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Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer
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Using only dimensional considerations, Monin and Obukhov proposed a “universal” stability correction
function ¢.(¢) that accounts for distortions caused by thermal stratification to the mean scalar concentration profile
in the atmospheric surface layer when the flow is stationary, planar homogeneous, fully turbulent, and lacking
any subsidence. For nearly 6 decades, their analysis provided the basic framework for almost all operational
models and data interpretation in the lower atmosphere. However, the canonical shape of ¢.(¢) and the departure
from the Reynold’s analogy continue to defy theoretical explanation. Here, the basic processes governing the
scalar-velocity cospectrum, including buoyancy and the scaling laws describing the velocity and temperature
spectra, are considered via a simplified cospectral budget. The solution to this cospectral budget is then used to
derive ¢.(¢), thereby establishing a link between the energetics of turbulent velocity and scalar concentration
fluctuations and the bulk flow describing the mean scalar concentration profile. The resulting theory explains
all the canonical features of ¢.(¢), including the onset of power laws for various stability regimes and their
concomitant exponents, as well as the causes of departure from Reynold’s analogy.
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I. INTRODUCTION

The exchange of heat, water vapor, ozone, carbon dioxide,
and other greenhouse gases between the land or ocean and
the lower atmosphere is complicated by the coexistence of
shear- and buoyancy-generated (or dissipated) turbulence.
Monin and Obukhov similarity theory [1,2], hereafter referred
to as MOST, describes how thermal stratification distorts
the mean scalar concentration (C) profile in the so-called
atmospheric surface layer using only dimensional analysis.
The atmospheric surface layer is a region whose lower bound
is much larger than the height of the roughness elements at the
ground surface and whose upper bound is not too high up in
the atmosphere to be impacted by Coriolis effects. Thus, the
atmospheric surface layer region encompasses much of the
human and biological processes. Despite some 6 decades after
its inception, MOST remains the basic “workhorse” employed
when coupling land or oceanic fluxes to the atmospheric
state in virtually all climate, oceanic, regional atmospheric,
hydrological, and ecological models [3]. MOST introduces a
dimensionless stability parameter ¢ that measures the height
at which mechanical production of turbulent kinetic energy
balances the buoyancy production (or destruction). Distortions
produced by thermal stratification to the otherwise logarithmic
mean scalar concentration profile can then be encoded in a
“universal” stability correction function ¢.(¢), which so far
has been empirically determined from experiments [4]. The
shape and universal character of ¢.(¢) have been documented
across several field experiments for heat, and other scalars
(e.g., water vapor), and embody a large corpus of data on
scalar exchange in the atmospheric surface layer as evidenced
by Fig. 1. Yet, despite their widespread usage, the canonical
form of these scalar stability correction functions continue
to defy theory, even for the most idealized flow conditions.
The aim of this work is to present a cospectral theory that
predicts the canonical shape of ¢.(¢) and, by extension, the
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scalar eddy-diffusivity for such idealized flow conditions. The
theory provides an analytical link between ¢.(¢) and the basic
turbulent processes governing scalar transport that result in the
universal character of ¢.(¢). It also establishes the organizing
framework for diagnosing why several field experiments report
anomalous ¢.(¢) over oceans and land [10,11].

