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Competition between the bulk and the dissociation layer in electrohydrodynamic flow of dielectric
liquid around coplanar electrodes
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An experimental and numerical study has been conducted on the electrohydrodynamic flow around coplanar
electrodes with a dielectric liquid: dodecane mixed with the surfactant Span 80. It is shown that the flow is
asymmetric, although the electrode is symmetrically arranged, and numerically, we have shown that a difference
in the ionic size can reproduce such asymmetric patterns. It is also found that the dissociation layer effect becomes
more important in determining the flow pattern than is predicted from the conventional theory where the Langevin
formula is used for the recombination constant. In numerical simulations, reducing the recombination constant
to 0.035–0.055 times the Langevin value turned out to produce good comparisons between the experimental and
the numerical results for the electrode pairs with 1 and 0.2 mm gaps.
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I. INTRODUCTION

The dielectric liquid is characterized by very low electric
permittivity and a very low concentration of free ions.
Therefore, it has been frequently used as an insulating material
in engineering applications, e.g., electric power transformers
and electrophoretic image displays (see Ref. [1] for the
relevant literature). Long exposure of the dielectric liquid to
the environment, however, causes unavoidable entrainment of
moisture and impurities, which, subjected to a high electric
field, can transform to free ions and can cause charge accumu-
lation and electrical breakdown. Therefore, understanding the
creation of charge, ion transport, and fluid flow of a dielectric
liquid is important for the optimum design and operation of
such electrical devices.

When an electric field is applied across a pair of electrodes
submerged in a dielectric liquid, free ions are created from
the impurities (ion dissociation), and simultaneously, the free
cations and anions combine to become neutral ion pairs (re-
combination). In the bulk, the ion dissociation is in equilibrium
with the ion recombination, and so the bulk remains almost
at a neutral state. Separately, the rate of ion dissociation
has been found to increase with the applied electric field
intensity, which is called the Onsager effect. Therefore, we
can expect a nonuniform distribution of ion concentrations
and, subsequently, a nonzero conductivity gradient even in the
bulk. As is shown later, when the conductivity gradient is not
orthogonal to the electric field, charge is created. Together
with the charge injection from electrodes, it is the main cause
of the electrohydrodynamic (EHD) flow of dielectric liquids
under a high electric field. On the other hand, within the
thin dissociation layers (to be referred to as DSL hereafter)
near the electrodes, the ion dissociation dominates the ion
recombination, and counterion concentration is higher than
the coion concentration. Therefore, the DSL is thin, but the
level of charge is much higher than the bulk.

There is a strikingly different aspect of EHD flow gen-
eration between the bulk space charge and the DSL charge.
The former drives the fluid flow spontaneously because the
body force is spread over the whole domain, whereas, the
latter drives the flow with a time lag because the body force is
confined to thin layers on the electrode surfaces.

There have been few papers on the flow of a dielectric
liquid created by the Onsager effect in the bulk. Ryu et al.
[2] conducted experimental studies on the EHD flow around
circular conducting cylinders and over a nonconducting sphere
subjected to a uniform external ac electric field. More recently,
Kim et al. [3] studied the realization of the Onsager effect
in fluid pumping with three cylindrical electrodes. They
attributed the observed fluid flow to the nonzero space charge
density caused by the Onsager effect in the bulk. In their papers,
however, the effect of the DSL was neglected.

The primary object of this paper is to demonstrate that the
flow driven by the DSL becomes more important than that
by the bulk as the geometric scale is decreased. In addition,
we show that reproduction of the experimental data can be
accomplished by significantly reducing the recombination
constant.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A. Full equations for two-dimensional simulation

We consider a dielectric liquid of density ρ and viscosity
η confined within a square cavity of side length L as shown
in Fig. 1. A pair of electrodes is located at y = 0, the bottom
of the cavity, with the gap distance d. We take L = 16d large
enough that the EHD flow around the gap becomes as free as
possible from the sidewall effect.

Governing equations for the steady-state incompressible
fluid flow driven by the Coulomb force, acting on ion
concentrations, can be written in terms of the fluid velocity
u and the pressure p as follows:

∇ · u = 0, (1a)

ρ (u · ∇) u = −∇p + η∇2u + ρqE, (1b)

where ρq = e(z1c1 + z2c2) is the space charge density, e is the
elementary charge, c1 and c2 are concentrations of the cation
and anion, respectively, and zi is the valence; we consider
monovalent ions and take z1 = 1 and z2 = −1. Furthermore,
E = −∇V is the electric field, and V is the electric potential.
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FIG. 1. Computational domain with a pair of coplanar electrodes
on the bottom wall subjected to a dc voltage difference V0.

The potential is given by solving the Poisson equation,

ε0εr∇2V = −ρq, (2)

where ε0 and εr are the vacuum permittivity and the relative
permittivity of the fluid, respectively. In this paper, we
determine the charge density by solving the full steady-state
transport equations for binary ions of unit valence. The
concentration of ion i, ci , is described by the transport
equation,

u · ∇ci + ∇ · (−Di∇ci + ziμiEci) = Ri. (3)

Here, Di = kBT /(6πηai) is the diffusivity, μi = e/(6πηai)
is the mobility, ai is the ionic radius, kB is the Boltzmann
constant, and T is the temperature. The right-hand-side (RHS)
term of Eq. (3) reading

Ri = α
[
c2

0FO(b) − c1c2
]

(4)

denotes the source of ion concentrations [1]. The first term
corresponds to the rate of ion dissociation, and the second
corresponds to the rate of recombination where c0 is the zero-
field concentration. The function,

