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Collective dynamics of a network of ratchets coupled via a stochastic dynamical environment
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We investigate the collective dynamics of a network of inertia particles diffusing in a ratchet potential and
interacting indirectly through their stochastic dynamical environment. We obtain analytically the condition for
the existence of a stable collective state, and we show that the number N of particles in the network, and the
strength k of their interaction with the environment, play key roles in synchronization and transport processes.
Synchronization is preceded by symmetry-breaking associated with double-resonance oscillations and is shown
to be strongly dependent on the network size: convergence to the synchronization manifold occurs much faster
with a large network. For small networks, increasing the noise level enhances synchronization in the weakly
coupled regime, while particles in a large network are weakly synchronized. Similarly, in the strongly coupled
regime, particles in a small network are weakly synchronized; whereas the synchronization is strong and robust
against noise when the network-size is large. Small and moderate networks maximize and stabilize efficient
transport. Although the dynamics for larger networks is highly correlated, the transport current is erratic.
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I. INTRODUCTION

Noisy dynamics driven by thermal fluctuations is the
hallmark of many microscopic systems. Where there is
broken symmetry, as in Brownian ratchets, the noise may be
utilized through the conversion of nonequilibrium fluctuations
into directed motion in the absence of imposed bias forces
[1–4]. Understanding and generating directed transport in
nonequilibrium systems has long been considered a problem of
fundamental importance in statistical physics and has recently
been the subject of strongly focused research [1–4]. In fact,
the driving mechanisms of a variety of biological motors
[2,3], ranging from intercell transport and virus translocation
to muscle contraction, are all traceable to nonequilibrium
transport processes.

Inspired by the need to gain insight into the generation of
unidirectional motion from such nonequilibrium fluctuations,
several different models have been introduced. They have
also been classified by Hänggi and Bartussek [1]. Among
these, our interest centers on the rocking inertia ratchet
system, in which the particles move in an asymmetric periodic
potential subject to spatially uniform time-periodic forces
of zero average. Some authors (see Refs. [5–8]), studied
the nonstochastic deterministic case, which allows for the
possibility of obtaining chaotic as well as regular dynamics,
while others (Refs. [9–11]) investigated the effects of noise. In
some respects, this deterministically induced chaos can mimic
the role of noise by triggering current flow in either direction.
The import of all these results is that the role of noise should
never be ignored, even for inertia ratchets. Thus, the transport
properties are strongly dependent on the fluctuations, chaos,
and periodicity of the trajectories, all of which may coexist.

*u.vincent@lancaster.ac.uk

The interaction between two or more particles diffusing
in a ratchet potential can result in collective dynamics such
as synchronization, transport enhancement, clustering, current
inversion, or spontaneous current flow. The possible resultant
effects have been considered in several different contexts
[12–28]. These studies have been motivated largely by the
fact that many such systems, for example molecular motors,
coexist in large numbers and do work in mutual cooperation
[13]. Previous synchronization studies assumed that a pair of
ratchets would interact directly via nonstochastic couplings.
In some microscopic systems, however, the interaction is not
direct [29–36]. For instance, populations of cells in which
oscillatory reactions occur (e.g., as in circadian rhythms),
communicate via chemicals that diffuse in the surrounding
medium [29,31,32,37–40]. Similarly, suspensions of yeast
in nutrient solutions may undergo transitions to coordinated
activity that are also believed to arise through communication
via chemicals diffusing in the surrounding medium [35,39].
Within an environment that may be changing, the ability to
communicate between cells is an absolute requirement to
ensure appropriate and robust coordination of their activities at
all levels of the organism. In this configuration, the collective
dynamics of all the systems can in principle be adjusted
simultaneously by tuning the physical characteristics of the
interconnecting medium.