II. THEORY

As earlier noted, MOST is restricted to idealized incom-
pressible atmospheric surface layer flows associated with a
number of simplifications to the Reynolds-averaged longi-
tudinal momentum balance and scalar continuity equations
given by
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where ¢ is time and x; = (x,y,z) represents the longitudinal
(=x), lateral (=y), and vertical (=z) directions, respectively.
The longitudinal direction is aligned along the mean wind
direction so the mean lateral velocity is zero. The U, C,
and P represent the Reynolds-averaged longitudinal velocity,
scalar concentration, and pressure, respectively, p is the
mean air density, v is the air kinematic viscosity, D, is the
molecular diffusivity of scalar C in air, u; = (u’,v’,w’) are
the component-wise turbulent velocity excursions in direction
x;, ¢ is the turbulent scalar concentration fluctuation, and,
unless otherwise stated, primed quantities represent turbulent
excursions from the Reynolds-averaged mean state repre-
sented by an overbar or capital letter symbols. Hence, the
instantaneous velocity and concentration can be expressed as
u; = U; +u} and c = C + ¢'. As discussed elsewhere [2], the
proper averaging operator that must be employed on these
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FIG. 1. (Color online) The universal shape of ¢.(¢) for air tem-
perature determined from the Kansas experiment in the atmospheric
surface layer (lines). Note the linear increase of ¢.(¢) with increasing
¢ for stable atmospheric conditions ({ > 0) and the power-law decline
in ¢.(¢) with increasing —¢ for unstable atmospheric conditions ({ <
0). The so-called Businger-Dyer (BD) stability correction functions
for ¢,,(¢) and ¢.(¢), inferred from the Kansas experiment, are shown
as lines. For stable conditions, ¢.(¢) = ¢,,(¢), where such equality
between the momentum (¢,,(¢)) and scalar (¢.(¢)) stability correction
functions is often referred to as Reynolds analogy. For unstable
conditions, ¢.(¢) = ¢,,(¢)?, a signature of a breakdown of Reynold’s
analogy. Other experiments on air temperature (C = T') and water
vapor (C = gq) exchange from different geographic regions around
the world are also presented for illustration (as symbols). These
experiments include the influential Kansas data [5], the data collected
in the towns of Kerang and Hay [4] on heat and water vapor exchange
in Australia, the data on heat exchange over the Pampas in Brazil [6],
the long-term (daytime only) heat exchange data from the Steppe
region in Russia [7], the long-term data on heat exchange from the
island of Gotland in the Baltic Sea [8], and data for water vapor
exchange using a drag plate (to estimate u,) and weighing lysimeter
(to estimate water vapor fluxes) from University of California Davis,
California, USA [9].

equations is ensemble averaging; however, measurements
in the atmospheric surface layer are routinely presented as
time averages. Given the near impossibility of repeating
experiments for identical meteorological states in natural
conditions to compute ensemble averages, it is customary
to assume atmospheric surface layer flows are ergodic so
ensemble averaging and time averaging converge. It is for
this reason that time averaging periods used in atmospheric
surface layer studies are on the order of 1 h so as to ensure
that a single period includes an ensemble of eddies (usually
characterized by time scales of tens of seconds) collected
under similar meteorological conditions. Hereafter, the term
Reynolds averaging is used to indicate both time averaging
when interpreting field measurements or ensemble averaging
when interpreting equations as is conventional in atmospheric
turbulence studies.

MOST assumes that the flow is (i) characterized by high
Reynolds and Peclet numbers (i.e., neglect molecular viscosity
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and diffusivity relative to their turbulent counterparts), (ii)
stationary [i.e., d(.)/d¢t = 0] and planar-homogeneous [i.e.,
d(.)/dx = 9(.)/dy = 0], and (iii) lacking any subsidence (i.e.,
Us; = W =0) and mean horizontal pressure gradient (i.e.,
dP/dx = 0). For these idealized states, the mean longitudinal
momentum balance and the mean scalar budget reduce to
dw'u’/dz = 0and dw'c’/dz = 0. Hence, the turbulent stresses
(i.e., w'u’) and scalar fluxes (i.e., w’c’) do not vary with z. It is
for this reason that the atmospheric surface layer subjected to
MOST assumptions is often labeled as the constant-stress or
constant-flux layer [4].

A. Background and definitions

The stability correction functions for momentum ¢,,(¢) and
for an arbitrary scalar ¢.(¢) in the atmospheric surface layer
are defined as

_kvu Z BU(Z) kvu Z
o) = =5 ’* 97 L [® . , (3)
w9z g5 [y Fuu(z K)dK
—kyu,z 0C(2) kyu,z
¢c(§) = % P = — = v , (4)
we < mfo Fy,(z,K)dK
where w'u’ = —u?, u, is the friction velocity and does not

vary with z, S(z) = dU(z)/dz is the mean velocity gradient,
I'(z) = 0C(z)/dz is the mean scalar concentration gradient,
k, ~ 0.4 is the von Karman constant, { = z/L where L =
—u3 /(k,fw'T") is the Obukhov length [1,12,13], B = g/ T,
g is the gravitational acceleration, 7, is the absolute mean air
temperature, w’7T" is the sensible heat flux, and F,,.(z,K) and
Fyu(z,K) are the scalar flux and momentum flux cospectra
for wave number K at a given height z. In principle, F,, and
F,. should be integrated over the surface of a sphere of radius
K, where K is the scalar wave number. However, because
cospectra reported in conventional atmospheric surface layer
studies are calculated from single point measurements [ 14] and
then converted to streamwise one-dimensional cuts using Tay-
lor’s frozen turbulence hypothesis [15,16], one-dimensional
cospectra (and spectra) are used here and K can be interpreted
as the wave number in the streamwise direction. The cospectra
are height dependent; however, on integrating them across the
entire wave-number range, they become independent of z and
given by w'u’ and w’c’ (both fluxes are height independent
as previously shown). A specific illustration of this height
independence of the integrated cospectra is discussed later.
The atmospheric surface layer flow is referred to as unstable
when ¢ < 0 (e.g., when the surface heats up during the day so
w’'T’ > 0) and stable when ¢ > 0 (e.g., when the surface cools
during nighttime so w’T’ < 0). These definitions for ¢,,(¢) and
¢.(¢) imply that the turbulent diffusivities for momentum and
scalars are K;,, = kyusz/¢n(¢) and K; . = kyus2/Pc(8).

