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Pattern dynamics near inverse homoclinic bifurcation in fluids
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We report the pattern dynamics in the vicinity of an inverse homoclinic bifurcation in an extended dissipative
system. We observe, in direct numerical simulations of three dimensional Rayleigh-Bénard convection with
stress-free top and bottom plates, a spontaneous breaking of a competition of two mutually perpendicular sets of
oscillating cross rolls to one of two possible sets of oscillating cross rolls as the Rayleigh number is raised above
a critical value. The time period of the oscillating cross-roll patterns diverges and shows scaling behavior near
the bifurcation point. This is an example of a transition from nonlocal to local pattern dynamics near an inverse
homoclinic bifurcation. We also present a simple four-mode model that captures the pattern dynamics quite well.
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I. INTRODUCTION

Extended dissipative systems driven away from thermo-
dynamic equilibrium often form patterns, if the driving
force exceeds a critical value [1]. Competing instabilities
may lead to interesting pattern dynamics, which helps in
understanding the underlying instability mechanism. Several
patterns are observed in continuum mechanical systems, such
as Rayleigh-Bénard systems [2], Bénard-Marangoni systems
[3], magnetohydrodynamics [4], ferrofluids [5], binary fluids
[6], granular materials [7] under shaking, biological systems
[8], etc. Symmetries and dissipation play a very significant
role in pattern selection in such systems [9]. The selection of
a pattern is a consequence of at least one broken symmetry
of the system. Unbroken symmetries often introduce multiple
patterns, which may lead to a transition from local to global
pattern dynamics. The gluing [10] of two limit cycles on two
sides of a saddle point in the phase space of a given system is
an example of a local to nonlocal bifurcation. It occurs when
two limit cycles simultaneously become homoclinic orbits of
the same saddle point. This phenomenon has been recently
observed in a variety of systems including liquid crystals [11],
fluid dynamical systems [12], biological systems [13], optical
systems [14], and electrical circuits [15], and is a topic of
current research. The pattern dynamics in the vicinity of a
homoclinic bifurcation has, however, not been investigated in
a laterally extended simple fluid dynamical system.

A Rayleigh-Bénard system [16,17], where a thin layer of
a fluid is heated uniformly from below and cooled uniformly
from above, is a classical example of an extended dissipative
system which shows a plethora of pattern-forming instabilities
[2], chaos [18], and turbulence [19]. Low-Prandtl-number [20]
and very-low-Prandtl-number convection [21,22] show three-
dimensional oscillatory behavior close to the instability onset.
In addition, the Rayleigh-Bénard system possesses symmetries
under translation and rotation in the horizontal plane that
can introduce multiple sets of patterns. The possibility of a
homoclinic bifurcation and pattern dynamics in its vicinity
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are unexplored in three-dimensional (3D) Rayleigh-Bénard
convection (RBC).

We report, in this article, the pattern dynamics near
an inverse homoclinic bifurcation in a laterally extended
fluid dynamic system. We have chosen a three-dimensional
Rayleigh-Bénard system with stress-free (free-slip) boundary
conditions as a model system for the purpose. The selection
of stress-free horizontal boundaries allows the construction of
simple models to study pattern dynamics near the homoclinic
bifurcation. Direct numerical simulations (DNS) of 3D RBC
in low-Prandtl-number fluids show spontaneous breaking of
a periodic competition of two mutually perpendicular sets of
cross rolls to one set of oscillating cross rolls, as the Rayleigh
number Ra is raised above a critical value Rah. This is an
example of a transition from nonlocal to local oscillatory
behavior. The time period of the oscillating patterns diverges
and displays scaling behavior in the close vicinity of the
bifurcation point. The exponents of scaling are asymmetric
on the two sides of the transition point. We also present a
simple four-mode model, which captures not only the pattern
dynamics in the vicinity of the inverse homoclinic bifurcation
but also the whole sequence of bifurcations observed in DNS
of RBC quite well over a wide range of Rayleigh number in
low-Prandtl-number fluids.

