
PHYSICAL REVIEW E 87, 023008 (2013)

Accelerative propagation and explosion triggering by expanding turbulent premixed flames
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The dynamics and morphology of outwardly propagating, accelerating turbulent premixed flames and the
effect of flame acceleration on explosion triggering are analyzed. Guided by recent theoretical results and
substantiated by experiments, we find that an expanding flame front in an externally forced, near-isotropic
turbulent environment exhibits accelerative propagation given by a well-defined power law based on the average
global flame radius. In this context the limits of the power-law exponent and the effective turbulence intensity
experienced by the flame are derived. The power-law exponent is found to be substantially larger than that for
the hydrodynamically unstable cellular laminar flames, hence facilitating the possibility of detonation triggering
in turbulent environments. For large length scales, hydrodynamic instability is expected to provide additional
acceleration, thus further favoring the attainment of detonation triggering.

DOI: 10.1103/PhysRevE.87.023008 PACS number(s): 47.70.Pq, 47.27.−i, 47.15.−x, 47.40.−x

I. INTRODUCTION

Turbulent burning rate is a key parameter in the study of
turbulent combustion, as emphasized in the representative
experimental [1,2], computational [3] and analytical [4–6]
studies. In particular, there exists considerable interest to
identify, at least for a certain special class of flows such as
isotropic turbulence, a unified functional description of the
premixed turbulent flame speed, ST ,

ST = f (Urms, λI , . . . SL, δL, . . .), (1)

in which the turbulent root-mean-square (rms) velocity, Urms,
also known as the turbulence intensity, and the integral
turbulence length scale, λI , characterize the turbulent flow,
while the unstretched laminar flame speed, SL, and the ther-
mal flame thickness, δL—estimated conventionally as δL ≡
Dth/SL, where Dth is the thermal diffusivity of the fresh gas—
describe the flame dynamics. Then, in the limit of moderate to
large Damköhler number, turbulent flame propagation can be
reduced to a geometric problem, as turbulence corrugates the
flame front at a multitude of length scales without perturbing
the inner flame structure. Consequently, based on scaling
considerations, the quantity ST can be expressed as

ST /SL = f (Urms/SL,λI /δL). (2)

Furthermore, it has been proposed [7] that the scaled velocity
and length parameters in Eq. (2), Urms/SL and λI /δL, can be
collapsed to a single parameter, a turbulence Reynolds number
ReT ,M , such that

ST /SL = f (ReT ,M ), ReT ,M = (Urms/SL)(λI/δM ), (3)

where δM is the Markstein length, δM = MkδL, with the
Markstein number Mk. Based on Eq. (3), for unity Lewis
number flames, Le = 1, with constant Mk, Chaudhuri et al. [7]
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further developed the relation

ST /SL = C1Re1/2
T ,M, (4)

with the phenomenological constant C1 being order of unity.
Since δM = MkδL, for a constant Mk, i.e., for a given mixture,
one can also write

ST /SL = C1Re1/2
T , ReT = (Urms/SL)(λI/δL). (5)

In this paper we do not consider Le effect, and it is noted that
the result (5) for unity Le, constant but positive Mk is exactly
same as that derived by Damkohler [4] and Peters [6] in the
limit of small scale turbulence.

The above formulation considers the turbulence intensity
and integral length scale in Eq. (3) as independent quantities,
although for any given turbulence spectrum the local effect
of turbulence on a flame front depends on the largest length
scale related to the flame, λf , and is described by a certain
“effective” turbulent intensity, u′

eff = u′
eff(λf ), with Urms =

u′
eff(λI ). In addition, the analysis does not differentiate between

the reference turbulence quantities and those related to flame
propagation, while in reality the local turbulence intensity
“experienced” by the flame differs from the real intensity of
the turbulent flow at the flame scale [8], and the characteristic
hydrodynamic scale of the flame front can differ from the
velocity integral length scale determined by the characteristic
size of the combustion chamber or the tools used in generating
turbulence, such as grids, fans, etc. To address these issues, in
the present work we consider that the flame-related turbulence
Reynolds number,

ReT ,f = (u′
eff/SL)(λf /δM ), (6)

accounts for the relation between the flame-related integral
length λf and the respective flame-related counterpart of
turbulence intensity. The formulation is illustrated based on the
classical Obukhov-Kolmogorov spectrum, but can be extended
to any given spectrum.