Moreover, all macroscopic physical systems are unavoid-
ably subject to random fluctuations (noise). Thus, the interplay
between noise and coupling in a system of interacting particles
is relevant for many applications [41–44]. The effect of noise
on coupled inertia ratchets has hitherto been neglected [18–28].
Consideration of noise is also significant because interesting
and potentially useful phenomena may emerge. Noise can,
for instance, induce and/or enhance resonances, spiking, and
synchronization [43–48]. Garcı́a-Álvarez et al. [46] showed
that noise and (direct) coupling are often competing factors
in the induction of synchronization, and their coexistence
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can inhibit the synchrony independently induced by either.
Furthermore, all cell components exhibit intracellular noises
owing to random births and deaths of individual molecules,
as well as to environmental fluctuations [29,31,32]. Gene
regulation, in particular, is an inherently noisy process in-
volving stochastic fluctuations owing to low copy numbers
of many molecules per cell and variations in the external
environment. Notably, stochastic fluctuations may not only
affect the dynamics of the entire system but may perhaps also
be exploited by living organisms to actively facilitate certain
functions, such as synchronization and communication.

In this paper, we investigate the combined effects of
network size, coupling, and noise on dynamics and transport
when inertia ratchet system are coupled indirectly by means of
a common stochastic dynamical environment. We will show
that the synchrony of a network of particles in a ratchet
potential is strongly dependent on the network size and is
attained much faster for large networks. For small network
size, noise enhances synchronization in the weakly coupled
regime; for larger network size, the particles are only weakly
synchronized. Similarly, in the strongly coupled regime,
particles with small network size are weakly synchronized;
whereas the synchronization is strong and robust against noise
when the network size is large. While the underlying dynamics
of the periodic solutions show resonance-like oscillations trig-
gered by symmetry-breaking bifurcations for small networks,
dynamics stabilization of the chaotic orbits to period orbits of
different periodicity as well as quenching of irregular current
fluctuations are also reported. For larger network size, the
particles move with increasing speed in the ratchet potential.
We will show that the size of the network, as well as its noisy
environment, can significantly enhance the performance of an
inertia ratchet system. The rest of the paper is organized as
follows. In Sec. II, we describe the model. The stability of the
collective state is analyzed in Sec. III. In Sec. IV, numerical
results are presented and discussed, including the effects of
the environment on chaos and the transport properties. We
summarize the main results and draw conclusions in Sec. V.

II. NETWORK COUPLED RATCHETS

We consider a system of N periodically driven particles
moving in an asymmetric potential and interacting with a
common noisy dynamical environment. The dimensionless
inertial dynamics is governed by the following equation of
motion,

ẍi = −λẋi − dv(xi)

dxi

+ F0 cos(ωt) + ki(ϕp − xi),
(1)

ϕ̇p =
N∑

i=1

ki(xi − ϕp) + ξ (t) (i = 1,2, . . . ,N )

where v(xi) is the asymmetric ratchet potential, N is the
number of ratchets (or network size), and F0 and λ are the
forcing strength and the damping parameter, respectively. ki is
the coupling coefficient or control gain. The second equation
represents the noisy dynamical environment with state space
ϕp. ξ (t) is the stochastic term—a Gaussian white noise of
zero mean [i.e., 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 0] and correlation
〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′), with D being the intensity of the
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FIG. 1. (Color online) The ratchet potential Eq. (2) for C =
0.0173,δ = 1.6, and x0 = −0.19.

noise. Note that the interaction between the ratchet particles
and their environment is bidirectional: each particle receives
feedback from the environment, the strength of which is
determined by the feedback gain ki ; and, in turn, delivers a
corresponding feedback signal to the environment enabling
the sustenance of the environmental activities. The period
associated with the frequency ω of linear motion around the
minima of the ratchet potential is used as the natural unit in
which time is scaled, so that all quantities are in dimensionless
units. Thus, the dimensionless potential v(xi) is given by [6]

v(xi) = C − 1

4π2δ
[sin 2π (xi − x0) + 0.25 sin 4π (xi − x0)],

(2)

where C = 0.0173 and δ = 1.6 are fixed potential parameters.
The periodic potential v(xi) has an infinite number of potential
wells as indicated in Fig. 1. It is shifted by x0 in order to place
one of the minima at the origin.

