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Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons
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The FitzHugh-Nagumo neurons driven by a periodic forcing undergo a period-doubling route to chaos and
a transition to mixed-mode oscillations. When coupled, their dynamics tend to be synchronized. We show
that the chaotically spiking neurons change their internal dynamics to subthreshold oscillations, the phenomenon
referred to as firing death. These dynamical changes are observed below the critical coupling strength at which the
transition to full chaotic synchronization occurs. Moreover, we find various dynamical regimes in the subthreshold
oscillations, namely, regular, quasiperiodic, and chaotic states. We show numerically that these dynamical states
may coexist with large-amplitude spiking regimes and that this coexistence is characterized by riddled basins of
attraction. The reported results are obtained for neurons implemented in the electronic circuits as well as for the
model equations. Finally, we comment on the possible scenarios where the coupling-induced firing death could
play an important role in biological systems.
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I. INTRODUCTION

Although real excitable cells, neuronal or cardiac, are
complicated nonlinear systems involving a large number of
variables, the essential features of their excitable behavior
can be captured by a reduced description. Excitable behavior
appears near a bifurcation from a stable fixed point to a stable
limit cycle. Two examples are the Andronov bifurcation (or
saddle-node bifurcation on an invariant circle) [1] and the
Hopf bifurcation (or Andronov-Hopf bifurcation) [2]. The
simplest representations of excitable dynamics are the phase
equation (or Adler system) for the Andronov bifurcation
and the FitzHugh-Nagumo (FHN) model [3,4] for the Hopf
bifurcation. The FHN model alone exhibits only regular
dynamics since it is two dimensional. A chaotic spiking regime
can be induced in FHN by introducing a third slow refractory
variable [5,6] or by adding a periodic driving [7]. By changing
the amplitude or frequency of the external driving the system
undergoes period doubling to chaos and transition to chaotic
mixed-mode oscillations (MMO’s) [8,9]. Mixed-mode oscil-
lations (chaotic subthreshold oscillations interrupted by large
spikes) were first discovered in chemical systems (Belousov-
Zhabotinsky reaction) [10], and since then they have been
frequently observed in other systems, such as biological [11]
or optical [12] ones (see Ref. [13] for a recent review).

In the case of spatially extended systems, the dynamical
regimes of the single nodes and global states are influenced
by the intercellular interactions through the different types of
coupling. For example, the chaotic spiking behavior in the
two-dimensional oscillatory FHN can be induced by coupling
systems in a network [14]. It has been shown that coupling
can also induce a quasiperiodic motion [15,16]. The transition
from regular periodic dynamics to quasiperiodicity may
occur through Neimark-Sacker [17] or border-collision [18]
bifurcations. These bifurcations lead to a quasiperiodic route
to chaos (Ruelle-Takens scenario). The emergence of complex
firing patterns in a neural network may be induced not only by
coupling but also by the presence of delays [19]. Despite the
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dynamical changes and creation of multistable states, above
a certain coupling strength, the systems eventually reach full
synchronization (see, e.g., Refs. [20,21]).

On the other hand, the coupling may reduce the complexity
of the network leading to the so-called oscillation or amplitude
death where the dynamics of each subsystem ends up in a stable
fixed point through the Hopf or saddle-node bifurcations.

It was shown in Ref. [22] that in a pair of weakly
nonlinear oscillators, the coupling strength causes the system
to stop oscillating, and the rest state at zero, stabilized by the
interaction, is the only stable solution. The amplitude death
may be eliminated by introducing the disorder in the form of
random deviations from a linear trend of frequencies in an
array of diffusively coupled limit-cycle oscillators [23]. Such
an approach weakens considerably desynchronization-induced
oscillator death and, as a result, increases oscillation intensity
substantially. The amplitude death was also demonstrated to
be induced not only by coupling but also by time delay [24].
It was shown in two coupled nonlinear electronic circuits that
are individually capable of exhibiting limit-cycle oscillations.
Other experimental observations regarded a pair of thermo-
optical oscillators linearly coupled by heat transfer [25] and
coupled Chua circuits [26]. It was demonstrated in Ref. [25]
that the death phenomenon occurs because the coupling
displaces the Hopf bifurcation point.