FO(b) = I1(2b)/b (5)

represents the Onsager effect. I1 is the modified Bessel
function of the first kind of order 1, b = 2

√
γE is a function

of the field intensity E = |E|, and

γ = e3/
(
16πε0εrk

2
BT 2

)
(6)

is the Onsager constant [1]. The recombination constant α in
Eq. (4) is to be obtained from Langevin’s formula [4],

αL = e(μ1 + μ2)

ε0εr

. (7)

However, in order to match the experimental results, in this
paper, we propose to reduce this constant with the reduction
factor κ; α = καL. A more detailed discussion on the Langevin
formula is given in Sec. IV. Later in this paper, we see that a
significant reduction in the recombination constant is required
to obtain successful agreement between the experimental
and the numerical results in both qualitative and quantitative
respects. For later use, we derive the order of the DSL thickness

from the balance between the conduction term ∇ · (ziμiEci)
and the ion dissociation term αc2

0FO(b) in Eq. (3) as follows:

δDSL = ε0εrE∞
2κec0

, (8)

where E∞ is the electric field evaluated at the edge of the DSL.
In deriving (8), we set zi = 1, μi = (μ1 + μ2)/2, ci = c0, and
FO = 1.

Boundary conditions for the above system of equations
are as follows: u = 0 all over the surrounding boundaries,
c2 = V = 0 on the cathode [left-hand side (LHS) electrode],
c1 = 0 and V = V0 on the anode (RHS electrode), and zero
charge (∂V/∂n = 0) and no ion flux (∂ci/∂n = 0) over the
other walls, where n denotes the coordinate normal to the
wall.

B. Simplified approximate equations for the bulk

Subtracting Eq. (3) for i = 2 from that for i = 1 yields

∇ · (σ∇V ) = 0, (9)

or ∇ · i = 0, where i = σE is the current density vector. Here,

σ = e(μ1c1 + μ2c2) (10)

is the conductivity. From Eqs. (9) and (2), we can also derive
the formula for the space charge density,

ρq = −ε0εr∇(ln σ ) · E. (11)

Note that Eqs. (9) and (11) are valid everywhere in the domain
including the DSLs. However, within the DSL, distributions
of c1 and c2 are not available without solving the ion transport
equations (3), implying that Eq. (9) is not helpful if the DSLs
are not excluded from the solution domain.

Now, we derive approximate but useful equations under the
assumption of negligible DSLs. For the bulk, we can assume
ion neutralization and equilibrium between the ion dissociation
and recombination, i.e.,Ri = 0, from which we can write

c1 = c2 = c0

√
FO(b), (12)

σ = 2eμ̄c0

√
FO(b), (13)

where μ̄ ≡ (μ1 + μ2)/2 is the algebraic mean of the mobili-
ties. Note that these are again functions of the field intensity E

because the Onsager function FO(b) = 1 + 2γE + O[(γE)2]
increases with E. Now Eq. (9) together with Eq. (13) can be
solved for the potential V with the boundary conditions for V

set the same as before. If E is small enough such that γE � 1,
Eq. (11) reduces to

ρq = −ε0εrγ∇E · E. (14)

This indicates that, when the electric field intensity increases
along the electric field direction, negative space charge density
is created and vice versa. In the neighborhood of the edge of the
anode, the direction of E opposes that of ∇E, so we can expect
positive charge density. Similarly, near the cathode edge, we
expect negative charge density.

C. Numerical methods

We have solved the above system of equations by using the
commercial software COMSOL (version 4.3). A preliminary
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TABLE I. Radius of free ions in nonpolar liquids reported in the
literature.

Solvent Surfactant Ionic radius (nm) Source

Dodecane AOT 1.5 Hsu et al. [5]
Dodecane AOT 1.6 Roberts et al. [6]
Dodecane AOT 1.5 Kemp et al. [7]
Dodecane Span 80 2.25 Abou-Nemeh and Bart [8]
Hexane Span 85 1.4 Guo et al. [9]
Kerosene Span 80 14.6, 0.5 Dukhin and Goetz [10]

calculation, however, revealed that the magnitude of the
ion-concentration difference c1 − c2 is much smaller than that
of c1 or c2 itself over the whole domain, except in the thin
DSLs; typically, |c1 − c2|/c1 ∼ 10−5. Thus, distribution of the
numerically given space-charge density ρq shows a significant
number of wiggles, in particular, near the electrode edges.
To partly overcome this, we introduce perturbed variables fi

defined as ci = c0
√

FO(b) + fi ; fi tends to vanish in the bulk
thanks to (12). We substitute this into Eq. (3) and move all
the terms to the RHS, except those which follow the standard
form of the transport equation (3) specified by COMSOL. The
RHS terms derived in this way serve as modified sources to
the transport equations for fi .

Since thin DSLs are expected to exist near the electrodes,
fine structured boundary-layer grids are constructed near the
electrodes. Using formula (8), we can predict the thickness of
the DSL for κ = 1 in the range from 0.05 μm at the corners,
x = ±L/2, to 1 μm at the electrode edges, x = ±d/2, where
E∞ is approximated as E∞ = V0/(πx). After several test runs,
we set the smallest grid size �y on the electrode walls at 1 nm.
In addition, we need to build clustered triangular grids around
the electrode edges to resolve the steep gradient of the variables
there. Test runs indicate that the maximum element size of the
free triangles in controlling the clustering around the edges
should be set less than 20 μm.