For a single disordered (noisy) ratchet system isolated
from its dynamical environment, Arizmendi et al. [9] have
shown that the consequence of disorder is the appearance of
current-reversal and chaotic diffusion on regular trajectories;
whereas, on some chaotic trajectories, the disorder induces
regular motion. In a similar study, Li [10] showed that at low
noise the transport is mainly chaotic and at high noise it is
mainly stochastic. Here, our system, given by Eq. (1), is such
that: (i) individual ratchet units in the network are not coupled
directly to each other but, rather, their interaction is provided
by the stochastic dynamical environment; (ii) the environment
(with state space ϕp) is a stochastic dynamical system, whereas
each ratchet (xi) is deterministic; and (iii) when D = 0 the
global dynamics of system Eq. (1) is deterministic.

Such a coupling configuration which could, to some extent,
mimic physiological processes has recently been studied in
other contexts, ranging from different forms of synchro-
nization to amplitude death [37–40,49–51]. Physiological
processes are well known to be dynamic. Cells change their
function in response to changes in the composition of their
local environment, and the organism responds to alterations
in both its internal and its external environment. Many
physiological reactions are aimed at preserving a constant
physical and chemical internal environment. For example,
biological cells in which oscillatory reactions take place
communicate via chemicals diffusing within the surrounding
medium. In this process, the generation of macroscopic

022913-2



COLLECTIVE DYNAMICS OF A NETWORK OF RATCHETS . . . PHYSICAL REVIEW E 87, 022913 (2013)

oscillations is determined by the ability of the cells to cooperate
and synchronize with each other. Alternatively, as we consider
here, the oscillations may arise when each of the systems
synchronizes separately with their common environment [39].

In order to characterize the collective behavior of system
Eq. (1), it is important to distinguish between the synchrony
of a single unit with the environment and the synchrony
(collective dynamics) of the full system with the environment.
In this regard, we assume that each isolated ratchet system
could, in the absence of another unit, be independently
synchronized with the noisy environment such that

n
ϕ

l = 1

T

∫ T

0
�ϕ,xi

dt → ε, (i = 1,2, . . . ,N ), (3)

where �ϕ,xi
= ϕp − xi , ε is a very small constant, and T is the

period of the oscillation. Here, periodicity implies that there
exists a T > 0 such that xi(t + T ) = xi(t) and ϕp(t + T ) =
ϕp(t) ∀t ∈ Re. Thus, the synchronized oscillation corresponds
to a periodic solution of Eq. (1), which is referred to as
complete synchrony when ε = 0. This, however, depends on
the strength k of the interaction with the environment: not all
k values will lead to complete synchrony. In principle, not
all the particles will be simultaneously synchronized with the
environment. Therefore, we will hereafter refer to the syn-
chrony attained by an individual unit as local synchronization.
However, if all the particles are simultaneously synchronized
with the environment, i.e., the local synchrony condition
defined in Eq. (3) is satisfied for all i = 1,2,3 . . . ,N , then
the ratchets are also globally synchronized with each other.
Thus global synchronization describes the collective behavior,
which, in general, is a periodic solution satisfying

xi = xi+1 = xi+2 = . . . = xN = x, (i = 1,2, . . . ,N ), (4)

such that the ni
g = ε, where

ni
g = 1

T

∫
0

T N∑
i=1

(
�xi

2 + �ẋi

2
)1/2

dt, (5)

�xi
= xi+1 − xi,�ẋi

= ẋi+1 − ẋi is the global synchroniza-
tion index. The existence of local and global synchronization
implies that

ng = 1

T

∫ T

0
�ϕ,xdt → ε, (6)

�ϕ,x = ϕp − x, x = xi = xi+1 = xi+2 = . . . = xN (i = 1,2,

. . . N) is a state space in the three-dimensional space (x,ẋ,ϕp),
which is an invariant manifold in the original (2N + 1)-
dimensional space (xi,xi+1, . . . ,xN ,ẋi ,ẋi+1, . . . ,ẋN ,ϕp). The
existence of global synchronized oscillation (i.e., collective
dynamics) implies that the condition Eq. (5) is stable and that
ng → ε = 0, asymptotically starting from any random set of
initial conditions; it does not follow from the stability of a
single unit nor from the stability of the local synchronization.