The difference between Eqs. (3) and (6) is of primary impor-
tance for expanding flames, whose length scale is characterized
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by the instantaneous global (or global-in-mean) flame radius,
growing in time, while the velocity integral turbulence length
scale is fixed. Consequently, the corresponding extension of
Eq. (3),

ST /SL = f (ReT ,f ), (7)

with ReT ,f given by Eq. (6), predicts a noticeable increase
in ST with the global-in-mean flame radius. It is noted that
such strong flame acceleration was also observed in the
computational studies of Fru et al. [9] and experimental
measurements of Lawes et al. [10], and it is also substantiated
by our recent experiments [11] involving expanding turbulent
flames in constant-pressure, near-isotropic turbulence. As a
result, in this paper we demonstrate the self-similar-in-mean
propagation of an expanding turbulent flame front, with the
evolution of the global-in-mean flame radius in the form
∝t3 to the leading order for large t , which strongly exceeds
the respective power dependence for an expanding laminar
flame corrugated by the hydrodynamic, Darrieus-Landau
(DL) flame instability [12]. In this light we also mention in
passing a concomitant, Lipatnikov-Chomiak formulation on
expanding turbulent flames, based on the concept of turbulent
Markstein length [13].

While the majority of the turbulent flame theories do not
consider the effect of thermal expansion in the burning process,
and as such assume that the flame front is hydrodynamically
stable and it does not influence the external turbulent flow, the
thermal expansion factor is typically as large as � ≡ ρu/ρb =
5 ∼ 10 such that the flame front not only substantially modifies
the turbulent flow but it is also subjected to the DL instability
[14]. Only a few theoretical analyses have accounted for
both turbulence and DL instability [7,15–23]. In particular,
the analysis of Chaudhuri et al. [7] examined the effects of
turbulence on the development of flame front instability based
on the hypothesis of the separation of the DL instability and
turbulence time scales, estimating whether the instability can
develop in the presence of turbulence of given intensity and
integral length scale. An expression was then proposed for
the turbulent flame speed based on the concept of an effective
laminar flame with an effective DL cutoff, superposed on the
turbulent flame speed with zero thermal expansion.

We then incorporate the DL effects into the analysis of
expanding turbulent flames, predicting further amplification
of the flame acceleration due to the DL instability. Following
the self-similar formulations of Taylor [24] and Akkerman
et al. [25], we consider an expanding flame front, corrugated
by the DL instability as well as turbulence, as a quasi-one-
dimensional-in-mean front propagating into the fresh gas. We
shall determine the evolution of the velocity and temperature
profiles ahead of the flame and the gas compressibility, as
well as the instant and locus of detonation triggering by the
accelerating flame front.

II. TURBULENT FLAME FORMULATION

First, we briefly consider the relations between a wave
number k of the turbulence perturbation of length scale
λ = 2π/k, the local counterpart of the turbulent kinetic
energy K(k), and the turbulence Reynolds number ReT . For
the conventional, Kolmogorov spectrum [26], we have the
turbulent energy spectral density ω(k) ∝ k−5/3, so K(k) is

given by

K(k) =
∫ kK

k

ω(k̃)dk̃ ∼= k−2/3 ∝ λ2/3, (8)

with (Urms)2 = K(kI ) ∝ (λI )2/3 and (u′
eff)