In the inertial subrange, a range delineated by eddy sizes
much smaller than the integral length scale of the flow but much
larger than the Kolmogorov viscous dissipation length scale
[17,18], the cospectra F,,(z,K) and F,.(z,K) are classically
given by [14,19]

Fuu(z,K) = CyuS(2) e(2)' K73, ®)

Fue(z,K) = Cp . T(2) ()P K3, (6)
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where ¢(z) is the mean turbulent kinetic energy dissipation
rate and C,, and C,. are similarity constants (discussed
later). Because the flow in the inertial subrange is locally
homogeneous and isotropic, the scalar wave number K can be
reasonably approximated by its one-dimensional longitudinal
cut as earlier noted. A number of studies have also shown that
inertial subrange scaling laws are not sensitive to the local
isotropy assumption [20]. Stated differently, inertial subrange
scaling laws extend over a much broader range of K values
within the inertial subrange when compared to the range of K
values inferred from locally isotropic predictions of velocity
components’ spectral ratios. If the turbulent flow field is
energetically near its equilibrium state with the production and
destruction of turbulent kinetic energy in balance, the turbulent
kinetic energy budget equation results in

3
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When the integrated effects of all eddies much larger than
z do not significantly contribute to the cospectra Fy,,(z,K)
and F,.(z,K) (this issue will also be revisited later),
then it follows that —w'u’ = fl"; Fuu(z,K)dK and —w'c’ =
f lc;oz F,.(z,K)dK. Note that in the atmospheric sciences
literature, the co-spectra are often defined without the minus
signs we use here. As earlier noted, the cospectral expressions
explicitly contain z; however, on integration with respect to
K, the z cancels and the constant stress and constant flux
assumptions are preserved provided z is treated independent of
K in the integration with respect to K. To illustrate, consider
the near-neutral condition with &(z) = u2/(k,z) and S(z) =
u./(k,z), where on integrating Fy,(z,K) given by Eq. (5)
within the prescribed limits, the expected —w’u’ = u? is recov-
ered when Cy,, = (4/ 3)k§4/ 3 Similar arguments can be made
for w’c’, the integrated F,.(z,K) and their z independence.

For any stability condition, direct links between the
cospectra and the stability correction functions can now be
established via

e(z) =

(D) ~ ko2 N 1 "
5 ﬁff/oz Fou(z,K)YdK  [¢n(0) — 13’
kvu*z 1
(5 & ©)
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The constants C,,, and C,,. should be selected to ensure that
¢n(0) = 1 and ¢.(0) = 1. This constraint on ¢, is repeatedly
used here so many combinations of similarity or integration
constants equate to unity making the final outcome insensitive
to the precise values of these constants. The Egs. (8) and (9) can
be rewritten as two Obukhov-Kazansky-Ellison-Yamamoto-
Panofsky-Sellers (OKEYPS) equations [21-23],

(DO [Pn(0) — 21 =1, (10)
(@O [pm(0) — £]1 = 1. (11)

An obvious solution to the scalar OKEYPS equation is the
Reynolds analogy, with ¢.(¢) = ¢,,(¢). According to large
eddy simulations [24] and many field experiments [3,25-27],
$n(¢) = (1 —16£)"/* when ¢ < 0 and ¢,,(¢) = (1 +4.7¢)
when ¢ > 0. A derivation of these ¢,,(¢) functions and their
links to the energy spectrum is presented elsewhere [28] and
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is not repeated here. The ¢.({) = ¢, (¢) solution is supported
by several experiments for stable atmospheric conditions as
evidenced from Fig. 1 but not for unstable conditions [15].