Defining the collective behavior, x of the interacting
network in Eq. (4) as x = ∑N

i=1 xi , the system Eq. (1) can
then be written as:

ẍ = −λẋ − dv(x)

dx
+ F0 cos(ωt) + k(ϕp − x),

(7)
ϕ̇p = Nk(x − ϕp) + ξ (t),

where v(x) is derivable from Eq. (2) and all the parameters are
as in Eqs. (1) and (2).

III. STABILITY OF THE COLLECTIVE STATE IN THE
DETERMINISTIC LIMIT

To facilitate the stability analysis, consider the following
Langevin equation for general Brownian particles interacting
with a stochastic environment like that of Eq. (1):

ẍi = f ′(xi) − ki

[
f (xi) + ki�ϕ,xi

+
N∑

i=1

ki�ϕ,xi
− ξ (t)

]
,

(8)

where f (xi) is a nonlinear function of the system vector state
space xi . Accordingly, the global dynamics Eq. (7), assuming
that the coupling coefficient ki(i = 1,2, . . . N) takes a single
value k is expressible as

ẍ = f ′(x) − k[f (x) + k�ϕ,x + Nk�ϕ,x − ξ (t)]. (9)

We examine the stability of the collective dynamics, Eq. (4), by
analyzing the stability conditions for the equation of motion,
Eq. (9). We aim at determining the dependence of the stability
of the in-phase-mode (i.e., a periodic solution) on the system
size (N ) and the coupling strength (k). In the limit of small
noise (D → 0), the stochastic dynamics may be approximated
by deterministic dynamics. Thus, neglecting the noise term,
we first decompose system Eq. (9) as follows:

ẋ = f (x) + k�ϕ,x = f (x) + kϕp − kx,
(10)

ϕ̇p = −Nk�ϕ,x = −Nk(ϕp − x).

If ξ0 and η0 are the disturbances of the motion along the x and
ϕ directions, respectively, the linearized equation of motion
for system Eq. (10) is given by

ξ̇0 = [f ′(x) − k]ξ0 + kη0, η̇0 = −Nk(η0 − ξ0). (11)

The synchronized dynamics corresponds to the stability of the
fixed point (0,0) of Eq. (11); in which case all the Lyapunov
exponents will be negative. Since the attractor of the system
is bounded in x and the periodic function in v(x) can be
approximated by the mean-value theorem [27], it is convenient
to assume that the average value of f ′(x) is constant (say,
β). We remark that this type of approximation has been
employed successfully by previous authors and has proved
to give reasonable predictions and descriptions of the global
features of the phase diagrams of chaotic systems [40,52].
Eliminating η0 from Eq. (11), we obtain the characteristic
equation for ξ0 as follows:

ξ̈0 = [β − (1 + N )k]ξ̇0 + Nkβξ0. (12)

In the limit N → ∞, N 	 1, so that N + 1 ≈ N . By assuming
the solution of Eq. (12) in the form Aemt , we obtain

m = β − Nk ±
√

(β − Nk)2 + 4Nkβ

2
. (13)

The stability condition can be obtained according to the nature
of the solutions of Eq. (13), from which we obtain two real
solutions, namely m1 = β and m2 = −Nk. The first solution,
m1, depends on the nature of the nonlinearity while the second,
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m2, depends on the network size, N , and strength of the
interaction with the environment.