Aside from the two-dimensional (2D) numerical simula-
tion, we also performed a one-dimensional (1D) simulation
on the DSL near the electrode under the assumption that the
tangential derivatives of variables are negligible compared
with the normal derivatives. A detailed description of the
numerical methods is given in Ref. [1]. The 1D simulation is
useful, for example, in checking the validity of the boundary-
layer grids built near the electrodes for the DSLs.

D. Parameter setting

There are several parameters involved in the above set of
equations to be specified for numerical simulation. We fix
T = 295 K, εr = 2, and η = 1.34 × 10−3 Pa s. In order to
determine the mobilities, we use the Einstein equation μ =
e/(6πηa), and thus, we must know the ionic radius. Table I
lists the ionic radii of some of the nonpolar liquids reported in
the literature. Since we use dodecane as the solvent and Span
80 as the surfactant mixture, we choose 2.25 nm as the averaged
ionic radius following Abou-Nemeh and Bart [8]. Since we
know the averaged ionic radius, we can calculate the averaged
mobility from the Einstein relation. However, even though the
mobility ratio m = μ2/μ1 is specified, mobility of each ion

takes a different value depending on how the averaged mobility
is defined. When the algebraic mean of the mobility μ̄ is
used, we can get each mobility by using μ1 = 2μ̄/(1 + m) and
μ2 = mμ1. However, the Einstein equation shows that each of
the mobilities is in a reciprocal relation with the corresponding
ionic radius. So, the Einstein equation, in its original form,
cannot be directly used in calculating μ̄ from the algebraic
mean of the ionic radius ā ≡ (a1 + a2)/2. On the other hand,
when the geometric mean μ̂ ≡ √

μ1μ2 is used, the Einstein
equation allows us to evaluate it directly from the geometric
mean of the ionic radius â ≡ √

a1a2 because they are in a
reciprocal relation. To summarize, for a given mean radius â

and mobility ratio m, we get μ̂ by using the Einstein equation
and get each mobility from μ1 = μ̂/

√
m and μ2 = μ̂

√
m.

Then, the zero-field concentration c0 is determined from the
zero-field conductivity σ0 = 2eμ̄c0, which is to be taken from
the first experiment as explained in the following section.

III. EXPERIMENTAL METHODS

We prepared nonpolar liquid dodecane (No. 297879,
Sigma-Aldrich). We mixed the surfactant Span 80 (No. 85548,
Sigma-Aldrich), to enhance the EHD flow following the
reasons explained in Refs. [10,11], with 0.5 wt % fraction.
Two kinds of experiments are performed with this liquid.

In the first experiment, the current-voltage curve is obtained
from a pair of facing circular disk electrodes (1.5 mm thick)
made from stainless steel; the diameter of the disks is 52 mm,
and the gap spacing is 3.7 mm. We set a ring-shaped acryl
spacer, similar to the one in Ref. [11] with an inner diameter
of 50 mm between the disks in order to avoid the singular
distribution of the field near the electrode edges. Applying a
dc voltage V0 across the electrodes by using a power-supply
amplifier (Model 610E, Trek, Inc.), we measure the current
by using a multimeter (Model 2000, Keithley Instruments,
Inc.). The data set (E, i), obtained in this way, is fitted with
the nonlinear i-E curve i = σE where the conductivity σ

is given from Eq. (13). In this formulation, we have two
unknown parameters, i.e., the zero-field concentration c0 and
the algebraic mean of the mobility μ̄, but fortunately, these
two are combined to appear in multiplication form. Thus,
we can find the zero-field conductivity σ0 = 2eμ̄c0, which
is determined in such a way that the i-E curve best fits the
experimentally measured data. Later, in 2D simulation, when
μ̄ is given, we can get c0. The degree of fitting of the theory
to the experiment is measured by the root-mean-square (rms)
error with the i-E curve.

In the second experiment, we visualize EHD flows above
the coplanar electrodes within a cavity. The indium tin oxide
glass is etched to yield a pair of electrodes having a given
gap spacing. In this experiment, we set the gaps at d = 1 and
0.2 mm. For both gaps, we build a three-dimensional glass
cavity with a side length of L = 10 mm above the electrodes
and fill the liquid to the full depth. Applying voltage differences
V0 = 1000 and 200 V between the electrodes for d = 1 and
0.2 mm, respectively, we capture the trajectories of particles
mixed in the fluid by using a high-speed CCD camera (Model
GX1050, Allied Vision Technologies, Inc.). Nylon particles
(Model 10456, Kanomax, Inc.) with diameters of 4.1 μm and
specific gravities of 1.02 are used for scattering laser light, shed
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FIG. 2. (Color online) Symbols: experimentally measured data
set (E, i) for dodecane mixed with 0.5 wt % Span 80, solid line:
fitting by the nonlinear relation i = σE with the conductivity σ

increasing with the field E following the Onsager theory. The
dashed line represents Ohm’s law with the zero-field conductivity
σ0 = 2.96 × 10−8 S/m.

on the midplane of the cavity in a sheet form. The recorded
images are then used in performing streamlines and obtaining
the 1D fluid-velocity distributions on the horizontal lines y = 1
and 0.4 mm for d = 1 and 0.2 mm, respectively.