A refinement to the previous argument is that eddies that
vertically transport scalars may be larger or smaller than z
depending on ¢. In general, with increased surface heating,
eddies that contribute to vertical scalar fluxes are larger
than z, and conversely, for stable atmospheric conditions.
Let Au(;)/Au(O) = fwu(C) and AC(;')/AC(O) = fwc(é‘) be the
ratios of largest eddy sizes that appreciably contribute to
Fy,(K) and F,,.(K) under some stability { normalized by the
value under neutral stability. Let A, (0) = s,z and A.(0) = s,z
be the neutral reference scales of the dominant eddies, which
are allowed to be proportional rather than strictly equal to
z, where s, and s, are now proportionality constants that do
not vary with atmospheric stability. Hence, f,,.(¢) and f,,,,(¢)
represent relative departures in eddy sizes from their neutral
state due to thermal stratification [i.e., f,,c(0) = f,,,(0) = 1].
Replacing the 1/z integration limit in Eqgs. (8) and (9) by
1/(sy fuwu($)z) and 1/(s. fuc(£)z), it follows that

() [P (C) — 1~ (12)

1
G fun DY

G0 [pn(0) — C1 ~ (13)

(s fuwe(2))!
Hereafter, the lower integral limit in Eqgs. (8) and (9) is
replaced by 1/(s. fwc(¢)z) unless otherwise stated. With the
two equations above, the turbulent Prandtl number (Pr) is
reduced to

Pr

4/3
_ Ktm _ ¢C(§) _ |:sufwu(§)i| . (14)

C Kie om0 LSefue(©)

Field experiments have shown that s, = s, &~ 1 and that
fwe(€@) = fuu(¢) for both stable and unstable conditions
[6,15]. fue(2)~! varies linearly with ¢ for stable conditions
[f,,,c(g“)’1 = (1 4+ «a¢), with the constant « ~ 1.7 here] and
remains unity [ f,,.(¢) = 1] for neutral and unstable conditions
[6,14,15]. The fact that s, = s. & 1 implies that the eddies
most important for momentum and scalar transfer under near-
neutral conditions are eddies touching the ground or attached
eddies [29]. However, this derivation still cannot explain why
Pr differs from unity (i.e., why the Reynolds analogy fails)
and varies with atmospheric stability for unstable conditions
(¢ < 0) as evidenced by the data in Fig. 1 that shows ¢,,(¢) >
¢-(¢). Alternative mechanisms are needed to unlock the causal
difference between ¢,,(¢) and ¢.(¢) for unstable conditions.
The previous approach assumed that F,,(z,K) and F,.(z,K)
follow their inertial subrange scaling from K € [1/A,00],
a result that need not hold for scalars. Several processes
regulating the magnitude and shape of F,.(z,K) beyond
eddy size adjustment to changes in ¢, not considered in the
discussion above, are discussed next. The sequential inclusion
of each of these processes in a proposed budget equation
describing Fy,.(z,K), and the concomitant modification to
¢:(¢), is then presented.

B. A simplified cospectral budget

Because the terms in the cospectral budget resemble those
in the turbulent scalar flux budget, a brief summary of the
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scalar flux budget in the idealized atmospheric surface layer,
given as

+ 20T — My, (15)
a

is first discussed. On the right-hand side, the first term
represents the scalar flux production due to a finite I'(z);
the second represents the vertical flux transport term by
turbulence; the third represents the pressure-scalar interaction
term whose role is to decorrelate w’ and ¢’ and which is, thus,
a net sink in the equation; the fourth is the buoyancy term that
can serve as a production or dissipation term depending on the
scalar being analyzed; and M, represents all the molecular
destruction terms, often much smaller than their pressure-
scalar interaction counterparts for very high Peclet number
flows. When the scalar being analyzed is air temperature,
the buoyancy term becomes positive and dependent on the
temperature variance (=7'T"), which is the main focus here.
However, the derivation is maintained for an arbitrary scalar
for completeness. The budget equation for the cospectrum
Fy.(z,K), derived elsewhere [30,31] but expanded here to
include the thermal stratification term [i.e., the contributions
arising from (g/7T,)c’'T’ in the scalar flux budget], is given by

0Fye(z,K)
ot

where G(z,K)=P(z,K) + Ty (z,K) + n(z,K)+BFr.(z,K),
P(z,K) = %F(Z)E (z,K) is the production term (analogous but

