3, namely the same dependence of the
thermalization time τr .

The time τc defines a characteristic length λc which
represents a particle mean free path. Indeed, if a particle moves
on a length smaller than λc (or on a time smaller than τc),
the interaction probability is very small and the transport of
energy can be considered as ballistic. On the contrary, on
scales larger than λc, it is likely that a particle undergoes

1Admittedly, the Lorentzian fit is not very accurate for ωτc ∼ 1. A
possible improvement would be to consider a two-parameter fitting
with two characteristic time scales, somehow akin with the two
relaxation stage illustrated in Fig. 2. For simplicity, we ignored this
refinement henceforth.

several interaction events hence reducing its correlation with
its initial conditions. The particle thermalizes and the energy
transport can be thereby described as a standard diffusion
process.

This observation is useful to interpret the data for the
canonical case in which the system interacts with two sources
both having the same temperatures βh = βc corresponding to
an average system energy equal to the value E0 employed in
the microcanonical setting. The heat flux power spectra for
different values of E0 are reported in Fig. 4(b).

At small enough energies λc � N microcanonical and
canonical spectra are almost the same (compare the lower-
lying curves in Fig. 4). Conversely, for larger E0 (λc ∼ N )
differences are significant. In particular, in the presence of
sources the spectra display oscillations. This is a consequence
of the presence of localized thermal sources in the lattice.
More precisely, the particle transit time τs between the sources
corresponds to the characteristic time of the oscillations of the
spectra. Despite this oscillating behavior, one observes at any
value of E0 a flat profile of the spectra for small frequencies,
ω < 1/τs . This is due to the fact that particles lose memory
when interacting with the sources and no correlation can be
expected for times larger than τsources.

Another difference between the microcanonical and the
canonical cases is shown in Fig. 5 where the thermal diffusivity
as a function of the average energy of the system is shown.
One can conclude that the Green-Kubo relation (5) evaluated
in these two ensembles yields the same result only for small
enough energies. For a high value of E0, a quasiballistic
regime where D grows proportionally to E2

0 is observed for
the microcanonical data, while the canonical data exhibit a
saturation of the ballistic regime and D levels off at half of the
system length N/2. This upper bound is reached because any
particle must at least interact with the sources. These results
can be explained from the following considerations on the
Green-Kubo formula:

D = 1

NT 2

∫ ∞

0
cJ (τ )dτ ≈ 1

NT 2
〈J 2〉τcor,
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FIG. 5. (Color online) Comparison of heat diffusivities computed
by nonequilibrium simulations for three different lattice sizes (circles,
squares, and triangles) and with Kubo-Green formula (N = 1000,
Eint = 5); stars and crosses correspond to the data with and without
sources, respectively. The horizontal lines mark the two asymptotic
values D ≈ 1 and D ≈ N/2; for comparison we draw a line
corresponding to D ∼ E2

0 (dash-dotted).

where τcor is defined as the characteristic correlation time.
From equilibrium distribution of energy, the local heat flux
ji can be described by a normal law centered on zero and
with a standard deviation of

√
2T and, consequently, the

total heat flux 〈J 2〉 = 〈∑N
i=1 ji〉 = 2NT 2. Concerning the

correlation time, one can distinguish between three cases.
For small enough temperatures such that the particle mean
free path is shorter than the distance between the sources, the
correlation time is inversely proportional to the probability
rate of interaction τcor = 1/P . For high energies E0, the mean
free path becomes larger than the distance between sources
and the correlation time is then the transit time τs = N/2. The
threshold between collisional and ballistic regime is reached
for E0 >

√
N/2Eint = Eball. One finally obtains

D ≈

⎧⎪⎨
⎪⎩

1 if E0 � Eint,(
E0
Eint

)2
if Eint < E0 < Eball,

N
2 if Eball < E0.

(6)

For comparison, in Fig. 5 we report also the values of D

computed by nonequilibrium simulations. Those are obtained
by computing the average heat current divided by the applied
gradient 2(β−1

c − β−1
h )/N . The temperature difference is fixed

to 20% of the average, to ensure that the gradient is small
for the considered sizes. The current can be evaluated by
averaging either the energies exchanged with the sources or
the above defined current, J . Equality of such two quantities
(within statistical fluctuations) is checked to ensure that the
steady state is attained on the time scale of the numerical
simulations (typically 105 time steps). It is noteworthy that the
canonical Green-Kubo data accounts very accurately for the
nonequilibrium measurements of the finite system.