II. HYDRODYNAMICAL SYSTEM AND DIRECT
NUMERICAL SIMULATIONS

The hydrodynamics of RBC in a thin layer of Boussinesq
fluid of thickness d, kinematic viscosity ν, thermal diffusion
coefficient κ , and thermal expansion coefficient α, subjected
to an adverse temperature gradient β, is governed by the
following dimensionless hydrodynamic equations:

∂tv + (v · ∇)v = −∇p + ∇2v + Raθe3, (1)

Pr[∂tθ + (v·∇)θ ] = ∇2θ + v3, (2)

∇·v = 0, (3)

where v(x,y,z,t) ≡ (v1,v2,v3) is the velocity field, θ (x,y,z,t)
the convective temperature field, p the pressure due to
convection, and e3 a unit vector directed against the direction
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of the acceleration due to gravity g. Lengths, time, and
temperature are measured in units of the fluid thickness d,
viscous diffusion time d2/ν, and νβd/κ , respectively. We
use thermally conducting and stress-free boundary conditions
which imply that θ = v3 = ∂zv1 = ∂zv2 = 0 at z = 0,1.

All the fields are assumed to be periodic in the horizontal
plane. The Rayleigh number Ra = αβgd4/νκ and Prandtl
number Pr = ν/κ are two dimensionless numbers that decide
the convective flow structures in the fluid. Convection ap-
pears when the reduced Rayleigh number r = Ra/Rac with
Rac = 27π4/4 is raised above unity. We integrate the full
hydrodynamic system [Eqs. (1)–(3)] for low-Prandtl-number
(Pr � 0.025) fluids using an object-oriented code [23] based
on the pseudospectral method. The components of the velocity
field v(x,y,z,t) and the convective temperature field θ (x,y,z,t)
are expanded as

v1(x,y,z,t) =
∑

l,m,n

Ulmn(t)ei(lkx+mqy) cos (nπz), (4)

v2(x,y,z,t) =
∑

l,m,n

Vlmn(t)ei(lkx+mqy) cos (nπz), (5)

v3(x,y,z,t) =
∑

l,m,n

Wlmn(t)ei(lkx+mqy) sin (nπz), (6)

θ (x,y,z,t) =
∑

l,m,n

	lmn(t)ei(lkx+mqy) sin (nπz). (7)

The integers l, m, and n can take values consistent with
the equation of continuity [Eq. (3)] and k = q = kc = π/

√
2.

The size of the periodic cell for DNS is 2
√

2 × 2
√

2 × 1,
and its resolution is 64 × 64 × 64. The time integration is
carried out using the standard fourth order Runge-Kutta (RK4)
method. The time step is taken as 0.0005 for all the simulations
presented here. The simulation was started with random initial
conditions, and it was continued until a steady state was
reached. The steady state values of fields in a simulation
were used as the initial conditions for the next simulation.
The value of r was increased in small steps of size 
r

(0.0001 � 
r � 0.01) and the numerical simulations were
done for several values of r . We also repeated several runs
starting with random initial conditions for different values of r

and found no hysteresis in the parameter range considered here.
The convective dynamics is complex at the primary instability
in very low-Prandtl-number fluids [22] due to chaotic flows
just above the instability onset. We investigate the pattern
dynamics as soon as we observe the first oscillatory pattern
close to the onset of convection. Various observed convective
patterns in the DNS for Pr = 0.01 and Pr = 0 are listed in the
first three columns of Table I.

The first ordered state for Pr = 0.01 appears in the form
of a competition of two mutually perpendicular sets of
oscillatory cross rolls (OCR-I) which continues to exist until
r = 1.0835. The first row of Fig. 1 displays the pattern
dynamics for r = 1.076. It shows the contour plots for
the temperature field at z = 1/2 in a square box of side
2λc, where λc = 2π/kc = 2

√
2. Two sets of cross rolls,

one with |W101| > |W011| and another with |W101| < |W011|,
appear periodically. The patterns appear as squares when the
intensities of the two sets of cross rolls become equal. The
periodic competition represents a nonlocal pattern dynamics.