In the flow-visualization experiment, we recorded images
for more than 10 s and paid attention to using images taken
after the flow was presumed to arrive at a steady state.
On the other hand, long-time exposure of the fluid mixture
to the electric field causes the particles to adhere to the
electrodes. Order-of-magnitude analysis of the ion-transport
equations indicates that the time scale for the ion migration
reads ts ∼ d/(μE) = 0.3 s with the typical values of the
mobility μ = 10−9m2 s−1 V−1, the gap d = 1 mm, and the
field intensity E = 1 kV/mm. The time scale for the fluid
particle’s advection can be derived as ts ∼ d/u = 1 s from
the Navier-Stokes equations and typical flow velocity u =
1 mm/s. So, in principle, the images captured, at least, 4 s
after switching on the voltage are expected to represent the
steady-state flow. However, at smaller gaps, we had to wait for
a longer time, until the flow showed a steady state.

IV. RESULTS AND DISCUSSIONS

From the i-E curve taken from the first experiment, we can
get σ0. It was found that the best fit to the experimental data
with the Onsager constant γ = 2.78 × 10−7 m/V, given from
Eq. (6), provides σ0 = 2.96 × 10−8 S/m; see Fig. 2. We also
computed the rms error with modified γ . It was found that γ =
2.62 × 10−7 m/V results in the best fit. However, this is only
6% smaller than the Onsager original constant. Considering
the unknown experimental measurement errors, in this paper,
we do not consider modification of γ from the Onsager theory.
Thus, our measurement lends further support to the validity of
the Onsager theory on the enhancement of dissociation with the
increase in the field as also shown in Refs. [11,12]. Since â =
2.25 nm was chosen, we get μ̂ = 2.82 × 10−9 m2 s−1 V−1.
Values of μ1 and μ2 are dependent on m. As a reference
value, we get c0 = 3.28 × 1019 m−3 for m = 1.

(a) 

(b)

FIG. 3. LHS: visualized and RHS: numerical streamlines ob-
tained for (a) d = 1 mm, V0 = 1 kV and (b) d = 0.2 mm, V0 =
250 V. Experimental results are taken 4 s later in (a) and 37 s later
in (b) after the start. The numerical results are obtained with (a)
κ = 0.055, m = 0.75, and (b) κ = 0.035, m = 0.6.

Figure 3 shows streamlines obtained from the experimental
visualization and numerical simulations for two gap spacings.
For the case with d = 1 mm [Fig. 3(a)], the flow pattern is
initially almost symmetric, but it becomes asymmetric after
a few seconds and remains at a steady state later on. The
experimental streamline pattern of Fig. 3(a) is obtained with
the images taken after 4 s from the start. A pair of large primary
vortices (to be referred to as the “bulk vortex” hereafter) makes
the fluid rise near the vertical central line x = 0 as indicated by
an arrow in the numerical streamlines, and after turning around,
it returns back to the gap region from both sides. Bulk vortices
are, of course, created by the Coulomb force, originating from
the nonzero space charge density in the bulk. As explained in
Sec. II B with Eq. (14), we expect positive charge density near
the RHS electrode edge and negative charge density near the
LHS. Then, the Coulombic body force ρqE in the momentum
equation (1b) is directed from the electrode edges to the central
line x = 0 following the lines parallel to E. This force should
push the fluid upward, causing it to rise along the central line
producing the bulk vortices.

On the other hand, two small vortices near the edges (to be
referred to as the “DSL vortex” hereafter), seen in Fig. 3(a),
are created by the Coulomb force in the thin DSLs near the
electrode walls. Electrodes attract the counterions and repel
the coions, leading to the emergence of highly concentrated
positive charge density in the DSL of the cathode (LHS) and
negative charge density in the DSL of the anode (RHS). Since
the field in the DSL is directed almost normal to the wall, each
DSL must show the pressure buildup. Such pressure buildup is
strongest near the electrode edges and decreases as one moves
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away from the edges, causing the fluid to flow toward the
corners of the cavity. Such flow motion is also driven directly
from the tangential component of the Coulomb force. Within
the DSL near the cathode, for instance, the accumulation of
cations brings a positive charge density as explained above and
simultaneously brings an increase in E, which then causes a
sharp increase in potential. The potential rise should be highest
at the electrode edge and should decrease as |x| is increased.
The Coulombic force, acting on the counterions (cations), is
then directed toward the LHS corner again, and thus, it directly
drags the fluid in the same direction. Similar reasoning can be
given for the DSL in the anode to show that the fluid moves
toward the RHS corner. Since the Coulombic force is confined
within the thin DSL, the resultant flow can be classified as
a “surface-driven” flow. In a sense, the flow created by the
induced charge in the DSL is similar to the “electro-osmotic
flow” found in the aqueous solutions [13–19]; the fundamental
difference is that the diffuser layer of the electric double layer
in the aqueous solution is an outcome of the balance between
the conduction and the diffusion terms in the ion-transport
equation (3), whereas, the DSL in the nonaqueous solution
results from the balance between the conduction and the ion
dissociation (or source) terms. Now, let us return to the DSL
vortices of Fig. 3(a). Since the bulk vortex on the LHS is
counterclockwise, the fluid flow along the LHS electrode wall
is directed toward the edge contrary to the DSL-driven flow.
Thus, we can expect vortical flows, at least, near the edges,
corresponding to the DSL vortices because the DSL-driven
flow velocity, being highest near the edges, rapidly decreases as
|x| is increased, whereas, the bulk-driven flow velocity changes
gradually along the x direction on the electrode walls.

In Fig. 3(a), we also show numerical streamlines, which are
in agreement with those in the experiments. Most importantly,
the numerical results are obtained with κ = 0.055, correspond-
ing to a significant reduction in the recombination constant
from αL of Eq. (7). Previous papers [12,20,21] also report that
the recombination constant for a certain medium should be
lower than the Langevin value with the reduction factors of
0.7–0.8. In the present numerical simulation for d = 1 mm,

when κ is taken larger than the optimum value 0.055, the DSL
vortices become smaller, and the flow velocity becomes larger
than the experimental results as discussed below. More details
on the reduction in the recombination constant are given later
in this section.