IV. GENERALIZED FOURIER LAW

The first step to analyze the transport properties of the
stochastic model is to determine whether the energy flux
can be expressed using the linear-response approach. At a
macroscopic level, one uses the most general linear relation
between the energy current J and the local temperature

gradient. Precisely, one can express the heat flux with a
generalized Fourier law where J takes the form of the
spatiotemporal convolution of the temperature gradient with a
memory kernel K [30],

J (x,t) = −
∫ ∞

−∞
dx ′

∫ t

−∞
dt ′K(x − x ′,t − t ′)

∂T

∂x
(x ′,t ′). (7)

The temporal evolution of the temperature field is given (up to
some dimensional constant) by the heat equation:

∂T

∂t
(x,t) = −∂J

∂x
(x,t). (8)

Making use of the Laplace-Fourier transform

Ỹ (k,ω) =
∫ ∞

−∞
dx

∫ ∞

0
dt Y (x,t)ei(kx−ωt),

Eqs. (7) and (8) yield the relation

T̃ (k,ω) = F[T (x,0)](k)

iω − k2K̃(k,ω)
, (9)

where F[T (x,0)] is the Fourier transform of the initial data.
The simplest phenomenological form of the kernel is the

one in which memory decays exponentially in both time and
space,

K(x,t) = D

2λτ
exp

(
− t

τ

)
exp

(
−|x|

λ

)
, (10)

where τ and λ are the characteristic time and space scales
above which the heat transfer can be described by a diffusion
process. In the definition we choose the coefficients in such
a way that the usual Fourier law J = −D ∂T

∂x
is recovered for

a constant and time-independent temperature gradient. The
Laplace-Fourier transform of K is thus given by

K̃(k,ω) = D

(1 − iτω)(1 + λ2k2)
. (11)

This means that T̃ (k,ω) may have poles at complex frequencies
and thus that relaxation may occur in the form of damped heat
waves [30]. In order to obtain some insight on what to expect
from our model, let us for the moment drop the terms in λ. The
Laplace-Fourier transform of the heat equation then reduces to

T̃ (k,ω) = F[T (x,0)](k) (−iω + 1/τ )

−ω2 − iω/τ + Ak2
, (12)

which [assuming ∂tT (x,t) = 0 for t = 0] is also the
Laplace-Fourier transform of the telegraph equation [30]:

∂2T

∂t2
+ 1

τ

∂T

∂t
= A

∂2T

∂x2
. (13)

For τ � 1, that is to say a short mean free path, the telegraph
equation becomes the equation of diffusion with a diffusion
coefficient Aτ . For τ � 1, the first derivative vanishes and
one finds the wave-propagation equation with a wave velocity
v = √

A.

V. NUMERICAL EVIDENCES OF MEMORY EFFECTS

In this section, we perform numerical simulations with the
stochastic model to investigate if its behavior can be described
by this effective formulation.
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FIG. 6. (Color online) Dynamical structure factor for E0 = 5.
Full lines represent simulation results. One notices the resonance
for high values of k denoting a ballistic transport at small scales
that differs from the diffusive transport at large scales (no resonance
for low value of k). The low-frequency part of the data have been
fitted (symbols) with the function B/[(ω2 − ω2

0)2 + (ω/τ )2] derived
by Eq. (14) under the approximation ω � 1/τ where the numerator
simplifies to a constant.

A. Equilibrium fluctuations

In this part, we study the spatiotemporal evolution of
the fluctuations around equilibrium. To compare with the
above hydrodynamic approach, we compute numerically
the dynamical structure factor 〈|Ẽ(k,ω)|〉, where Ẽ(k,ω) is
the spatiotemporal Fourier transform of the energy field Ei(t).
As usual, 〈·〉 denotes the average over several realizations.
One tries to fit the results obtained numerically with the
formula found analytically for the time and space exponen-
tial memory kernel. According to Eqs. (9) and (11), one
obtains

〈|Ẽ(k,ω)|2〉 = T 2
0 (ω2 + 1/τ 2)(

ω2 − ω2
0

)2 + (ω/τ )2
, (14)

with

ω2
0 = D

τ

k2

1 + λ2k2
. (15)

To derive Eq. (14) from Eq. (9), we let

〈|Ẽ(k,ω)|2〉 = 〈|T̃ (k,ω)|2〉
and assume that the average over the initial random conditions
of F[T (x,0)] yields a constant denoted by T0.

The numerical results and fits are plotted in Fig. 6 in the case
E0 = Eint = 5. For high values of k (k = 0.1), i.e., at small
scales, we observe a peak at finite frequency that indicates
some kind of oscillating response, that is the propagation of
damped temperature waves. On the contrary, at large scales
(k = 0.01), the peak disappears and the spectrum shows a
monotonic decay that signals the onset of a diffusive behavior.
We have also observed that for small (large) values of E0, i.e.,
at low (high) temperature, the behavior is diffusive (ballistic)
for all values of k.

Moreover, we find that ω0 is approximately proportional to
k, i.e., typically we are dealing with regimes where λk � 1.

Where τ is concerned, one finds that it scales as τ ∼ E2
0 , which

is consistent with the data shown in Fig. 3.