TABLE I. Convective patterns showing nonlocal oscillation of
cross rolls (OCR-I), local oscillation of cross rolls (OCR-II),
stationary cross rolls (CR), and stationary squares (SQ) computed
from direct numerical simulations in two columns in the middle and
from a simple model (see Sec. III) in the last column.

Convective DNS Model

patterns r(Pr = 0.01) r(Pr = 0) r(Pr = 0)

OCR-I 1.010–1.0835 1.0049–1.0708 1.010–1.0953
OCR-II 1.0836–1.1200 1.0709–1.1315 1.0954–1.1584
CR 1.1210–1.1990 1.1316–1.2005 1.1585–1.2519
SQ 1.2000–1.4200 1.2006–1.4297 1.2520–1.5128

As r is raised above a critical rh = 1.0835, the competing
cross rolls (OCR-I) spontaneously break into two possible
oscillatory cross rolls (OCR-II). The second and third rows
of Fig. 1 show two possibilities of OCR-II for r = 1.088. We
get oscillating cross-roll patterns with either |W101| < |W011|
or |W101| > |W011|. Two sets of multiple solutions, which are
related by the symmetry x → y and y → x, continue until
r = 1.120. Further increase in r leads to the appearance of two
sets of stationary cross rolls (CR) at r = 1.121 (see Table I),
which is observed until r = 1.199. Raising the value of r

even further leads to a transition from stationary cross rolls
to stationary square (SQ) patterns. The upper row of Fig. 2
shows two possibilities of stationary cross-roll patterns at
r = 1.15, while the lower row of Fig. 2 displays stationary
square patterns at r = 1.35. A similar sequence is observed in
the limit of Pr → 0 (see Table I). The range of competing cross
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FIG. 1. Contour plots of temperature field at midplane (z = 0.5)
near an inverse homoclinic bifurcation as observed in DNS (Pr =
0.01). The top row shows competition between two sets of oscillating
cross rolls (OCR-I) at r = 1.076. The middle and bottom rows show
two possibilities of oscillating cross rolls (OCR-II) at r = 1.088. The
wavelength λc = 2π/kc = 2

√
2.
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FIG. 2. Contour plots of the temperature field at midplane (z =
0.5) displaying two types of stationary cross rolls (CR) at r = 1.15
(upper row) and patterns of stationary squares (SQ) at r = 1.35 (lower
row) as observed in DNS for Pr = 0.01 (λc = 2π/kc = 2

√
2).

rolls becomes wider as Pr decreases. We have observed the
spontaneous breaking of competing cross rolls to two sets of
oscillatory cross rolls in fluids with 0 � Pr � 0.025. Figure 3
shows the details of a transition from global to local pattern
dynamics for Pr = 0.01. The divergence of the time period of
oscillatory patterns close to the transition point is displayed
in Fig. 3(a). The amplitude of the largest Fourier mode of
OCR-I patterns decreases linearly with the increase of r and
shows two possible values just above the transition (r = rh)
point [Fig. 3(b)]. The appearance of two amplitudes signifies
a bifurcation from a nonlocal to a local pattern dynamics.
The scaling of the time period τ of the oscillating pattern on
both sides of the transition point is displayed in Fig. 3(c),
showing asymmetry. The time period τ of the competing
patterns scales with ε ≡ |r − rh| as ε−0.115 before the transition
and as ε−0.0617 after the transition. The scaling behavior of the
time period of the OCR patterns suggests that the transition
is inverse homoclinic. Simulations [21] of low-Pr RBC with
no-slip boundaries are known to show relaxation oscillation of
patterns.