In Fig. 3(a), the DSL vortex on the RHS looks larger than
that on the LHS, implying that the DSL effect is larger on
the anode than on the cathode. Numerically, this asymmetry
can be reproduced by assigning the mobility ratio m smaller
than 1; the numerical results shown in Fig. 3(a) are obtained
with m = 0.75. From the 1D numerical simulation, it was
found that smaller m brings increased charge density and
increased electric field intensity within the DSL on the anode,
whereas, those values within the DSL on the cathode are
decreased. Therefore, the decreased mobility ratio means a
stronger DSL-driven flow on the anode wall and a weaker
DSL-driven flow on the cathode wall. The difference in the
mobility means the difference in the ionic radius. Dukhin
and Goetz [10] performed the conductivity and electroacoustic
measurements to assert that free anions in kerosene mixed with
Span 80 are much larger than the cations (nearly 30 times).

(a) (b) 

FIG. 4. Streamlines obtained numerically for (a) d = 1 mm,
V0 = 1 kV and (b) d = 0.5 mm, V0 = 500 V, showing flow reversal
upon the variation in gap spacing; κ = 0.045 and m = 1.

The present matching for d = 1 mm predicts that the anion
size is 1.33 times the cation size.

Figure 3(b) shows the streamline patterns for d = 0.2 mm
where the experimental data are taken after 37 s from the
start when a steady state is reached. At this gap, the flow
pattern shows slow variation in time during the first tens of
seconds. In this case too, we can observe two primary vortices
on both sides of the central line x = 0. However, the fluid
comes down between the two vortices as indicated in the
numerical streamlines, and in fact, these vortices correspond
to the DSL vortices. Such a dramatic difference in the flow
direction between the large [Fig. 3(a)] and the small [Fig. 3(b)]
gaps can be simply explained in terms of the competition
between the bulk and the DSL effects; at d = 1 mm, the bulk
effect is dominant, and so, the bulk vortices occupy the domain,
whereas, at d = 0.2 mm, the DSL effect dominates over the
bulk and determines the flow pattern in the reverse way.

The numerical streamlines in Fig. 3(b) are obtained with
the parameter set κ = 0.035 and m = 0.6, which is taken
different from that of d = 1 mm for the purpose of the best
qualitative and quantitative matching between the numerical
and the experimental results. The matching is satisfactory,
except for a few aspects; for instance, the numerical DSL
vortex on the LHS (to be referred to as the “DL vortex”) looks
more slender than the corresponding experimental one, and the
numerical DR vortex looks fatter than the experimental one.

Qualitatively, we, thus, expect a transition of the bulk-
dominant streamline pattern at large gaps to the DSL-dominant
pattern at small gaps. We have numerically observed the
transition with the parameters κ and m fixed at κ = 0.045
and m = 1 but with varying d. Figure 4(a) shows streamlines
at d = 1 mm. The pattern is symmetric because we select
m = 1, but otherwise, it looks similar to Fig. 3(a) as expected.
The DSL vortices close to the bottom electrodes are somewhat
larger than those of Fig. 3(a) because the value of κ = 0.045,
used for Fig. 4(a), is smaller than that for Fig. 3(a). We, thus,
characterize the flow as the bulk-dominant flow. As the gap is
decreased, the DSL vortices grow, but the bulk vortices near
the vertical centerline shrink, and at d = 0.5 mm, the bulk-
dominant vortex structure is switched to the DSL-dominant
flow [Fig. 4(b)]. As the gap is further decreased, the bulk
vortices almost vanish, and only the DSL vortices occupy the
domain as seen in Fig. 3(b).
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(a) (b) 

(c) (d) 

FIG. 5. Variation in the vortical flow pattern near the electrode
gap upon the increase in κ with m = 0.6 for d = 0.2 mm; (a) κ = 0.1,
(b) κ = 0.15, (c) κ = 0.2, and (d) κ = 0.3. The symbols B and D

denote the bulk and the DSL vortices, respectively.

Such a transition is also observed at d = 0.2 mm with the
variation in κ as shown in Fig. 5. This time, we set m �= 1
and expect a more complex evolution of vortices. At κ = 0.1,
the pattern [Fig. 5(a)] is qualitatively the same as that for
κ = 0.035 shown in Fig. 3(b). At κ = 0.15, Fig. 5(b), the
DR vortex splits into BL and DR vortices due to the growing
effect of the bulk. Later, the DR vortex tends to reside near
the edge of the RHS electrode. On the other hand, the BR

vortex, shrunk in the gap space at κ = 0.1, now grows to be
comparable in size with the DR vortex and later performs a
pairing with it [Figs. 5(c) and 5(d)]. The DL vortex, which,
initially, was one of the primary ones, continues to become
weakened and finally disappears at κ = 0.3 [Fig. 5(d)].
Overall, we observe the growth of bulk vortices and the
decaying of DSL vortices with the increase in κ .

In Figs. 3(a) and 3(b), we can also see a difference between
d = 1 and d = 0.2 mm in the inclination of the dividing
streamline, which is defined as the streamline dividing the
LHS and RHS vortices, i.e., roughly, the streamlines passing
through the arrows in Fig. 3. In Fig. 3(a), the dividing
streamline is inclined to the RHS, whereas, the one in Fig. 3(b)
is inclined to the LHS, which is obviously a symptom of the
asymmetric flow pattern. If the DSL effects on both sides are
the same, then the fluid on the dividing streamline would go
straightly vertical, but since the DSL effect on the RHS is
stronger than that on the LHS, as occurs at m less than 1, the
fluid motion must tend to shift to the RHS regardless of the
flow direction.