+ W+ Dy)K?*F,.(z,K) = G(z,K), (16)

opposite in sign to w'w'T"), E(z, K) is the vertical velocity en-
ergy spectrum at z, T,,-(z, K) is anonlinear turbulent flux trans-
port term arising from Fourier-transforming the triple correla-
tion function [u;(x)usz(x + r)c(x) — u;(x + r)uz(x + r)c(x)]
with r being the separation distance between two points,
7 (z,K) is the pressure-scalar interaction term, and Fr.(z,K)
is the scalar-temperature cospectrum. The term BFr.(z,K)
arises from the presence of (g/7T,)c'T’ noted earlier in the
Reynolds-averaged scalar flux budget. As discussed elsewhere
[30], direct numerical simulations at moderate Reynolds
number suggest that the sum of the two molecular terms
(v + D,)K?F,.(K)| is less than 10% of |7 (K)|, and their
contribution further diminishes with increasing Reynolds num-
ber. Hence, for the high Reynolds number flow characterizing
the idealized atmopsheric surface layer, these two molecular
terms are ignored relative to 7 (K) throughout. If a Rotta-like
model modified to include buoyancy effects is invoked for the
pressure-scalar interaction term [32-34], then

Fucw )y g k). am)
b4 T(Z,K) 3.3 Tc\Z, s

w(z,K)=—A

where 7(z,K) = e(z)”"*K =% is a wave-number-dependent
time scale at height z. The Rotta model has been the subject of
numerous studies [35], and despite its limitations, remains
widely employed in modeling pressure-scalar interactions
in high-Reynolds-number turbulent flows. The cospectral
nonlinear turbulent flux transport term was shown elsewhere
to act mainly to transport covariance away from the peak in
the cospectra [30] (i.e., transports covariance from scales with
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higher to scales with lower covariance). As such, it may be
modeled as

T(z.K) = ! (6@ K Fue(z,K)).  (18)

ATk
Even with all these simplifications, solving for Fy.(z,K)
requires the energy spectrum E(z,K), the temperature-scalar
cospectrum Fr.(z,K), I'(2), e(z), as well as the two closure
constants A, and Ar, discussed next.

C. The neutral equilibrium state

In the absence of buoyancy effects (8 = 0) and turbulent
flux cospectral transport contributions, the cospectral budget
reduces to a balance between production and pressure-scalar
induced decorrelation between w’ and ¢’ (equivalent to a
dissipation of w’c’) given as

0=2I'()Ez.K) — Aze(2)' P K*PFu(z,K),  (19)

and results in

21
Fue(z,K) = = —T(2)e(x)" K PE@Z,K).  (20)
3A,
On assuming the classical Kolmogorov (hereafter referred to
as K41) scaling within the inertial subrange for E(z,K), given
as [17,36]

E(z,K) = Coe(z)** K7, 1)

one obtains F,.(z,K) = Cyp.['(2)e(z)>* K773, where C,,. =
C,(2/3/A;) and C, =0.55 is the Kolmogorov constant
[36,37]. Hereafter, this Fy,.(z,K) is referred to as Fyeq(z, K).
On further assuming the inertial subrange scaling extends all
the way up to large scales comparable to A.(¢) without any
modification, the conventional scalar-velocity cospectrum in
Eq. (5) is recovered. Inserting this modeled cospectrum in
Eq. (9) with 1/(s. fucz) replacing 1/z in the lower integral
limit results in
1

e fuc@N P m(@) — 113

Note that the condition ¢.(0) = 1 eliminates the dependence
of ¢.(¢) on constants such as A,. Hereafter, ¢, is referred
to as the scalar stability correction function for the equilibrium
state in the absence of buoyancy forces.

Peneq(§) = (22)

D. The equilibrium state modified by thermal stratification

If buoyancy effects are allowed to modify the velocity field
(i.e., B # 0), the cospectral budget reduces to
g T(Z, K) 3 Tc Za M

When the scalar of interest is air temperature, the preceding
equation with the definition of 7(z,K) = e(z)~'/* K ~2/3 yields
2F(Z)E(Z,K)+‘_H‘3FTT(LK) K7

3A, 3 A, e()\?’
where I'(z) is now the mean air temperature gradi-

ent. An inertial subrange approximation for Frr(z,K) is
employed [38],

Frr(z,K) = Cre(z)" P Nr(2)K 7, (25)

0= %F(z)E(z,K) —A

For(e.K) = [ 24)
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where C7 = 0.8 is the Kolmogorov-Corrsin constant [38] and
Nr(z) is the thermal variance dissipation rate and is estimated
as N7(z) = —w'T'T'(z) from an equilibrium temperature vari-
ance budget equation [18,39]. On employing the equilibrium
estimate of £(z) in Eq. (7), Eq. (24) reduces to

34/9C ¢
Fw 7K = 1—-=
r@f { [ém(©) — ¢

2 G,

Here also, only the relatively well-known constants Cr
and C, appear, and the other constants cancel after imposing
¢.(0) = 1. The factor in squared brackets varies between 0.8
(most stable) and 2.3 (most unstable) and is always positive.
It acts to reduce the magnitude of the cospectrum under stable
conditions and to increase it under unstable conditions (as
expected). The sign of the cospectrum is therefore set by the
sign of the mean temperature gradient I'(z). Combining this
estimate of F,,r(z,K) with Eq. (9), which uses 1/(s. fu.z) to
replace 1/z as the lower integration limit, we obtain