A similar phenomenon takes place in the systems with
two time scales. The large coupling may lead to the so-
called firing or spike death in a network, where the coupled
neurons enter the subthreshold oscillation regime. It was
demonstrated [27–29] that coupling induces deformation of
the slow manifolds leading to suppression of large-amplitude
oscillations (canards). In Ref. [29], two coupled FHN have
been studied theoretically, examining their response to het-
erogeneous external parametrical inputs applied to the slow
variable. The firing death was shown to occur at large coupling
strengths and to be caused by a coupling-induced modification
of the slow manifold leading to the increase of the excitation
threshold.

In this paper, we examine a network of four FHN
electronic neurons coupled in a ring configuration subjected
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to homogenous external inputs in the fast variables. We
show that the firing death may occur at small coupling
strengths, i.e., before the full synchronization establishes. The
occurrence of this phenomenon at small coupling strengths
is possible because the slow manifold is modified by both
the external forcing and coupling. As the coupling strength
is slowly increased, the firing is replaced by subthreshold
oscillations exhibiting regular, quasiperiodic (through the
Neimark-Sacker bifurcation), or chaotic oscillations. We show
numerically that the subthreshold oscillations may coexist
with the large-amplitude spiking and that their coexistence
is characterized by the riddled basins of attraction. Moreover,
we show that either for identical or slightly different systems,
the network undergoes similar bifurcation sequences at weak
coupling, proving that mostly coupling strength is important in
determining the networks’ dynamical states. On the other hand,
at stronger coupling, we observe various dynamical scenarios
for the amplification of the differences between the nodes
induced by the coupling. Finally, we analyze the correlations
between the nodes during the transition to synchronization and
discuss their role in inducing the firing death phenomenon.

II. EXPERIMENTAL SETUP AND THE MODEL

The circuit implementing the FHN is made of commercial
semiconductor devices. A network of four FHN has been
realized on a printed circuit, planned using OrCad. The
electronic network consists of a nearest-neighbor closed-loop
coupling scheme, as shown in Fig. 1. The scheme for the
electronic circuit reproducing each FHN is shown in Fig. 2(a),
while that for the coupling implementation is shown in
Fig. 2(b). The equations describing each FHN circuit are

Ẋi = 1

R1C1

(
Xi − X3

i /3 − Yi + Vd + α�Xi

)
,

Ẏi = 1

R1C2

(
R1

R3
Vb − R1

R2
Yi + Xi

)
, (1)

where i = 1, . . . ,4 indicates the nodes in the network, Vd

is the driving signal A sin(2πνt), and Vb is a bias voltage.
The constant parameters are R1C1 = 1, C1/C2 = 1/(R1C2) =
0.08, R1/R2 = 0.8, and R1/R3 = 0.7, where R stands for

FIG. 1. (Color online) Scheme for the network of four FHN.

FIG. 2. (Color online) Schemes of (a) the electronic circuit
implementing driven FHN and (b) the electronic coupling.

resistance and C for capacitor. The nonlinearity X3 is realized
by means of analog multipliers. The temporal scales of the
systems are controlled by R1 and C1 for the X variable
and by R1 and C2 for the Y variable. The coupling strength
α = Re/R is determined by a suitable value of a variable
resistor. The coupling term is composed with differential
amplifiers which allow the subtraction of the signals coming
from the neighboring nodes Xi−1 and Xi+1 and the feedback
signal Xi . �Xi is defined as follows:

�Xi = Xi−1 + Xi+1 − 2Xi (2)

for i = 1, . . . ,4 with periodic boundary conditions.
On the other side, the model equations for the driven FHN

are the following:

ẋi = xi − x3
i /3 − yi + F + α�xi,

ẏi = γ (a − byi + xi), (3)

where xi is the fast variable, yi is the recovery variable, and
F = A sin(2πνt) is an external driving term with amplitude
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A and frequency ν = 1/T . We consider fixed parameters γ =
0.08, a = 0.7, b = 0.8, and for the external forcing, A = 0.485
and T = 0.636. Parameter α is the coupling strength. Equation
(3) is transformed to the three-variable set of equations by
introducing a new variable zi = 2πνt = ωt as follows:

ẋi = xi − x3
i /3 − yi + A sin zi + α�xi,

ẏi = γ (a − byi + xi),

żi = ω (4)

�xi is the coupling term describing the nearest-neighbour
configuration:

�xi = (xi−1 + xi+1 − 2xi) (5)

for i = 1, . . . ,4 and periodic boundary conditions. The model
equations have been integrated with fourth-order adaptive step-
size Runge-Kutta method.