IV. RESULTS AND DISCUSSION

Let us consider first the dynamics of a single-ratchet system
coupled to the environment. We show in Fig. 2 the local
synchronization index of a single unit in a network whose
environment is defined by Eq. (3), for different noise levels.
For the deterministic case D = 0, η

ϕ

l (k) shows a smooth
resonance curve with two maxima (0.67 and 0.683), located
at k = 0.21 and 0.37, respectively (see magnified inset). The
appearance of two peaks may be attributed to the fact that
the system oscillates, first, near its primary resonance for the
set of parameters used; the same resonance peak has also
been obtained [53] for a different set of parameters. Second,
however, the interaction of the system with its environment
leads to oscillations away from the primary resonance via
a symmetry-breaking bifurcation as shown in Fig. 2. This
symmetry-breaking phenomenon could be associated with the
breaking of the symmetry of the nonequilibrium potential
given by Eq. (2) [54]. In Fig. 2, the resonance bifurcation
of the local maxima of x corresponding to the first peak
of η

ϕ

l (k) is immediately followed by the symmetry-breaking
bifurcation of the periodic orbits occurring near the second
peak of η

ϕ

l (k). For small noise intensities (typically D �
0.0001), the stochastic effect is not strongly pronounced so
that stochastic dynamics could readily be approximated by
its deterministic dynamics—in agreement with our earlier
assumption. However, strong noise intensities can lead to
more complicated behavior as seen in Fig. 2 for D = 0.05.
The complexity increases considerably with strongly erratic
behavior occurring as the noise strength D increases.

We now turn to the collective behavior of N > 1-coupled-
ratchet system, considering first the noiseless case (D = 0).
We plot ηg as a function of coupling strength k in Fig. 3,
showing the global synchronization index of coupled ratchets
in the network with the environment for different network
sizes. On the one hand, we find that for a given network
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FIG. 2. (Color online) Local synchronization index η
ϕ

l and the
corresponding bifurcation of the orbits x as function of coupling
strength k showing the local convergence of a single unit in the
network to the equilibrium state for different noise levels D = 0,0.01,
and 0.05. Red dotted points is the bifurcation curve, SB being the
symmetry bifurcation point. The inset is a magnification of the region
near the maximum for the D = 0. The other parameters are λ = 0.75,
F0 = 0.5, and ω = 0.5.
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FIG. 3. (Color online) Global synchronization index ηg as a
function of coupling strength k in the absence of noise, D = 0,
showing the global convergence of the coupled ratchets in the
network to the equilibrium state for indicated network-sizes, N =
1, 2, 3, 10, 25, 50, and 1000. The other parameters are λ = 0.75,
F0 = 0.5, and ω = 0.5.

size N , ηg always passes through a maximum with variation
of the coupling strength, i.e., a coupling-induced resonance.
Also notable is the disappearance of the second peak that
exists in the case of a single unit, for all N > 1. Although
the peaks do not differ significantly for N � 100, for N �
500 there is a significant depression of the peak and a
collapse of the spread—resulting in faster convergence to the
synchronization manifold. When the network size is small,
k must be sufficiently large in order for the oscillators to
attain a stable collective state. We have computed ηg for larger
network sizes (N = 2000, 3000, 5000, 10 000) and found that
the collective state remains stable for large system size.

Similarly, for a given coupling strength k, ηg goes through
a maximum as the network size changes, i.e., network-size
resonance. This is illustrated in Fig. 4. It shows that the
synchronization manifold can be reached faster with larger
network size than with smaller network sizes, even for weak
coupling strength. In real systems, noise is unavoidably present
and is, therefore, an important factor; and the collective
behavior of the coupled system may depend strongly on the
noise intensity. Figure 5 illustrates the influence of moderate
noise level on the collective dynamics. For small network size,
the effect of noise is more pronounced and especially in the
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FIG. 4. (Color online) Global synchronization index ηg as a
function of the network-size N for the noiseless case, D = 0,
showing global convergence of coupled ratchets in the network to
the equilibrium state, for different coupling strengths k. The other
parameters are λ = 0.75, F0 = 0.5, and ω = 0.5.
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FIG. 5. (Color online) Effect of noise of intensity D on the global
synchronization index ηg as function of k for small and large network
sizes N . The parameters are as in Fig. 3. Faster convergence is
achieved with larger system size.

weak and moderate coupling regime, whereas the dynamics is
robust against noise for system with large network size.