2 = K(kf ) ∝
(λf )2/3. Here kI = 2π/λI is the integral turbulence wave
number, kf = 2π/λf and kK = 2π/λK is the Kolmogorov
wave number, with kK � k > kI , λI > λ � λK . It is noted
that the expression for u′

eff above is not a conventional
turbulent root-mean-square velocity defined in the turbulence
literature, where the averaging is performed over the entire
ensemble. In contrast, here the averaging is performed over a
domain size equal to the respective flame size such that the
effective fluctuating velocity experienced by the flame front
could be estimated. It is suggested that any eddy of the length
scale exceeding the flame size convects the entire flame rather
than inducing flame surface fluctuations that are of interest
here. Formally, one can also consider a quantity

u′′
eff

2 = 1

N

N∑
i=1

[ur − 〈ur〉R]2, (9)

where ur is the radial component of the local velocity and 〈ur 〉R
is the averaging of an instantaneous, one-time probability
density function (pdf) realization of ur over a domain of size
R. However, being always positive but a fluctuating quantity,
u′′

eff can therefore be ensemble-averaged (say, in time) to yield
u′

eff = 〈u′′
eff〉.

It is also noted that while Eq. (8) is obtained with the ap-
proach of isotropic, Kolmogorov turbulence, the formulation
can be extended to an arbitrary spectrum. For instance, with
the Pope spectrum [27],

ω(k) ∝ k−5/3fI (kλI )fK (kλK ), (10)

where the function fI (x) provides the shape of the energy-
containing range, tending to unity for large x, and the function
fK (x) determines the shape of the dissipation range, tending
to unity for small x,

fI (x) ∼
(

x√
x2 + b2

1

)11/3

,

fK (x) ∼ exp
(−b2

{
4

√
x4 + b4

3 − b3
})

,

b1,b2,b3 = const, (11)

we would obtain a lower scale dependence as compared to
Eq. (8). Figure 1 shows the evolution of the scaled turbulent
flame speed and the average global flame radius in experiments
[11] for CH4-air flames. According to these measurements, we
fit u′

eff(〈R〉) ∼ 〈R〉0.233, Fig. 1(a), which agrees with Eq. (8)
reasonably well.

We next analyze the limitations on the scale dependence
of the turbulent flame speed. Figure 2 shows the experimental
snapshot of the “mean spherical turbulent flame brush” held
between the global inner, Rin, and outer, Rout, flame radii [11].
Assuming that the width of such a brush hT , which is a
measure of the largest flame corrugation length scale, is
proportional to the global flame radius Rf , hT ∝ Rf ; with
Rin = Rf − hT /2, Rout = Rf + hT /2, we estimate the entire
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FIG. 1. (Color online) Scaled turbulent flame speed versus the
turbulent Reynolds number (a) and the average global flame radius
versus time (b) for CH4-air φ = 0.9 flames in experiments of
Ref. [11].

volume of the flame-brush region, i.e., the layer between the
inner and outer spheres, as

VT = 4

3
π

(
R3

out − R3
in

) = 4πhT

(
R2

f + h2
T

/
12

)
≈ 4πhT R2

f ∝ R3
f . (12)

FIG. 2. (Color online) Experimental snapshot of the mean spher-
ical turbulent flame brush [11].

Consequently, the maximum flame-front surface area that can
be packed into such a layer is AT, max ∼ VT /δL ∝ R3

f . Within
the geometrical consideration of the turbulent flame front,
its propagation speed is proportional to the real corrugated
flame-front surface area scaled by the area of a hypothetical
smooth front of the same radius, ST /SL ∝ AT /4πR2

f , which
cannot exceed the maximum value above, AT � AT, max.
As a result, the maximum possible turbulent flame speed,
ST, max = ST (AT, max), would behave as ST, max ∝ Rf such
that the radius dependence of the real turbulent flame speed,
ST (Rf ), cannot be stronger than the linear one.

We can also arrive at the same conclusion based on the
self-similar formulation. Indeed, assuming self-similar flame
acceleration in the form Rf ∝ tβ , we find ST ∝ dRf /dt ∝
tβ−1 ∝ R

χ

f , with χ ≡ (β − 1)/β. Obviously, the flame front
accelerates only if β > 1, i.e., χ < 1.