III. RESULTS

A. Identical vs nonidentical nodes

The experimental implementation of identical oscillators is
very hard, and parameter mismatches of unknown magnitude
usually arise. A reasonable mismatch in the control parameter
can be estimated to be of the order of 10−2. However,
in the experimental system we are dealing not only with
parameter mismatch but also with an idealized nonlinear
function (assumed for simplicity and without loss of generality
to be cubic). It is likely that such a mismatch in the description
of the nonlinear terms (a multivalued function, though not
strictly cubic) is much more relevant than the accuracy in
determining the exact values of the control parameters. For the
sake of simplicity, here we consider the mismatch only in one
control parameter (we choose parameter a → ai) and find the
similar sequences of regimes observed experimentally.

In Figs. 3(a) and 3(b) we plot the bifurcation diagrams
in the case of identical model systems for slowly increasing
and decreasing coupling strengths, respectively. When the
mismatches in the parameters ai are introduced, the bifurcation
diagrams change significantly. By comparing the numerically
obtained bifurcation diagrams [Figs. 3(c) and 3(d)] with that
obtained experimentally [Figs. 3(g) and 3(h)] we choose
the numerical mismatch in the network to be approximately
equal to or less than 4 × 10−4%, distributing the mismatches
throughout all systems by setting ai = 0.7 + 10−6(i − 1),
for i = 1, . . . ,4. The resemblance between numerical and
experimental data is quite good and improves at higher
coupling strengths. In further study we set this mismatch
parameter in the model network. However, it is fair to point
out that the numerical mismatch we chose does not correspond
to the real mismatches existing in the experiment.

The bifurcation diagrams at weak coupling undergo the
same dynamical sequences until approximately αc = 8.31 ×
10−3 for both cases considered, for identical as well as
nonidentical systems [see Figs. 4(a) and 4(b)]. Thus, below αc

the network is unsensitive to slight mismatches in the nodes.
The situation changes strongly above this critical coupling.
As coupling strength is increased (α > αc) the similarity of
bifurcation diagrams disappears and each network undergoes
various dynamical changes. This fact indicates that above a

FIG. 3. Bifurcation diagrams for identical model systems with
increasing (a) and decreasing (b) coupling, and for the model
systems with slight mismatches with increasing (c) and decreasing
(d) coupling. The corresponding variations of α in time in the case
of a model are shown in (e) and (f). Bifurcation diagrams for the
experimental systems with increasing (g) and decreasing (h) coupling.
The corresponding variations of α in time in the experiment are shown
in (i) and (j).

certain value of the coupling strength the slight differences
between the systems start to play an important role in
determining the states of the entire network (the mismatches
are amplified by coupling). We checked that the network
dynamics behave as above until the mismatches in ai are of
the order of 0.4%. We observed that the dynamical structure
beyond this limit starts to change throughout all values of α

(even below αc). A similar situation was observed in the case
where instead of mismatches in ai , we drove each system
with slightly phase-shifted periodic forcing δφ �= 0, where
δφ = φi − φj .

In view of the above observations we identify three zones in
the coupling strength. The first range below αc we nominate as
the weak coupling zone, the range α = (αc,0.04) we nominate
as the intermediate coupling zone, and finally, the range above
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FIG. 4. Zoom of bifurcation diagrams for identical model systems
(a), and for model systems with slight mismatches (b) and the
experiment (c). In (d) the details of the region with quasiperiodic route
to chaos are shown, marking Neimark-Sacker (NS) and boundary
crisis (BC) bifurcations. The parameter α is increased as shown in
Fig. 3(e).