Figures 6 and 7 show the measured and calculated distri-
butions of the velocity components on the lines y = 1 and
0.4 mm for the gaps d = 1 and 0.2 mm, respectively. In
the experimental measurement, for the gap spacing of 1 mm,
60 images recorded in the time interval 3.7 s � t � 4.3 s are
used, whereas, for the gap spacing of 0.2 mm, 200 images
taken during 36 s � t � 38 s are used in calculating the fluid
velocity from the method of particle tracking; for the case
of d = 0.2 mm, it took a longer time for the flow to arrive
at the steady state because of unknown reasons. We can
see that the experimental data are in satisfactory agreement
with the numerical data obtained with reduced recombination
constants. On the other hand, the numerical results, without
a reduction in α, produce vm, the local maximum of v near
x = 0, too large (about seven times the experimental value;
see Fig. 8) for d = 1 mm (Fig. 6) or even a difference in
the sign of vm for d = 0.2 mm (Fig. 7). This implies that,
without a significant reduction in the recombination constant,
we cannot numerically reproduce the experimental results both
qualitatively and quantitatively.

Figure 8 shows the effect of κ on vm numerically obtained
at m = 0.75 and 0.6 for d = 1 and 0.2 mm, respectively. As
far as the value of vm is concerned, κ in the range of 0.04–
0.05 should give the best matching, but for better matching
in the streamline pattern, κ must have been taken larger for
d = 1 mm and smaller for d = 0.2 mm than this range. For
the case of d = 0.2 mm, we can see the change in sign in vm

near κ = 0.2 with an increase in κ , and we can now relate this
to the shift from the downward to the upward fluid motion with
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FIG. 6. (Color online) Distributions of (a) v and (b) u on y = 1 mm given from symbols: the experimental measurement and those given
numerically at m = 0.75 with dashed line: κ = 1 and solid line: κ = 0.055 for d = 1 mm.
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FIG. 7. (Color online) Distributions of (a) v and (b) u on y = 0.4 mm given from symbols: the experimental measurement and those given
numerically at m = 0.6 with dashed line: κ = 1 and solid line: κ = 0.035 for d = 0.2 mm.

the increase in κ as explained above with Fig. 5. On the other
hand, it should be noted that smaller values of κ tend to make
the 2D simulation unstable.

The decrease in the mobility ratio m � 1 means more
pronounced asymmetry. We performed 2D simulations with
various values of m for d = 0.2 mm and κ = 0.05. It was
found that, as m is decreased, the DR vortex becomes bigger,
and its center position moves upward, whereas, the DR vortex
becomes smaller, and its center position moves downward.

So far, we have seen that the recombination constant κ

plays a determining role in the EHD flow. The decrease
in κ is found to bring the increased effect of the DSL. In
order to understand this, we perform a 1D simulation of
the ion-transport problem for the DSL near the anode where
E∞ = 0.398 kV/mm is given from E∞ = V0/(πx) with V0 =
250 V and x = 0.2 mm. Figure 9 shows the numerical results
obtained at three κ values. As κ is decreased, not only the field

FIG. 8. (Color online) Effect of κ on vm, the value of v at the
point near x = 0 on the line y = 1 mm for d = 1 mm and that on
y = 0.4 mm for d = 0.2 mm where the local maximum of |v| occurs;
data are obtained numerically with m = 0.75 for d = 1 mm and m =
0.6 for d = 0.2 mm. The horizontal lines indicate the experimentally
measured values.

intensity, but also the layer thickness increase as can be seen
from Eq. (8). From Eq. (8), we can estimate δDSL ∼ 15 μm for
κ = 0.05 and m = 1 being consistent with Fig. 9. Integrating
Eq. (2) over the DSL, we get

Q ≡
∫ ∞

0
ρqdy = −ε0εr (Ew − E∞), (15)

where Ew denotes the field values at the anode wall. This
then indicates that the amount of charge in the DSL, Q,
is proportional to the field rise Ew − E∞ within the DSL.
Thus, a smaller κ causes a larger field rise, meaning a larger
DSL charge and Coulomb force, which should give rise to the
increased slip velocity at the edge of the DSL, leading to an
increased DSL effect. Even for the same amount of Q, the
difference in the pattern of the charge-density distribution can
also affect the slip velocity. When the distribution is sharper,
occurring, i.e., for a thinner DSL, the Coulomb force must

FIG. 9. (Color online) Effect of the recombination constant κ on
the distribution of the field as a function of the distance measured
from the anode obtained with a 1D numerical simulation for the
external field E∞ = 0.398 kV/mm (equivalently, a voltage difference
of 250 V across the gap distance of 0.2 πmm) and the parameter set
â = 2.25 nm, m = 0.6, and σ0 = 2.96 × 10−8 S/m.
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FIG. 10. (Color online) Effect of â on the field distribution within
the DSL obtained with a 1D numerical simulation for the same
external field as in Fig. 9 and the parameter set κ = 1, m = 0.6,
and σ0 = 2.96 × 10−8 S/m.

experience a larger friction force from the electrode wall than
the case with a more gradual distribution with a thicker DSL,
and so the slip velocity would decrease accordingly. This can
be understood from double integration of the simplified 1D
momentum equation η ∂2u/∂y2 + ρqEx = 0 for the tangential
velocity component, where Ex may be taken independent of
y, for simplicity.