We therefore conclude that the evolution of the turbulent
flame speed does not exceed a first-power dependence on the
flame radius, which agrees with the theoretical predictions [7]
and experimental observations [11] through Eqs. (6) and (8):

ST < ST, max ∝ R1
f ∝ Re3/4

T ,f . (13)

Extrapolating the theory of statistically planar premixed
flames in isotropic turbulent environment [7] to expanding
turbulent flames, we choose the flame integral length scale to be
proportional to the flame hydrodynamic length scale λf ∼ Rf ,
as illustrated in Fig. 3, with ReT ,f = (u′

eff(Rf )/SL)(Rf /δM ).
Subsequently, Eq. (7) acquires the form

ST

SL

= C1Re1/2
T ,f = C1

[
u′

eff(λI )

SL

(
Rf

λI

)1/3
Rf

δM

]1/2

= C1

(
Urms

SL

)1/2 R
2/3
f

λ
1/6
I δ

1/2
M

. (14)

On the other hand, the turbulent flame speed near the unburnt
gas locus, say, at a mean progress variable 〈c〉 ∼ 0.05, is related
to the global-in-mean flame radius as

c̃�ST = dRf /dt, (15)

FIG. 3. (Color online) Illustration of the statistically quasi planar
assumption for an expanding flame to utilize the theoretical scaling
of Ref. [7].
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where c̃ is the proportionality coefficient of the order of unity.
With Eq. (15), the 2/3 power dependence of Eq. (14) can be
integrated as

Rf = {
R

1/3
0 + C

1/3
2 (t − t0)

}3
, (16)

where

C2 =
(

c̃C1�

3

)3 (UrmsSL)3/2

λ
1/2
I δ

3/2
M

, (17)

which yields

Rf = C2t
3 (18)

to the leading order for large t , t � t0. The parameters t0
and R0 = Rf (t0) denote the instant and locus when the
expanding flame front achieves the self-similar-in-mean
mode of propagation. Based on dimensional analysis, we
estimate t0 ∼ λI/Urms. It is noted that the latter quantity was
large enough in the conditions of experiments [11], being
of the order of the entire time scale of the problem, which
could clearly elucidate why the experimental measurements
of Ref. [11] agree very well with the 2/3 power dependence
of Eq. (14), see Fig. 1(a), but they do not reproduce the cubic
law (18) so well; see Fig. 1(b).

It is recalled that the cubic dependence of Eq. (18) shows
much stronger flame acceleration than that for the freely
propagating laminar flames with the suggested acceleration
exponent α being reported to fall in the range α = 1.25 − 1.5
[12,28–30]. This result therefore predicts a much earlier
transition to detonation in the present turbulent environment
than that in a quiescent laminar one; see Sec. IV.

Here we elucidate the conceptual difference between
the recent work of Gostintsev et al. [29] and the present
formulation, with much stronger flame acceleration in the
latter than that in the former. The essential point to note
is that the two studies are concerned with two completely
different physical situations; namely, the study of Ref. [29] is
devoted to a quiescent environment, with the vortical motion
generated through inherent flame-front cellular instability,
while in the present work turbulence is imposed, which in
addition also allows for the flame-generated vorticity. The
imposition of turbulence imitates the fan-generated turbulence
in the experiments of Ref. [11]. Consequently, with Eq. (4)
for the flame speed in imposed turbulence, we arrive at more
powerful acceleration, Eqs. (16) and (18), than that in Ref. [29].

III. TURBULENT FLAMES FURTHER CORRUGATED
BY HYDRODYNAMIC INSTABILITY

Although the expansion ratio is included in Eq. (18), the
analysis of Sec. II does not incorporate indirect effects of
thermal expansion such as the DL instability, which can
strongly contribute to the flame acceleration, especially at
large scales. Specifically, it is noted that while an embryonic
spherical flame front is smooth, being stabilized by stretch,
as soon as the flame thickness as compared to the global
flame radius is reduced, the generation of the DL instability is
favored, leading to the cell formation over the flame surface.
Subsequently, the continuous production of new cascades
of cells is accompanied by the corresponding continuous
increase in the total flame surface area as compared to the

globally spherical flame front. It is recalled that, in the
absence of turbulence, extensive experimental [12,26,28] and
computational [31–34] studies yield the evolution of the
globally spherical front described by a power law,

Rf ≈ B tα, (19)

where α = 1.25 − 1.5 [12,28–30] and the coefficient B can be
estimated as [25,31]

B = kα−1
c (c̃�SL/α)α, (20)

with SDL(Rf )/SL = (kcRf )(α−1)/α , where kc ≡ 2π/λc is the
DL cutoff wave number [14]. Our next step is to incorporate
the DL instability into the analysis of expanding turbulent
flames in Sec. II.