α = 0.04 we nominate as the strong coupling zone. The
difference between the intermediate and strong coupling zones
is that in the former one the partial or cluster synchronization
occurs, depending on the dynamical state of the nodes. On the
other side, in the strong coupling zone the full synchronization
of chaotic spiking is reached and thus we get the desired
synchronization of initial dynamical state (chaotic spiking).
It is worth noticing that the dynamical scenarios induced by
coupling also differ as the internal parameters of the system
are modulated (including the parameters of external forcing).

B. Dynamical regimes induced by coupling

In Figs. 3(c) and 4(b) the bifurcation diagrams show regular
MMO’s that arise through a boundary crisis, where the chaotic
attractor abruptly disappears. In particular, in the range α =
(2.52 × 10−3,3.14 × 10−3), we identify orbit LS = 16, where
L stands for large-amplitude spike and S for small-amplitude
subthreshold oscillation. Increasing the parameter α, we
reach the next window with regular MMO, this time 12 that
persists in the range α = (4.17 × 10−3, 5.91 × 10−3). Then
orbit 13 emerges in the range α = (5.91 × 10−3, 6.12 × 10−3)
that destabilizes through a period-doubling cascade reaching
the chaotic spiking again. Finally, in the wide region α =
(0.04,0.11), we observe the 10 state.

In the intermediate coupling zone we observe the region
of firing death where the large-amplitude oscillations are
suppressed, giving rise to the small-amplitude subthreshold
oscillations [see Fig. 4(b)]. The firing death is also observed
for identical systems [Fig. 4(a)] as well as for systems with
much larger mismatches, demonstrating that this dynamical
transition is due to the coupling and not the system’s diversities.

The presence of the external forcing in the fast variable
induces the spike suppression at much smaller coupling
strengths compared with the case when it is applied to the slow
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FIG. 5. Bifurcation diagrams for model systems with slight
mismatches and modulated period T of external forcing at different
magnitudes of the coupling strength: (a) α = 0, (b) α = 0.01,
(c) α = 0.02, and (d) α = 0.2.

variable. As the coupling strength is increased, the critical point
at which the canard explosion takes place is modified. In Fig. 5
we plot the bifurcation diagrams for the system with modulated
period T of the external forcing at various magnitudes of the
coupling strength α. As α is increased from zero [Fig. 5(a)]
to larger values [Figs. 5(b) and 5(c)], we observe the shift
toward larger values of T of the transition point at which
the canard explosion takes place. Beyond a critical coupling
strength, the coupling is no longer effective in the dynamics of
the system [see Fig. 5(d)]. This is due to the fact that at large
α, when the fully synchronized state is reached, the difference
variables �xi go to zero (see Sec. III D), and thus after the
initial transient the coupling term reaches small values and no
longer changes the internal dynamics of the system.

The subthreshold oscillations undergo the transitions from
the regular, to quasi-periodic and chaotic. At approximately
α = 0.024 we observe the Neimark-Sacker bifurcation, where
the transition from a periodic to quasiperiodic subthreshold
orbit occurs. Successively, the quasiperiodicity route to chaos
is observed [see Fig. 4(d)]. Here, this scenario is related with
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the change in shape of the subthreshold periodic orbit. At the
end of the bifurcation sequence, the chaotic attractor suddenly
disappears through a boundary crisis, giving rise to a new
periodic orbit. Both orbits, before and after the bifurcation
cascade, have the same frequency of oscillations.

The ratio w = 
/ω defines the winding number. It
describes the number of times the trajectory winds around
the small cross section of the torus (described by 
, that is
the frequency of the system) after going once around the large
circumference of torus (described by ω, which is the frequency
of driving). If the frequencies are commensurate (w is rational),
then the motion is periodic, otherwise (if w is irrational) the
trajectory fills the whole toroidal surface and contributes to
quasiperiodic motion. At certain coupling values a winding
number becomes irrational, which consequently leads to
quasiperiodic solutions. In order to detect the quasiperiodic
motion we take a Poincaré section of a reconstructed attractor,
both experimentally [Figs. 6(a) and 6(b)] and in the model
[Fig. 6(c)]. We reconstruct the phase space through the
embedding technique with d = 2 and take the values of x(t)
and x(t + τ ) at times that correspond to a period T = 2π/ω of
external forcing. The subthreshold oscillations are composed
of subharmonics of order n = 2, thus have period 2T where
T is the period of the fundamental solution (and corresponds
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FIG. 6. (a) Reconstructed phase space and (b) corresponding
Poincaré cross section obtained from experiment for α = 0.03,
A = 899 mVpp, and ω = 400 Hz. (c) Poincaré cross section in the
region where the quasiperiodicity route to chaos is observed. The
cross sections are taken for the following coupling parameters: α =
{0.02,0.02005,0.021,0.0215,0.023,0.024}. The coupling parameter
is increased gradually from 0.02 to 0.024. The small arrow in the
last panel marks the orbit before the bifurcation sequence took place
(orbit from the first panel).