The above reasoning can be applied to the investigation of
the effect of the ionic radius â on the field distribution within
the DSL. Figure 10 shows 1D numerical results obtained for
various â’s with the gap d = 0.2 mm under the external field
Ey = 0.398 kV/mm. Since the zero-field conductivity σ0 is
fixed, a decrease in the ionic radius means an increase in
the mobility and a simultaneous decrease in the zero-field
concentration, which creates an increase in the DSL thickness
as can be seen from Eq. (8). This is also consistent with the
numerical results given in Fig. 10. The numerical results also
reveal that the field rise is not affected by the change in â. So,
the change in the ionic radius, if permitted, is not so effective
in increasing the slip velocity compared with the change in the
recombination constant. Furthermore, the range of the ionic
size adjustment must be restricted because it can be measured
more accurately with refined measurement tools.

In order to validate the 1D and 2D simulations, we compare
the distribution of Ey , the vertical component of the field along
the vertical lines attached on the electrode walls at several
values of x, obtained from both methods as shown in Fig. 11.
Obviously, better agreement is shown between the two results
as |x| is increased. As one approaches the electrode edges, the
derivatives of variables with respect to x, which are neglected
in the 1D simulation, become more important. We can also
see that the anode side with x > 0 shows a thicker DSL than
the cathode side with x < 0 because m is less than 1. Field
rise is also larger on the anode side than on the cathode side,
implying a larger slip velocity from the DSL on the anode side,
being consistent with the discussions given so far.

Exploring the feasibility of adjusting the recombina-
tion constant in the numerical simulation for matching the

FIG. 11. (Color online) Distribution of the vertical component of
the field Ey along the vertical lines at x = ±0.2, ±0.4, and ±0.8 mm
obtained from symbols: 2D and solid lines: 1D simulations for a
0.2 mm gap with V0 = 250 V, κ = 0.05, and m = 0.6.

experimentally measured flow data, we have found plausible
evidence. Gäfvert et al. [22] managed to measure the electric
field in a transformer oil confined within a pair of parallel
electrodes receiving an external voltage 3.2 kV across the gap
distance of 19 mm. With the zero-field conductivity known
as σ0 = 10−11 S/m, we can control the mobility μ1 (or the
averaged ionic radius) to adjust c0, whereas, the mobility
ratio is fixed at m = 2.1. Figure 12 shows some of the 1D
simulation results. When the recombination constant is fixed
at Langevin’s value, i.e., with κ = 1, the measured data cannot
be reproduced by the 1D results with the tuning of μ1. At very
large μ1 (or with a very small ionic radius), c0 becomes very
small, and the DSLs on both electrodes overlap each other,
leading to a uniform distribution of the field (the line with

D

FIG. 12. (Color online) Distribution of the electric field in
transformer oil confined between a pair of facing electrodes with
the gap spacing of d = 19 mm, subjected to the external voltage
difference of 3.2 kV. Symbols denote data measured by Gäfvert
et al. [22]. The solid line near the symbols is given from the
1D simulation with μ1 = 1.2 × 10−9 m2 s−1 V−1, κ = 0.065 and
m = 2.1. The other solid lines are given from the 1D simulation
for several values of μ1 at κ = 1 and m = 2.1.
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μ1 = 3 × 10−8 m2 s−1 V−1 in Fig. 12). On the other hand,
when μ1 is taken to be very small (or with a very large ionic
radius), c0 becomes very large, and the DSLs are very thin,
corresponding to the line with μ1 = 0.65 × 10−9 m2 s−1 V−1

in the figure. The intermediate value of μ1 also cannot
reproduce the measured field distribution. However, the data
can be successfully matched when α is reduced down to 0.065
times the Langevin value at μ1 = 0.12 × 10−8 m2 s−1 V−1.
With this mobility, the ionic radius is estimated to be 1 nm at
η = 7 × 10−3 Pa s, which should not be far from the practical
values for general nonpolar liquids, some of which are shown
in Table I.

Formula (7) was derived by Langevin for ionic recombina-
tion in high-density gases, by Smoluchowski for neutral com-
ponents, and by Debye [23] for more general cases; see, e.g.,
Ref. [4] for relevant references. In deriving (7), it is assumed
that charge transport is purely diffusive. Suppose a negative
charge is stagnant at a point (referred to as the reaction point)
surrounded by a cloud of positive charges. When one of the sur-
rounding positive charges is close enough to the central charge,
say within the encounter distance rc, the former is assumed to
spontaneously collide with the latter, leading to neutralization.
To compensate for the vacancy of the positive charge, the sur-
rounding positive charges move (diffuse) toward the reaction
point. On the other hand, for the system to be in a steady
state, another negative charge is assumed to be created at the
reaction point (e.g., via dissociation), and the process of neu-
tralization is repeated in this way. The fundamental problem
of determining the recombination constant in this situation is
as follows: How many positively charged particles will collide
per unit time with the negative charge? Smoluchowski stated
that the problem can be solved by using a 1D steady diffusion
equation for the concentration of positive charge under the
boundary conditions with zero concentration at the encounter
distance and a constant value far away. Then, we finally get

α = 4πD rc,

as the recombination constant, where D = D1 + D2.
Choosing the encounter distance as rc = lB and substituting the
Einstein relation for the diffusivity, we arrive at the Langevin
formula (7); here, lB = e2/(4πε0εrkBT ) is known as the
Bjerrum distance, obtained by equating the Coulomb potential
and the thermal potential. Note that the Coulomb-force effect
is not totally neglected, but it is considered in determining
the encounter distance. Later, Debye [23] considered the
Coulomb-force effect in addition to the diffusion and derived

κ = [1 − exp(−lB/rc)]−1,

as the correction factor for the recombination constant,
where rc is now taken as rc = a1 + a2. Note that κ → 1 as
lB/rc → ∞, which is relevant for the liquid dielectric. So,
for the liquid dielectric, the Langevin formula is still correct
because the Coulomb effect has already been considered
via the setting rc = lB . Collins and Kimball [24] proposed
a modified model where it is assumed that not every
countercharge particle, arriving at the encounter distance,
necessarily reacts with the central charge. They introduced

the so called “reaction parameter” k to show

κ = krc/D

1 + krc/D
.