III. A MODEL

We now construct a simple low-dimensional model to
analyze pattern dynamics near the inverse homoclinic bi-
furcation. For this purpose we take the limit of vanishing
Prandtl number (Pr → 0). As the temperature field is slaved
to the vertical velocity, the number of modes representing
the effective dynamics is expected to be smaller in this limit.
We begin with the standard Galerkin technique to derive a
low-dimensional model [22]. We expand the vertical velocity
v3 and the vertical vorticity ω3 ≡ (∇×v)·e3 such that the
essential modes to describe two sets of mutually perpendicular

rolls, cross rolls, and the nonlinear interaction between them
are retained. We keep five velocity modes W101, W011, W211,
W121, and W112, and two vorticity modes Z110 and Z112. The
hydrodynamic equations are projected on these modes. We
then adiabatically eliminate modes W112, Z110, and Z112. This
leads to a simple four-mode model given by

Ẋ = μ1X + X1X2A(a1X + a2Y) + Y1Y2A(a3X + a4Y)

+ a5
[
X2

2Y1,X
2
1Y2

]T + a6
[
X1Y

2
2 ,X2Y

2
1

]T
,

Ẏ = μ2Y + X1X2A(b1X + b2Y) + Y1Y2A(b3X + b4Y)

+ b5
[
X2

2Y1,X
2
1Y2

]T + b6
[
X1Y

2
2 ,X2Y

2
1

]T
, (8)

where X = [X1,X2]T ≡ [W101,W011]T , Y = [Y1,Y2]T

≡ [W121,W211]T , A = [0 1; 1 0], μ1 = 3π2(r −
1)/2, and μ2 = π2(135r − 343)/98. The coefficients
are a1 = −3/100, a2 = 31/3000, a3 = −209/30 000, a4 =
63/60 000, a5 = −47/1500, a6 = 1/200, b1 = −93/700,
b2 = −67/7000, b3 = −7407/70 000, b4 = −3969/700 000,
b5 = −928/7000, and b6 = 3816/70 000. The superscript T

denotes the transpose of a matrix. The model is valid for
r < 343/135 (i.e., μ2 < 0).

The model is integrated using the standard RK4 method.
The time step is taken equal to 0.0005 as is done in the DNS
with minimum tolerance 10−9. The third and fourth columns of
Table I summarize the results obtained from DNS for Pr = 0
and the model, respectively. The integration is started using

−0.015 0 0.015
0

10

20

r − r
h

τ

(a)

1.07 1.08 1.09
0

10

20

r

(W
10

1) m
ax

(b)r > r 
h

r < r
h

−4 −3 −2 −1
0.5

1

1.5
(c) 

log
10

(ε)

lo
g 10

 τ

r > r
h

r < r
h

4.907ε− γ
1

2.783ε−γ
2

r < r
h

r > r
h

FIG. 3. (Color online) Scaling behavior near an inverse ho-
moclinic bifurcation (Pr = 0.01) as obtained from DNS: (a) The
divergence of the dimensionless time period τ of OCR patterns close
to the bifurcation point (r = rh) for r − rh < 0 [pink (gray) stars] and
for r − rh > 0 [blue (black) crosses]. (b) The variation of maxima of
the Fourier mode W101 with the reduced Rayleigh number r near
the bifurcation, showing the spontaneous transition from a glued
oscillation [pink (gray) line] to two possible unglued oscillations
[blue (black) line] at the homoclinic point. (c) The scaling of the time
period τ of OCR patterns with ε ≡ |r − rh|. The scaling exponents
γ1 = 0.115 before the transition [pink (gray) line] and γ2 = 0.0617
after the transition [blue (black) line] are different. The pink (gray)
and the blue (black) lines are the best fits for data points before
[pink (gray) stars] and after [blue (black) crosses] the homoclinic
bifurcation, respectively.

023001-3



PAL, KUMAR, MAITY, AND DANA PHYSICAL REVIEW E 87, 023001 (2013)

−4 −3 −2 −1
0

0.5

1

1.5

log
10

(ε)

lo
g 10

(τ
) (a) DNS

−4 −3 −2 −1
0

0.5

1

1.5
(b) Model

log
10

(ε)

lo
g 10

(τ
)

t t+20 t+40
0

5

10

15

Dimensionless time

W
10

1

(c) r = 1.0708 (DNS)

t t+20 t+40
0

5

10

15
(d) r = 1.071 (DNS)

Dimensionless time
W

10
1

t t+20 t+40
0

10

20

30

Dimensionless time

W
10

1

(e) r = 1.0953 (Model)

t t+20 t+40
0

10

20

30
(f) r = 1 .0954 (Model)