In Ref. [7], the effects of turbulence on the development of
flame-front instability were estimated based on the hypothesis
of separation of the DL instability and turbulence time scales.
Specifically, we introduced the concept of an effective laminar
flame with an effective, turbulence-induced DL cutoff λT

given by

λT = 4λc

[
u′

eff(λc)

(3/4)X(�)SL

]3

, (21)

X(�) = �

� + 1
[(� + 1 − �−1)1/2 − 1]. (22)

Then an expression for the turbulent flame speed, based on
the effective laminar flame speed superposed on the turbulent
flame speed with zero thermal expansion, was proposed; see
Ref. [7] for further details and justification. Following the
same approach, here we replace Eq. (20) by its turbulence
counterpart,

BT = kα−1
T (c̃�ST /α)α, (23)

with ST and kT = 2π/λT determined by Eqs. (14) and (21),
respectively. We subsequently arrive at the final, modified
power law,

Rf = C3t
3α, (24)

C3 =
(

27πX3

8

)α−1(
SL

Urms

)3(α−1)[3c̃3�3C3
1

27α

(UrmsSL)3/2

λ
1/2
I δ

3/2
M

]α

× λα−1
I

λ
2(α−1)
c

, (25)

which shows much stronger flame acceleration as compared
to the laminar case, Eq. (19). For instance, with α = 4/3,
Eqs. (19) and (24) yield Rf ∝ t4/3 and Rf ∝ t4, respectively.
It is noted that in the limit of no DL instability, α = 1, Eq. (24)
reduces to Eq. (18), thereby substantiating the self-consistency
of the present theory. However, with Urms = 0, Eq. (24) does
not degenerate to the laminar result (19) because Eqs. (14)
and (21) are based on the assumption of strong turbulence, at
least Urms > SL.

IV. FLAME-GENERATED FLOW AND
EXPLOSION TRIGGERING

We next investigate the possibility of explosion triggering
by an outwardly expanding, accelerating turbulent flame front.
A similar problem was solved by Taylor [24], who analyzed
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the situation of a spherical piston expanding with a constant
speed, when the upstream, spherically symmetric equations of
continuity and motion,

∂ρ

∂t
+ ∂

∂r
(ρu) + 2ρ

u

r
= 0, (26)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂P

∂r
= 0, (27)

acquire a scale-invariant form. The formulation of Ref. [24]
was recently extended to an accelerating front allowing for
mass passing through it [25].

Unlike Ref. [25], here we consider a turbulent environment
instead of a quiescent one, which means that the Reynolds-
averaged quantities should be incorporated into the formula-
tion instead of the instantaneous ones. Subsequently, while
the continuity equation (26) does not change its form after
the Reynolds averaging, the counterpart of the Euler equation
(27), in the general form, reads

∂〈uj 〉
∂t

+ 〈ui〉∂〈uj 〉
∂xi

+ 1

ρ

∂

∂xj

{
〈Pii〉 + 1

3
ρU 2

rmsδi j + ai j

}
= 0,

(28)

where δi j is the Kronecker operator and ai j is the anisotropy
tensor. However, to make our formulation self-consistent, we
assume turbulence to be isotropic, ai j = 0, and unaffected
by flame propagation, ∂(U 2

rmsδi j )/∂xj = 0. Consequently,
Eq. (28) acquires the form identical to Eq. (27), and the
subsequent formulation resembles that of Ref. [25] for the
laminar environment.