to the period of forcing). In the certain range of parameter α

each subharmonic undergoes the quasiperiodic route to chaos.
As the bifurcation cascade finishes, the subharmonics remain
with period 2T , but change the amplitude of oscillations [see
the last panel of Fig. 6(c)].

C. Network multistability

The system exhibits multistable states throughout a wide
range of coupling parameters α, well seen as α is slowly
increased or decreased (see Fig. 3). We identified various coex-
istent states including (i) the regular subthreshold oscillations
and large-amplitude regular spiking, (ii) regular and chaotic
subthreshold oscillations, (iii) various large-amplitude regular
spiking, as well as (v) large-amplitude regular and chaotic
spiking. Here we analyze in detail only one case (at α =
0.035), namely, the coexistence of the regular subthreshold
oscillations and spiking.

The basin of attraction of the observed coexistent states
exhibits riddling [see Fig. 7(a)]. Riddling refers to the situation
in which every point in the basin of attraction of attractor A has
pieces of the basin of attraction of attractor B arbitrarily nearby.
Thus the existence of riddled basins of attraction compromises
the predictability of the final state of the system [30]. The
riddled basin can be characterized in terms of the uncertainty
exponent γ [31]. We calculate the exponent γ as described
in Ref. [32]. First, we choose randomly a phase point r0.
Then we define another phase point r ′

0 = r0 + δ, where δ is
a small separation from the initial point r0. Using these two
initial conditions we determine whether the final states of the
system are different. For a given perturbation δ, we repeat
the simulations by choosing randomly many different initial
conditions and estimate the fraction M from all realizations N

that lead to different states. We fix the initial parameters for
three FHN oscillators, while we randomly change those of the
remaining one. Using these data, we calculate the probability
P (δ) = M/N , and from the assumption that P (δ) ∼ δγ , we
estimate the uncertainty exponent γ . In Fig. 7(b) we plot
log10(P ) vs log10(δ), with the uncertainty exponent γ that
is the slope of the straight line. We have evaluated the system
numerically approximately 3.5 × 105 times for each selected
δ. Using a linear fit we get the approximate value of the
uncertainty exponent to be γ = 0.0053 ± 3 × 10−4, which
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FIG. 7. (a) Basin of attraction for the coupled systems with slight
mismatches. Black and gray colors mark small- and large-amplitude
oscillations, respectively. (b) The uncertainty exponent calculated
for (a).
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FIG. 8. (Color online) The spatiotemporal patterns observed at
different values of the coupling strength α: (a) α = 0, (b) α = 0.0064,
(c) α = 0.096, and (d) α = 0.128.

is considerably smaller than typical values usually obtained
for non-riddled basins of attraction. We note that for other
coexistent states the basins of attraction also exhibit riddling.

D. Correlation between nodes

In the weak coupling zone the nodes are unsynchronized for
α < 4 × 10−3 [Fig. 8(a)] or form two partially synchronized
clusters in the range α = (4 × 10−3, 8.31 × 10−3). As the
coupling strength enters the zone of intermediate coupling, the
formation of two fully synchronized clusters may be observed
if the systems are in the subthreshold regular oscillatory regime
[Fig. 8(b)]. Otherwise, if they are quasiperiodic or chaotic, the
synchronization is weak or absent. Increasing α, we reach the
region α = (0.04,0.112), where lag synchronization between
10 states appears [Fig. 8(c)]. Beyond this region, we enter the
strong coupling zone (α > 0.112), where fully synchronized
chaotic spiking is observed [Fig. 8(d)].