¢Cneq({)
{1 _ %(4/3)CT ¢ }
Co  lom(0)—¢]

The inclusion of a finite 8 Frr(z,K) thus can significantly
modify the temperature stability correction function from
its no-buoyancy equilibrium state. Moreover, the outcome is
dependent on Cr/C, not the absolute values of the constants.
That is, the outcome here is robust to the precise interpretation
of K as being a one-dimensional or three-dimensional wave
number. As can be seen from Fig. 2, d)Teq follows the
measurements closely, at least when compared to ¢r .

} Faeq(z,K).  (26)

¢Teq(§) =

27)

E. The nonequilibrium state

On retaining a finite flux-transport contribution for K >
1/A. and invoking inertial subrange approximations for

2

10 ‘ ‘
o -q)m(g)! Kansas
_¢T(C)a Kansas
1011 00 (0= o
ST (¢ e
S 10 I Ore® A
-e[‘ o -------‘-.---------_-'—,O
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FIG. 2. (Color online) The universal shape of ¢ (¢ ) as determined
from the Kansas experiment for heat along with the resulting ¢7(¢)
from various approximation to the cospectral budget F,r, including
BT neq(§) and ¢req(£). The ¢r,(¢) is calculated from Eq. (22) with
Suwe(§) = 1 so it collapses with ¢r,..(¢) when ¢ < 0. In the model
derivation, inertial subrange scaling is assumed for E(z,K) and
Frr(z,K) with no modifications in the low-wave-number range.
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Frr(z,K) as before, the cospectral budget reduces to

Ay 0 -

o5 5 K FurG K + Fur.K) = AsK 7P, 28)
where A3z = {1 — %“@CT 7 (g)_{]}CwTF(Z)é“(Z)l/S and A4 =
Ar/Ay; the general solution of this equation is given by

3A; 7
Fur(z,K) = ———K 73 4 By K 3/37 /A4, 29
1K) = 5= KT By (29)

where A4 > 3/2 [30] and B, is an integration constant. When
Ag =3/2, Eq. (29) recovers the classical “—7/3” inertial
subrange scaling law for F,,7(K). When A4 = 3, the leading
power law is an approximate K 2 as discussed elsewhere
[30,40]. To evaluate By, it is assumed that d F,,7 /0K = 0 at
K = 1/A. to ensure a maximum at that peak wave number,
which results in
—(21A3 A4 A2V

By = :
'[9 + Ag) — 10A7] G0

Combining this estimate of B; with Egs. (29) and (9) leads to
d1(8) = P1()eqYc(As). (€29

Hence, contributions originating from the cospectral flux trans-
port term to eddies whose wave number K > 1/A, manifest
themselves as a multiplier Y, to ¢7(¢), where Y.(Ay) =
43 4+2A4)(B3+5A4)/(27 + 81A,) is a constant that varies
with A4. The final Eq. (31) depends on the value of A4, again
due to its modification of the inertial subrange scaling law
of F,r(K). When A4 = 3/2 (corresponding to the “—7/3”
power law), Y.(A4) = 1.8; when A4 = 3 (corresponding to the
“—2” power law), Y.(A4) = 2.5. Nonetheless, these variations
in Y, are not produced by atmospheric stability variations.
That is, the addition of a flux transport term affects ¢7(¢) by
a multiplier (=Y,) uniformly applied across all atmospheric
stability values and as such does not contribute to the variation
of ¢7(¢) and Pr with stability, which as discussed in the
previous section are rather well explained by the contribution
of the buoyancy term.