Note that κ is always less than 1. In particular, this model is
estimated to be effective for a slow reaction after an encounter
event [25]. Isoda et al. [26] proposed the so called “reactivity
parameter” based on a similar concept. Their motivation is
to explain the experimental data of the significantly reduced
recombination rate for the electron-ion recombination [27,28]
compared with the Langevin formula. The concepts presented
in Refs. [24–26] look quite relevant in the present problem
because the charges in the liquid dielectric are in the
reverse-micelle form and it takes time for the surfactant
molecules surrounding the micelles to be peeled off for ion
neutralization. The effect of the external electric field can
also produce the reduced recombination constant as shown in
Refs. [26,29]. Unfortunately however, no recent literature can
be found, dealing with theoretical or experimental studies on
the ion-ion recombination for the liquid dielectric.

Finally, let us discuss the experimental and numerical
paper of Kim et al. [3] on the EHD flow past three circular
cylindrical electrodes with diameters of 1 mm within a 2D
channel of a depth of 7.3 mm for use as a pumping device.
In their numerical simulation, the electric field is obtained by
solving Eq. (9) coupled with Eq. (13) where the linearized
Onsager function FO(b) = 1 + 2γE is used for (13). The
charge density obtained from (14) is then substituted into
Eq. (1b) to yield the flow field. Thus, the DSL effect is not
considered in their paper. It is remarkable that the pumping
velocity (streamwise velocity averaged over the channel
cross section), obtained numerically, agrees well with the
experimental data, even though the effect of the DSLs is
neglected. In order to investigate the effect of the DSL on
the pumping velocity, 2D simulation is performed again with
COMSOL with various values of κ for the same arrangement
of cylinders as in Ref. [3]. The side cylinders are grounded,
and the central cylinder is applied to 2 kV dc. Furthermore,
we set σ0 = 4.33 × 10−9 S/m, η = 1.34 × 10−3 Pa s, ε0 = 2,
m = 1, and â = 2.25 nm. Without reduction in α (i.e., with
κ = 1), the pumping velocity is given as 8.8 mm/s, whereas, it
becomes 7.0 mm/s at κ = 0.15; when κ is lowered below this,
the simulation becomes unstable. Thus, only a 20% decrease in
the pumping velocity is expected, even though α is decreased
significantly. Unfortunately, we cannot validate the numerical
solutions because experimental data with dc voltages are not
available. Since the three-cylinder-electrode geometry is much
more complex than the present one, exploring the fundamental
reason for such nonsensitive dependence of the pumping
velocity on the recombination constant is also beyond the scope
of this paper.

V. CONCLUSIONS

We performed two kinds of experiments and 2D as well
as 1D numerical simulations in order to study the competitive
role of the Onsager effects in the bulk and DSL in determining
the EHD flow over a pair of coplanar electrodes. Through
our conductivity experiment with a pair of parallel facing
electrodes, we confirmed the validity of the Onsager theory
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as well as the related constant. From the flow-visualization
experiment and numerical simulation on the EHD flow over
coplanar electrodes, we have demonstrated that the flow is
dominated by the bulk charge at a 1 mm gap of the electrode
spacing, but at the decreased gap of 0.2 mm, the DSL effect
is dominant and the central flow direction is reversed. This
implies that, as the geometric scale is decreased, the DSL
effect is more important than the bulk. In order to match the
experimentally observed flow pattern as well as the measured
fluid velocity, in our simulation, we reduced the recombination
constant considerably from the Langevin theory. Fortunately,
this adjustment does not affect the ionic size or the zero-field
concentration, neither of which are allowed to vary arbitrarily
because they are to be measured separately. Thus, a decrease
in the recombination constant does not affect the creation of
charge in the bulk, but it produces an increased slip velocity
at the edge of the DSL through an increase in the wall electric
field as well as the increased DSL thickness. The asymmetry
in the flow pattern observed in the flow-visualization exper-
iment can be reproduced with a 2D simulation by assigning
different mobilities to each ion. We have also managed to
find evidence of the reduction in the recombination constant
from the experimental data of Gäfvert et al. [22]. Their
distribution of the electric field within the space between

a pair of parallel facing electrodes could be reproduced
successfully by our 1D simulation with the recombination
constant reduced to 0.065 times the values in the Langevin
formula.

In the present paper, we confined ourselves to one kind
of dielectric liquid, i.e., dodecane mixed with Span 80 in
a 0.5 wt % fraction. Studies on other kinds of liquids with
different concentrations are, of course, needed to make our
conclusions more concrete. Although the rectangular domain
used in this paper is very simple, we cannot avoid, in our
theoretical or numerical papers, the unexplored mathematical
singularity at the electrode edges. Extension to the EHD flow
around electrodes with smoother geometry, such as circular
electrodes, will also be interesting.
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