A global view of this system can conveniently be captured
in a two-parameter space plot. We have performed detailed
numerical simulations with k and D both as functions of ηg ,
scanning a wide range of different values of k and D for which
ηg takes on values between 0 and 1; and we have done so
for different network sizes. Inside the k-D parameter plane
shown in Fig. 6, the region of complete synchronization (ε �
0.005) is denoted by white; while the nearly complete (weak)
synchrony region is denoted by blue (dark) (0.005 � ε �
0.05). Elsewhere, the system is considered to be either weakly
synchronized or completely de-synchronized. Notably, as the
network size increases, the complete synchronization region in
k-D parameter space enlarges to the right and diminishes to the
left. For small network size, increasing the noise level enhances
synchronization in the weakly coupled regime [Fig. 6(a)],
whereas with large network size, weak synchronization is
observed for increasing noise intensity [Fig. 6(d)]. In the
strongly coupled regime, and with small network size, the
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FIG. 6. (Color online) Two-parameter plot of ηg as a function of
coupling strength k and noise intensity D showing regions of full
synchronization (white, ε � 0.005 to desynchronization (green/light
grey) with increasing network size, N . For other regions [blue (dark)
and dark green (grey)], the system is either weakly synchronized
or completely desynchronized. The other parameters are λ = 0.75,
F0 = 0.5, and ω = 0.5.

system is weakly synchronized [Fig. 6(a)]; while for large
networks, strong synchronization occurs regardless of the
noise intensity [Fig. 6(d)].

The relationship between bifurcations and current reversals
is a topic of central importance in inertia ratchet systems
because it reveals the connection between their statistical and
dynamical properties. To complete our analysis, we examine
the underlying bifurcations associated with the dynamics of
the network for different network sizes. We use the coupling
strength as the bifurcation parameter. Transport is quantified
by the current J , which in turn is defined as the time average
of the average velocity over an ensemble of initial conditions.
Over a fixed time, the current in system Eq. (7) is defined [6,8]
as

J = 1

n − nc

1

M

n∑
l=nc

M∑
j=1

ẋ(j )(tl), (14)

where M is the total number of trajectories, tl the observation
time, and n the total number of observations. This gives the
average velocity, which is then further time-averaged over the
number of observations n–nc. Some transient effects are cut off
in order to ensure that a converged current nc is obtained [8].

First, we consider the bifurcation of the periodic orbits
by using the same set of parameters as before. Figures 7(a)
and 7(b) illustrate, respectively, the bifurcations of the local
maxima of x and the corresponding current J , showing
environment-induced directed transport for small network
sizes. Although the second resonance peak in Fig. 3 appears to
coincide with the k value at which the symmetry-breaking
bifurcation and the sudden current changes take place in
Fig. 7(b), current-reversal does not accompany this bifurcation.
Moreover, the consequence of the collective dynamics of
a large network is the quenching and stabilization of the
ensemble current as illustrated in Fig. 7(c).

By choosing the parameters to lie in the chaotic zone,
namely λ = 0.1, F0 = 0.0892845, and ω = 0.67, as in
Refs. [6,8], different scenarios are found. Figure 8 shows the
bifurcation diagram for N = 1, 2, 5, and 50. N = 1 [Fig. 8(a)]
corresponds to a single-ratchet system interacting with the
environment. As the strength of the coupling progressively
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FIG. 7. (Color online) Bifurcation and current (in the units of
103) as functions of the coupling strength k for different network
sizes, N . The other parameters are λ = 0.75,F0 = 0.5, and ω = 0.5.
(a) Bifurcation of the local maxima of x. (b) The corresponding
currents J . (c) Currents for large networks.
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FIG. 8. (Color online) Bifurcation and current (in the units of
103) as functions of the coupling strength for different network size.
(a) N = 1, (b) N = 2, (c) N = 5, and (d) N = 50. the other
parameters are λ = 0.1, F0 = 0.0892845, and ω = 0.67. Dotted
points [red (dark)] are the bifurcation points x, while line points
[green (gray)] are the currents J .