Following the same approach, we transform the variables
(r,t) to (η,τ ), with η ≡ r/ψ and τ ≡ (t/ϕ)3α , where ϕ and ψ

are the characteristic time and length scales of the problem.
With the power law (24), the dimensional analysis yields

ϕ = (c0/C3)3α/(3α−1), ψ = (
c3α

0

/
C3

)3α/(3α−1)
, (29)

where c0 is the initial sound speed such that ψ/ϕ = c0,
ψ/C3ϕ

3α = 1. The flow velocity and the sound speed in
the (η,τ )-space are then given by (w,s) = (u,c)/3αC3t

3α ,
so the flame moves with a constant speed wL = 1, with the
flame-front locus and the flow velocity just ahead of it being
ηf = τ and wf = (� − 1)/�, respectively. The set of partial
differential equations of the form (26) and (27) then can be
transformed into a set of ordinary differential equations,

dw

dξ
= −

[
2
w

ξ
+ 3α − 1

3α

2

γ − 1
+ 3α − 1

3α

w(ξ − w)

s2

]

×
[

1 − (ξ − w)2

s2

]−1

, (30)

ds2

dξ
= (γ − 1)

[
(ξ − w)

dw

dξ
− 3α − 1

3α
w

]
, (31)

with the self-similar variable ξ ≡ η/τ , and the adiabatic ex-
ponent γ . Equations (30) and (31) constitute a scale-invariant
problem, with the approximate solution in the (r,t)-space given
by

u

c0
= 3α

(
D2

t̃9α−1

r̃2
− D1

r̃

t̃

)
, (32)

FIG. 4. Scaled temperature profile ahead of the deflagration front
for � = 8, γ = 7/5, and α = 4/3 at the instants t/ϕ = 0.25 ∼ 2.5,
with the time interval �t/ϕ = 0.25.

T/T0 = 1 + 9α2(γ − 1)

[(
D1 + 9α − 1

3α

)
D2 t̃

9α−2

r̃

− D2
2 t̃

18α−2

2r̃4
−

(
D1 + 1

3α

)
Dr̃2

2t̃2

− 6α − 1

2α
D

1/3
1 D

2/3
2 t̃6α−2

]
, (33)

where t̃ = t/ϕ, r̃ = r/ψ , T0 ∝ c2
0 is the room temperature, and

D1 = 3α − 1

9α

2

γ − 1
, D2 = D1 + � − 1

�
. (34)

The scaled temperature profiles given by Eq. (33) are shown
in Fig. 4 for � = 8, γ = 7/5, and α = 4/3.

We next consider the trajectories of the unburnt gas parcels
upstream of the flame front, described by u = dr/dt , with u

given by Eq. (32). Specifically, for any given parcel {r,t} we can
determine the locus {rc,tc} when this parcel is consumed by the
reaction, with rc = Rf (tc), unless the parcel explodes earlier
by itself and initiates a detonation. We assume, realistically,
that the temperature of a gas parcel increases only because of
the heat release in the reaction, so the parcel would explode
abruptly after an induction time ti = ti{T (r,t)} = ti(r,t) [35].
The condition for explosion is then given by [36]

ti(r,t) + t − tc(r,t) = 0. (35)

Approximating the temperature dependence of the induction
time by a step function ti = 0 if T > Ti and ti → ∞ if T < Ti ,
where Ti is the ignition temperature at which the reaction runs
away, similar to Refs. [25,36], we can explore analyticity: the
explosion occurs immediately at the flame front as soon as the
temperature just ahead of the flame reaches Ti , and the locus
of the explosion is given by

t̃expl/ϕ = �1/2(3α−1), r̃f ,expl/ψ = �3α/2(3α−1), (36)

where

� = (Ti/T0) − 1

9α2(γ − 1)

[(
D1 + 9α − 1

3α

)
D2 − D2

2

2

−
(

D1 + 1

3α

)
D1

2
− 6α − 1

2α
D

1/3
1 D

2/3
2

]−1

. (37)
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FIG. 5. Scaled instant and position of explosion versus the scaled
ignition temperature for � = 8, γ = 7/5, and α = 4/3.