III. DISCUSSION

Based on the proposed derivation, the various turbulent
processes responsible for the shape of ¢r(¢) in the Kansas
experiment can now be unfolded. A logical starting point is
the most idealized state—a cospectral budget reduced to the
interplay between mechanical production and dissipation via
scalar-pressure interaction known to be far more significant
than the molecular terms. The mechanical production requires
knowledge of the energy spectrum, which is assumed here to
follow inertial subrange scaling, and the dissipation term is
modeled via a Rotta type pressure-scalar interaction modified
to include buoyancy effects. In this budget, all low-wave-
number contributions to Fy.(z,K) (i.e., K < 1/z) are either
suppressed or assumed to cancel out so | fol/z F,.(z,K)YdK| <«
| ffi Fy,c(z,K)dK|. These approximations to the cospectral
budget result in an F,.(z,K) that follows its conventional
inertial subrange shape [22]. Integrating this F,.(z,K) from
K = 1/zt0001eads to Pepeq($) = Pryeq(¢) for any scalar. The
resulting behavior from this neutral equilibrium approximation
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is shown in Fig. 2. Comparing this modeled ¢r,.4(¢) with
fwe(€) = 1 to the Kansas measured ¢7(¢), it is clear that this
model cannot reproduce many features of the Kansas (and
many other) experiments such as the increases in measured
ér(¢) for ¢ > 0. For ¢ <0, the modeled ¢r,,(¢) decays
with increasing —¢ but its value remains much larger than the
measured ¢7(¢) or, for that matter, ¢,,(¢). Revising the lower
integration limit of the modeled cospectrum to K = 1/A,
instead of 1/z to obtain DT neq($) leads to an increase with
increasing ¢ for stable conditions, though not at the same
rate as those reported for the Kansas experiment. Hence, the
dependence of A, on ¢ has some effect on ¢r(¢) for stable
conditions, but this effect is not sufficient to reproduce the rapid
increase in ¢7(¢) when ¢ > 0. In short, a balance between
production and dissipation with E(z,K) following its inertial
subrange laws alone and without any buoyancy contribution
(i.e., without a finite 8) cannot reproduce the Kansas reported
dr(0).

Adding the buoyancy term and assuming that the tem-
perature spectrum also follows its inertial subrange shape
from K = 1/A. to oo, the agreement between measured and
modeled ¢7.4(¢) is now significantly improved for unstable
conditions. Likewise, for stable conditions, the agreement is
greatly improved when the constant « is set to 1.7 in the f,.(¢)
formulation. It should be emphasized here that the linear de-
pendence of f,,.(¢) on ¢ for stable conditions was reported in
the Kansas experiment and was derived independently from the
stability correction functions. Thus, it is justifiable to include
Jfwe(¢) dependence on ¢ for stable conditions independent
from the inclusion of the buoyancy term in the conservation
equation. However, this value of « is lower than the reported
value from the Kansas experiment by a factor commensurate
with the “excess” flux attributed to the difference between
modeled and measured | ff;oA(_ F,.(K)dK|. Specifically, the
excess flux in the model primarily originates from a flattening
in the Kansas measured F,,.(K) as K = 1/A, is approached
while modeled F,.(K) maintains its inertial subrange scaling
upto K = 1/A, as illustrated in Fig. 4. Not withstanding this
modification to «, the temperature spectrum remains necessary
for recovering ¢7(¢) from the Kansas experiment and for
explaining why Pr < 1 for unstable conditions as evidenced
by Fig. 1. This confirms the hypothesized links in previous
studies between the active role of temperature and the decrease
in Pr under unstable conditions [41,42]. Li et al. [42] related
the dissimilarity between momentum and heat transfer under
unstable conditions to a decrease in the ratio of the integral
length scale of temperature fluctuations and vertical velocity
from roughly 10 to unity with increasing —¢. At that point,
it was argued that the “resonance” between these two scales
becomes important. On replacing the temperature with the
longitudinal velocity time series, the integral length scale ratio
did not approach unity with increasing —¢. Their conclusion
is in broad agreement with the role of buoyancy uncovered
here.

When the cospectral flux transport term is also introduced
via a first-order closure model in the spectral domain, the
agreement is not dramatically altered except via a constant
multiplier that also leads to ¢7(0) no longer unity. To what
degree the experiments can discern a ¢7(0) % 1 can be
debated. For near-neutral conditions (i.e., { — 0), the scatter
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FIG. 3. (Color online) Comparison between measured ¢7(¢) for
the data sources in Fig. 1 and modeled ¢, (¢) from the full cospectral
budget. Note the large scatter in the data for —¢ — 0.

in the ¢7(¢) measurements is not small, as shown in Fig. 3,
presumably due to the small sensible heat flux (=w’T’) and
a small mean air temperature gradient (i.e., I'). A small heat
flux accompanied by a small mean air temperature gradient
produces large uncertainties in measured ¢7(0) as evidenced
by the definition in Eq. (4).