B. Evolution of perturbations

The dynamics of disturbances is a typical nonstationary heat
conduction problem [31,32]. From Eq. (12) it is expected that
their propagation would display a transition from a diffusive to
a wavelike propagation behavior upon increasing the energy.
Numerical studies have been performed by “thermalizing”
the lattice at energy E0 according to a Maxwell-Boltzmann
distribution and then heating a small domain of the lattice
at the energy 1.5E0. Figure 7 shows this finite amplitude
perturbation propagates in space and time for different values
of E0.

It can be observed that for small values of E0 the pertur-
bation diffuses, whereas for E0/Eint � 1 one observes the
ballistic propagation of two temperature fronts, in qualitative
agreement with the telegraph equation (13).

C. Temperature profiles at steady state

In Fig. 8 we plotted three temperature profiles at steady
state for different values of the initial average temperature of
the system E0. For each case, the temperatures of the source
are chosen as Ehot/E0 = 105% and Ecold/E0 = 95%. One
plots the average temperature Ei as well as the forward-going
and backward-going particle temperature (E±

i ). One notices
that for low values of temperature, one has Ei ≈ E+

i ≈ E−
i

and one recovers a quasilinear profile interpolating between
the two source temperatures that is similar to the temperature
profile that could be found considering the Fourier law
J = −κ∇T . On the contrary, when the temperature is higher,
one observes a departure between E+

i and E−
i that is a

consequence of the weakness of the interaction for such
temperatures. This difference between Ei , E

+
i , and E−

i can be
seen as the failure of local thermal balance. In this case, the heat
transport between the sources is obviously ballistic. When one
considers the profile of the average temperature, one notices a
quasilinear profile in the region between the sources. However,
one observes steep temperature gradients close to the sources.
This suggests the existence of a boundary layer around source
position.

A possible explanation can be drawn by solving Eq. (8)
with the kernel of Eq. (10):

J (x) = − D

2λ

∫ ∞

−∞
dx ′ exp

(
−|x − x ′|

λ

)
∂T

∂x
(x ′). (16)

This expression is quite similar to the one proposed by Luciani
[10] to describe heat flux for steep temperature gradients in
plasma. The profiles obtained fit quite well with the steady-
state solution of the stochastic model (see Fig. 8). Notice that
the solution correctly reproduces the temperature drops at the
sources, that could not be obtained by the standard Fourier
law. More precisely, the Fourier transform of the heat equation
gives according to Eq. (11)

Dk2

1 + λ2k2
T̃ = S̃, (17)
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FIG. 7. (Color online) Propagation of a perturbation for different temperatures. (a) Low temperature E0/Eint = 0.2 (diffusive transport).
(b) Intermediate temperature E0/Eint = 1. (c) High temperature E0/Eint = 4 (ballistic transport).

where S̃ denotes the Fourier transform of the sources. One
notices that this equation can be rewritten as

T (x) = T (0) + ∂T

∂x
(0) x

+ 1

D

∫ x

0
dx ′

∫ x ′

0
dx ′′S(x ′′) + λ2

D
S(x), (18)

where S(x) = S0[δ(x − xh) − δ(x − xc)] in the case we con-
sider here. The first contribution describes solution of the
standard diffusion law. It is the dominant term if λ2 � D. The
second term that becomes dominant if λ is important produces

nonlocal effects and causes the strong gradients localized near
sources.

VI. SPATIAL CORRELATIONS
IN THE NONEQUILIBRIUM STEADY STATE

In this section, we consider the steady nonequilibrium state
with heat sources at different temperatures.

Analogous to what was found in other stochastic and
deterministic models [24,26,33], we expect the onset of a
nonzero heat flux to be characterized by long-range spatial
correlations. In the KMP model, correlations are given by the
expression (see [17])

Cx
ij =

{
(T1−T0)2

N+1
i
N

(
1 − j

N

)
if 0 � i < j � N,

〈Ei〉2 + 2 (T1−T0)2

N+1
i
N

(
1 − i

N

) + (T1−T0)2

N(N+1) if 0 � i = j � N,
(19)

where the spatial autocorrelation function Cx
ij is defined as

Cx
ij = 〈EiEj 〉 − 〈Ei〉〈Ej 〉 (20)

and 〈Ei〉 denotes the value of the mean energy at site i:

〈Ei〉 = T0 + (T1 − T0)
i

N
. (21)

We have computed numerically Cx
ij for our model. For low

values of E0 (diffusive regime) data agrees with theoretical

predictions (that are essentially equivalent in the KPM model),
while for large values of E0 (ballistic regime) no spatial
correlation is present (see Fig. 9).