The instant and position of explosion given by Eq. (36) are
shown in Fig. 5 versus the ignition temperate for � = 8, γ =
7/5, and α = 4/3. It is noted that the model of Eqs. (35)–(37)
is limited, providing just an estimation, at the hydrodynamic
level, for the time and locus of the detonation initiation,
while a comprehensive analysis of the diffusive-reactive inner
structure of the front and its coupling to the hydrodynamics
could quantitatively revise the results.

V. RESULTS AND DISCUSSION

In this study we have presented a formulation describing
the dynamics and morphology of outwardly propagating,
accelerating turbulent premixed flames and the effect of flame
acceleration on explosion triggering. The self-similar nature
of the turbulent flame acceleration, given by a well-defined
power law based on the average flame radius is determined,
and this power-law exponent, Eq. (24), is found to be
much larger than that for the hydrodynamically unstable
cellular laminar flames, Eq. (19). Hydrodynamic instability
is expected to provide additional acceleration at large scales,
thus further favoring conditions for detonation triggering. We
have also analyzed the dynamics and scalar fields associated
with flame propagation, including the time evolution of the
flame-generated compression waves, the radial flow velocity,
and the trajectories of the fresh gas particles ahead of the flame
front, Eq. (32), as well as the evolution of the temperature
profile determined by the sound speed in the upstream flow,
Eq. (33).

The result (36) is shown in Fig. 4 for � = 8, γ = 7/5,
and α = 4/3. It is seen that, for a typical Ti ≈ 3T0, we
have texpl ≈ 10ϕ and Rf,expl ≈ 25ψ , and as such the problem
is strongly dependent on the time and scale dimensions, ϕ

and ψ . For typical hydrocarbon combustion we find ϕ ≈
(10−2 ∼ 10−1)s and ψ ≈ (10−1 − 100)m. These values are
several orders smaller than those for the freely propagating
laminar flames [25], and therefore favor detonation triggering,
especially at large spatial dimensions.

While the effect of chamber dynamics is beyond the
scope of the present formulation, it is noted that the flame-
confinement interaction can influence the acceleration and
DDT scenarios. In particular, the acoustic coupling to expand-
ing flames, laminar or turbulent, can modify the power-law
flame acceleration, concomitantly facilitating or inhibiting the
transition to detonation; see Ref. [37] for details.

Finally, we consider an extension of the above formu-
lation caused by the pressure dependence of the intrinsic
flame properties. That is, in later stages of the acceleration,
flame-generated compression waves noticeably increase the
upstream pressure, thus modifying the unstretched laminar
flame speed SL and the flame thickness δL, and thereby the
basic characteristics of the flame propagation. An extended
self-similar formulation is possible when the second term in
the right-hand side of Eq. (33) dominates over unity, with
T ∝ t6α−2, while the isobaric approximation is still valid,
(�P/P )3 � 1, with P ∝ T γ/(γ−1) ∝ t (3α−1)2γ /(γ−1). Subse-
quently, with λc ∝ δL ∝ P −n/2 ∝ t−(3α−1)nγ/(γ−1), and the lo-
cal mass flow rate f 0 ∝ �SL ∝ P (n/2)−1 ∝ t (n−2)(3α−1)γ /(γ−1),
where n is the global reaction order, Eq. (24) yields

Rf ∝ (�SL)(9/2)α−3λ2(1−α)
c t3α

∝ t3α+{(3α−1)(α−1)2n+(3α−1)(n−2)[(9/2)α−1]}γ /(γ−1). (38)

With α = 4/3, γ = 7/5, Eq. (38) demonstrates a very strong
dependence on the reaction order, Rf ∝ t4+3.5(17n−30), which
can yield either strengthening or weakening correction to
Eq. (24) because of compressibility. It is noted that the effect
of pressure variations can become of primary importance in
astrophysical expanding flames, such as supernovae explosion,
which include large pressure gradients in enormous central
gravitational field [38].
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