Departures in ¢7(¢) from the Kansas experiment have been
reported and reviewed elsewhere [11]. A common explanation
in all these experiments is the role of large eddies. In fact,
using the Kansas reported F,7(K) for unstable conditions

leads to | i/ Fur(K)dK| ~ | [, For(K)dK|. That is,
eddies larger than A, contribute some 50% of the total scalar
flux (for unstable conditions) based on Kansas measured
F,.(K) and, thus, can have significant impact on ¢ ({).
Neglecting their contribution in the derivation leading to
#1¢q(¢) here was partially compensated for by the inertial
subrange extrapolation of modeled F,7(K)upto K = 1/A. as
shown in Fig. 4. To what degree this compensation is complete
and to what degree the dynamics of the fluxes contributed by
these larger scale eddies are universal remains debatable and
explain why several experiments report large fluctuations, or
even anomalous scaling, in ¢7(¢). The generation and the
impinging mechanisms of large eddies onto the atmopsheric
surface layer are diverse and vary with atmospheric stability.
For experiments in which the terrain was flat and the surface
cover was uniform, these mechanisms may include detached
eddies generated by shearing motions in the neutral boundary
layer, convective motion in the outer layer of the convective
boundary layer, and attached eddies initiated by instabilities
within the atmopsheric surface layer [8,43—45]. Even for
neutral conditions, laboratory studies have also documented
the impingement of large (and very large) structures onto
the “logarithmic” region at high Reynolds number [46—48].
Clearly, these large-scale processes cause nonuniversal depar-
ture from inertial subrange scaling in both E(K) and Fr7(K)
and introduce low-frequency modulations in F,7(K) that
must be included. If known, these inertial subrange departures
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FIG. 4. (Color online) The canonical shape of normalized
F,7r(z,K) as reported in the Kansas experiment against the normal-
ized wave number (n) showing a peak at K = 1/A. and a —7/3
scaling for K > 1/A. in the inertial subrange. The cumulative
contribution of eddies whose K < 1/A. is some 50% of the total
heat flux (i.e., A, is some 50% of the total area under the cospectrum;
note that the areas under the curves are not visually equal due
to the double-logarithmic representation). In the derivation leading
to ¢re,(¢), neglecting their integrated contribution was partially
compensated for by inertial subrange extrapolations of modeled
F,r(K)upto K = 1/A,, indicated by A;.

and low-frequency modulations can be accommodated in this
cospectral framework on a case-by-case basis.

On the topic of large scales modulations, we would be
remiss if we did not recall a statement made by Lumley and
Yaglom [49], who noted that “Julian Hunt now claims (private
communication) that these (i.e., the Kansas) data are seriously
filtered at low wave numbers. There are evidently data of
Hogstrom at Uppsala that were suppressed for decades because
they did not agree with the Kansas data at low wave number,
which suggests the presence of elongated coherent structures.”
The Hogstrom data were collected under conditions of much
worse terrain inhomogeneity than in Kansas, and it is conceiv-
able that the idealized atmospheric surface layer assumptions
(e.g., stationary, planar-homogeneous assumption lacking
subsidence or mean longitudinal pressure gradients) necessary
for the application of MOST were not fully satisfied. Hence,
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the final clarification of how low-wave-number contributions
modify ¢7(¢) in the Kansas (and Uppsala) experiments must
be left for future research, where further sensitivity to different
nonstationary trend removal techniques can be fully explored.
Nonetheless, when all these results are taken together, it
appears that the “universal” features in ¢7(¢) can be attributed
to processes tightly linked to those leading to the derivation
of ¢req(¢), which inherit their “universal” character from
well-established inertial subrange scaling laws. This is also
in agreement with Gioia et al. [50], who concluded that the
log-layer in their neutral cases results from inertial subrange
eddies and scaling.

IV. CONCLUSION

The extensive measurements made in Kansas by Kaimal
and Wyngaard has served as benchmarks in atmospheric
surface layer flows for decades. It was shown here that the
universal shape of ¢r(¢) reported from these experiments is
remarkably consistent with inertial subrange theories describ-
ing the velocity and temperature spectra using a simplified
cospectral budget across a wide range of ¢. Moreover, it was
shown that the contributing role to ¢7(¢) by buoyancy (via
the temperature spectrum) is the leading-order explanation for
the anomalous departure from Reynolds analogy. Hence, the
long-surmised link between the energetics of the microstate
of turbulence (encoded in the temperature and energy spectra)
and the macrostate property of the bulk flow [encoded here in
¢1(¢)] was explicitly revealed. As was recently accomplished
in linking the mean velocity profile and the spectrum of
turbulence by Gioia et al. [50], the cospectral link derived
here establishes a blueprint for a framework to assess how
large-scale structures impinging on the atmospheric surface
layer may modify ¢7(¢) and can perhaps lead to improved
representation of the mass exchange rates in future large-scale
models.
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