increases, the chaotic attractor undergoes alternating bifur-
cational changes: chaotic attractor → period-3 attractor →
chaotic attractor → period-2 attractor → chaotic attractor
and, finally, around k ≈ 0.325, a period-doubling bifurcation
takes place leading to current stabilization. Note that the
current for a single particle is positive and does not change
direction for any k value. However, it undergoes abrupt
changes near the bifurcation points as k increases. For the
case of the two-ratchet system (N = 2) shown in Fig. 8(b), a
different bifurcation sequence is found. It too leads to current
stabilization and it occurs within a large periodic window
where symmetry breaking is found. In this case, J is in general
negative for nearly all k. However, at k = 0.43, a current-
reversal takes place in which the current is stabilized, taking
on positive values for k > 0.43. For N = 5 and 10, we observe
entirely negative transport. Generally, with small network
sizes, the attractor is stabilized into periodic orbits of lower
periodicity, the corresponding effect being the stabilization
of irregular fluctuations of the current—implying that small
networks maximize the dynamical environment for efficient
stabilization of transport. As N becomes larger, as in Fig. 8(d),
for instance, orbits of higher periodicity are born and these may
coexist with each other and/or with chaotic attractors. Here, the
current oscillates erratically and the direction is independent
of the changes in bifurcation structure.

V. CONCLUDING REMARKS

In summary, we have investigated the collective dynamics
of a network of inertia ratchets interacting indirectly through
a stochastic dynamical environment. This kind of interaction
occurs in physiological reaction processes aimed at preserving
a constant physical and chemical internal environment by

means of oscillatory reactions: communication occurs via
chemicals diffusing within the surrounding medium. Specif-
ically, biological cells change their function in response to
changes in the composition of their local environment, and the
organism responds to alterations in both its internal and exter-
nal environment. In this process, the generation of macroscopic
oscillations is determined by the ability of the cells to cooperate
(collectively) and globally synchronize with each other and
with their common environment. An understanding of the
mechanisms associated with the interaction of living systems
with their environment and the stability of the collective
state (if attainable) is of both theoretical and experimental
importance. The conditions for the stability of the collective
state in the deterministic limit has been obtained in this paper
for the stochastically coupled ratchet system: we find that the
number N of ratchets in the network and the strength k of
their interaction with the environment play key roles in the
global synchronization process. It was also shown that the
synchrony of the network is strongly dependent on the network
size and is attained much faster when the network size is large.
By increasing the noise level in the weakly coupled regime,
synchronization quality is enhanced for small network size,
while ratchets of large network size are weakly synchronized.
Similarly, in the strongly coupled regime, coupled ratchets
with small network size are weakly synchronized in com-
parison with larger networks that achieve strong and robust
synchrony against noise. Moreover, the underlying dynamics
of the periodic solutions shows resonance-like oscillations and
directed transport triggered by symmetry-breaking bifurcation
for small networks; while in the chaotic regime, the current
becomes largely dominated by transport due to periodic orbits
in a sequence of controlled bifurcations leading to stabiliza-
tion by maximizing the dynamical environment for efficient
transport control. However, for larger network, resonance-
like oscillations of the periodic orbits disappear leading to
quenching of transport fluctuations; while in the chaotic state,
the current oscillates erratically and its stabilization becomes
difficult. Our results show that the intrinsic properties of an
environment might play a constructive role, suggesting that
natural systems may profit from the interaction with their
environment in order to facilitate and optimize the response
to an external stimulus. Conversely, increasing the number of
elements in a small ensemble of coupled biological elements
to the optimum can significantly improve the sensitivity
and collective effect, while changing its connectivity and/or
coupling strength can also optimize its performance.
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