Dimensionless time

W
10

1

6.367ε−γ
1

1.829ε−γ
2

5.368ε−γ
1

2.095ε−γ
2

FIG. 4. (Color online) Comparison of results of the model with
those from the DNS for Pr = 0: Scaling of dimensionless time period
τ of oscillating patterns with ε ≡ |r − rh| before [pink (gray) line]
and after [blue (black) line] the bifurcation, as observed in the DNS
(a) and the model (b). The exponents from DNS are γ1 = 0.086 and
γ2 = 0.158, while the exponents from the model are γ1 = 0.092 and
γ2 = 0.124. (c) Temporal variation of the Fourier mode W101 [pink
(gray) curve] obtained from DNS before the homoclinic bifurcation.
(d) Temporal variation of W101 showing two possible solutions [light
blue (gray) and dark blue (black) curves] just after the bifurcation.
(e) Temporal variation of W101 [pink (gray) curve] before the
bifurcation, and (f) two possible solutions [light blue (gray) and deep
blue (black) curves] after the bifurcation, as obtained from the model.

random initial conditions. The reduced Rayleigh number r

was increased in small steps as is done in the DNS. Every time
r is increased, the steady state field values of the previous run
are used as initial conditions for the next value of r . We also
checked the results of integration for various values of r start-
ing with random initial conditions. All the results presented
here are independent of the choice of the initial conditions. The
model captures the sequence of bifurcations quite accurately
in a wide range of r as observed in the DNS. The difference
in the lower and the upper bounds for the range of r for any
solution computed from the model and the DNS is within 6%.

Figure 4 gives the comparison of results obtained from
the model and those from DNS for Pr = 0 near a homoclinic
bifurcation. The time period τ of competing cross rolls scales
with ε ≡ |r − rh| as ε−γ1 before the transition [pink (gray)
line] and as ε−γ2 after the transition [blue (black) line]. The

values of the scaling exponent γ1 obtained from the DNS
[Fig. 4(a)] and the model [Fig. 4(b)] are 0.086 and 0.092,
respectively. The DNS and the model yield γ2 equal to 0.158
and 0.124, respectively. The two exponents are different,
showing asymmetry in the scaling behavior on the two sides
of the bifurcation point. The values of the two exponents near
an inverse homoclinic bifurcation also depend on the value
of the Prandtl number Pr. Figure 4(c) displays the temporal
variation of the Fourier mode W101 [pink (gray) curves] before
the homoclinic bifurcation, while Fig. 4(d) shows the temporal
variation of the Fourier mode W101 [light blue (gray) and dark
blue (black) curves] after the bifurcation computed from DNS.
Similar behavior is observed in the model [see Figs. 4(e) and
4(f)]. The model reveals that the unstable SQ patterns exist
as fixed saddle points for 1 � r < 1.252 but become stable
at r = 1.252. The competing cross rolls (OCR-I) break into
two possible sets of OCR-II patterns when the limit cycle
describing the OCR-I oscillation touches a saddle square. This
confirms the transition from OCR-I to OCR-II as an inverse
homoclinic bifurcation. The model includes very few modes,
and therefore shows higher values of the Fourier mode W101.
The time periods of the oscillating patterns obtained from the
model and the DNS are in good agreement both before and
after the transition.

IV. CONCLUSIONS

We have investigated the possibility of an inverse homo-
clinic bifurcation and associated pattern dynamics in RBC with
stress-free boundary conditions. The spontaneous breaking of
a competition between two mutually perpendicular sets of
oscillatory cross rolls into one set of oscillatory cross rolls
occurs close to the bifurcation point. The time period of
oscillation shows asymmetric scaling on the two sides of the
bifurcation point. We have also constructed a simple four-mode
model which captures accurately the sequence of bifurcations
including the pattern dynamics near the homoclinic bifurca-
tion. The model with different values of the coefficients ai and
bi may be useful to study pattern dynamics on square lattices
in other extended systems with similar symmetries.
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