VII. CONCLUSIONS AND DISCUSSIONS

We have presented a 1D stochastic model for studying the
main features of heat transport in weakly collisional media.
Taking inspiration from the KMP model for collisional heat
transfer, we consider an ensemble of N particles moving with
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FIG. 8. (Color online) Temperature profiles at steady states with sources for different values of E0 [(a) E0 = 0.1; (b) E0 = 2; (c) E0 = 10].
For all cases, Eint = 0.5.

constant velocity on a ring geometry and with a probability of
interaction depending on their energy. The interaction rule is
the crucial ingredient that makes this model relevant for plasma
physics. Depending on the energy injected in the system, the
model is able to describe collisional transport (low-energy
case) and the ballistic one (high-energy case), as well as the
intermediate cases.

A series of numerical experiments is carried out in order
to study equilibrium properties, temporal and spatial memory
effects, and the validity of a mean-field description for the
observed results. First we have verified that the system relaxes
to the Maxwell-Boltzmann distribution of energy with a
decay time that has the desired dependence with system
temperature. Then interesting results are obtained on thermal
diffusivity considering fluctuations around equilibrium. We
have estimated thermal diffusivity using the Green Kubo
formula, both using microcanonical and canonical simulations.
A comparison of the results shows that these estimations
coincide for the low-energy case (collisional transport) while
increasing the mean energy E0 of the system and, going toward
the ballistic case, the microcanonical diffusivity diverges as E2

0
while the canonical diffusivity saturates to a value proportional
to the distance between the two sources. Nonequilibrium
simulations are performed for studying this noncollisional
case. One remarks that the canonical Green Kubo data accounts

very accurately for the nonequilibrium measurements of the
finite system.

In the second part of the paper we investigate spatiotemporal
memory effects of heat transport simulations and how they
vary depending on the average energy of the system. A
generalized formulation of the Fourier law is introduced and
a delocalization kernel exponentially decaying in time and
space is assumed. In this case we show that the heat equation
corresponds to the telegraph equation. It is noteworthy that this
macroscopic description accounts very well for the numerical
results obtained from the stochastic microscopic dynamics.
The spectral analysis of energy fluctuations around equilibrium
shows that for small scales and intermediate values of the
average energy, damped temperature waves propagate into
the system as expected from the telegraph equation. More
generally, we have verified that the telegraph equation properly
encompasses the transition from diffusive to ballistic transport
according to system collisionality.

Besides, the stochastic model also shows spatial memory
effects when it is brought out of equilibrium. This analysis is
done by studying steady-state energy profiles when localized
heat sources are added in the system. The standard linear
temperature profile is recovered for low-temperature cases,
when the effect of the probability of interaction vanishes and
when the system response is properly described by standard

FIG. 9. (Color online) Spatial correlation function close to the cold source for different values of interaction temperature [(a) Eint = 0.001;
(b) Eint = 1000]. Results show spatial correlations at low temperature (left) in good agreement with the analytical model developed in Ref. [17]
plotted with lines for different system sizes N [N = 25 (blue squares), N = 50 (green triangles), and N = 100 (red circles)]. At high temperature
(right), the spatial correlations disappear. In these simulations, one has T1 = 10 and T0 = 0.1.

023102-8



PARTICLE MODEL FOR NONLOCAL HEAT TRANSPORT IN . . . PHYSICAL REVIEW E 87, 023102 (2013)

Fourier law. On the opposite, when the system temperature is
high enough, a boundary layer develops around the sources
with steep temperature gradients, as observed experimentally
in tokamak edge plasma. These kind of profiles are well
described by the generalized Fourier law that we have assumed.

Finally, we point out that the simulation results on heat
transport and system response obtained from this first-
principle stochastic model are very well described by the
nonlocal mean-field formulation we propose, not only in the
collisional limit but also when collisionality is very small and
local equilibrium breaks.

Based on the results presented here, we are implementing
the nonlocal heat flux expression in the transport code
SOLEDGE2D [34]. This code simulates the plasma in realistic
tokamak geometries and aims at giving quantitative predictions
of the heat flux on plasma facing components. A key issue is
the thickness of the device boundary layer that is determined
by a balance between transverse and parallel transport. As
a consequence, well established models that account for the
parallel transport are crucial in reducing the uncertainty margin
of these key parameters that directly impact the design of the
fusion devices. Preliminary results obtained with the nonlocal

form developed here demonstrate that in the high-temperature
regimes (low collisional plasmas) the heat flux behavior in the
presence of strong temperature gradients is properly described.
In particular, the saturation of the heat flux diffusivity, as
observed in Fig. 5, appears to be consistent with experimental
evidence. Alternative means to describe the parallel transport
properties, such as the temperature decoupling in Fig. 8,
are also contemplated. The insight given by models that are
focused on key basic transport features, as the present work,
thus proves most valuable in motivating and directing the effort
towards improved descriptions of the transport properties of
fusion plasmas.
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