To describe the degree of synchronization between
the nodes we use the correlation coefficient Rij =
sxixj

/
√

sxixi
sxj xj

, where i,j = 1, . . . ,4 and sxkxl
= ∑

xkxl −
n〈xk〉〈xl〉 with n standing for the number of data points in the
time series. In Fig. 9 we report the mean values of the coupling
term at a single node calculated numerically [Fig. 9(a)] and
experimentally [Fig. 9(b)] for selected values of parameter α.
The coupling term goes to zero as the full synchronization
is reached. Before the transition to full synchronization the
dynamics of the nodes is differently correlated as can be
seen in Figs. 9(c) and 9(d). In the intermediate coupling
zone we observe, both numerically and in the experiment,
the formation of synchronized clusters. At higher values of
coupling, the nodes, being in the regular spiking regime,
exhibit lag synchronization that persists in a wide range of
α. The interesting behavior is observed during the initial
transients in the time series, when the systems are evolved
starting from random initial conditions. In the intermediate
coupling zone, all transients are in the regime of chaotic
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FIG. 9. (Color online) Mean values of the coupling term at one
node �x1 and �X1 for (a) the model and (b) the experiment,
respectively. Correlation coefficient Rij for i,j = 1, . . . ,4 and i �= j

in the case of (c) the model and (d) the experiment.

spiking (corresponding to the initial state of the network)
and are always fully synchronized. However, the final states,
beyond the initial transient, being either in the subthreshold
oscillatory or regular spiking regime, exhibit only cluster or
lag synchronization.

The dynamical regimes that the network has to pass
through in order to get synchronized are well visible when
the coupling strength is varied slowly and linearly. As the
coupling is varied fast to higher values, all dynamical details
that we have identified here are lost. The suppression of
spiking or emergence of periodic spiking during transition
to synchronization at slowly varied coupling strength is
an interesting point, suggesting that the coupling strength
destroys the initial state completely during the transient, and
recovers it through the well-determined bifurcation cascade
when full synchronization is reached. This phenomenon may
be of crucial importance in biological complex systems, for
instance, during the spike timing dependent plasticity (STDP)
[33] that controls neural connections, where the synaptic
strengths are increased or decreased due to potentiation or
depotentiation phenomena, respectively. It could serve as a
control tool in the brains’ neural network obeying the synaptic
plasticity rule and could give rise to fast transitions from
quiescence to activity and vice versa. In fact, it has been shown
that STDP may lead the network to various dynamical states
(including chaotic bursting) [34]. Another example to mention
is the possible role of the coupling in the emergence of cardiac
diseases [35]. The weak coupling between cardiac cells may
lead to oscillation death of the given subnetwork and may
induce the malfunction of the entire organ.

In the literature, there are several reports on the experi-
mental evidence of the complexity of biological cells, which
exhibit various dynamical regimes induced by intercellular
chemical or electrical interaction. For example, in Ref. [36]
the authors study the network in vitro that spontaneously
generates an inspiratory-related motor rhythm, also reporting
the emergence of MMO’s and quasiperiodicity.
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IV. CONCLUSIONS

We have shown, both numerically and experimentally,
that a slow variation of the coupling in chaotically spiking
neurons leads to firing death phenomena where all neurons
are set to the subthreshold oscillation state. This occurs
below the critical coupling strength at which the full chaotic
synchronization is established. The subthreshold oscillations
may be regular, quasiperiodic (through Neimark-Sacker bi-
furcation), or chaotic. Moreover, we have found that these
oscillations can coexist with large-amplitude spiking and that
this coexistence is characterized by riddled basins of attraction.
We have demonstrated that the emergence of firing death at
small coupling strength depends strongly on the complexity

of a single node, and in particular on the form of the fast
variables. We have shown that either for identical or slightly
different systems, the coupling strength is most important
for determining the networks’ dynamical states in the weak
coupling zone. On the other hand, in the intermediate and
strong coupling zones, differences between the nodes are
amplified and various dynamical scenarios emerge, depending
on the type of mismatches.
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