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Dispersive shock wave interactions and asymptotics
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Dispersive shock waves (DSWs) are physically important phenomena that occur in systems dominated by
weak dispersion and weak nonlinearity. The Korteweg–de Vries (KdV) equation is the universal model for
systems with weak dispersion and weak, quadratic nonlinearity. Here we show that the long-time-asymptotic
solution of the KdV equation for general, steplike data is a single-phase DSW; this DSW is the “largest” possible
DSW based on the boundary data. We find this asymptotic solution using the inverse scattering transform and
matched-asymptotic expansions. So while multistep data evolve to have multiphase dynamics at intermediate
times, these interacting DSWs eventually merge to form a single-phase DSW at large time.
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I. INTRODUCTION

Dispersive shock waves (DSWs) have been seen in plasmas
[1], fluids (e.g., undular bores) [2,3], superfluids [4–7], and
optics [8–11]. DSWs occur when weak nonlinearity and
weak dispersion dominate the physics and there is steplike
data. For many weakly dispersive, weakly nonlinear sys-
tems, the Korteweg–de Vries (KdV) equation is the leading-
order asymptotic equation [12]. Here we find the long-
time-asymptotic behavior of the KdV equation with general,
steplike data using the inverse scattering transform (IST)
and matched-asymptotic expansions. We show that general,
steplike data go to a single-phase DSW for the KdV equation
in the long-time, fixed-dispersion limit. Our results show that
while multistep data evolve to have multiphase dynamics
at intermediate times, these interacting DSWs eventually
merge to form a single-phase DSW: each substep in well
separated, multistep data forms its own DSW [Fig. 1(a)];
these DSWs then interact and develop multiphase dynamics at
intermediate times [Figs. 1(b) and 1(c)]; and, in the long-time
limit, these DSWs merge to form a single-phase DSW
[Fig. 1(d)]. The boundary data determine this single-phase
DSW’s form; the initial data determine its position. This is
similar to interacting viscous shock waves (VSWs), where
only the single, largest possible VSW remains after a long time.
Grava and Tian [13] and Ablowitz et al. [14] suggested this
merging of multiphase to single phase by their two-phase to
one-phase results—they used Whitham theory, which applies
to slowly varying periodic wave trains. We anticipate that the
IST and matched-asymptotic procedure presented here will
be applied to other important, nonlinear integrable systems for
general, steplike data, such as the modified Korteweg–de Vries
(mKdV) and the nonlinear Schrödinger (NLS) equations.

A shock wave is an abrupt change in the medium that
propagates; it often moves faster than the local wave speed. If
dissipation and dispersion are ignored, then breaking occurs
in finite time; since this is not usually physical, most models
include weak dissipation or weak dispersion. When dissipation
dominates dispersion, a VSW forms that is smooth but changes
rapidly from one value to another; VSWs form in compressible
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gases and other classical fluids. When dispersion dominates
dissipation, a DSW forms that is smooth but has an additional
modulated wave train that allows transitions from one value
to another; DSWs form in cold plasmas, superfluids (such
as Bose-Einstein condensates), and nonlinear electromagnetic
waves in suitable optical materials.

The KdV and NLS equations are universal models: they
are the leading-order asymptotic equations for a wide class
of physical phenomena (see Ref. [12]). The KdV equation
is the leading-order asymptotic equation for systems with
weak dispersion and weak, quadratic nonlinearity; it has
important applications in shallow water waves, plasmas,
lattice dynamics, and elasticity among others. The NLS
equation is the leading-order asymptotic equation for quasi-
monochromatic, weakly nonlinear systems; it has important
applications in nonlinear optics, deep water waves, Bose-
Einstein condensates, and magnetic-spin waves among others.

Here we consider the DSWs that the KdV equation describe;
the KdV equation, written in dimensionless form, is

ut + uux + ε2uxxx = 0, (1)

where subscripts denote partial derivatives. We will consider
the boundary conditions

lim
x→−∞ u = 0 and lim

x→+∞ u = −6c2. (2)

Here, ε and c are real, positive constants, and ε corresponds to
the size of the regularizing dispersive effects. We require that
u goes to these limits sufficiently rapidly; so we assume that∫ ∞

−∞
|u(x,t) + 6c2H (x)|(1 + |x|n) dx < ∞, (3)

for n = 1, 2, . . . and where H (x > 0) = 1 and H (x � 0) = 0
is the Heaviside function. Since the KdV equation is Galilean
invariant, we can transform any constant boundary conditions
where limx→−∞ u > limx→+∞ u to (2). We use the IST method
(see Refs. [15–18]) and matched-asymptotic expansions (see
Refs. [19,20]) to find a long-time-asymptotic solution.

A. IST method

The IST method is the nonlinear analog of the Fourier
transform method: we transform the initial data into scattering
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FIG. 1. Numerical simulations (using the scheme in Ref. [14])
of three well-separated steps (at t = 0, with ε2 = 0.1 and c = 1).
Here we see (a) three single-phase DSWs at t = 1; (b) and (c) strong
interaction and multiphase dynamics; and (d) eventual merging to
form a single-phase DSW.

data; we evolve this scattering data in time; and we then recover
the solution from the evolved scattering data. First we associate
the nonlinear partial differential equation (PDE) with a (linear)
Lax pair. Then we use the scattering equation of the Lax pair to
transform the initial data into scattering data. Then we use the
other linear equation of the Lax pair to evolve the scattering
data. Finally, we use a linear integral equation, the Gel’fand-
Levitan-Marchenko (GLM) integral equation, to recover the
solution at any time.

Elegant and powerful asymptotic methods based on
Riemann-Hilbert problems can also be used to recover the
solution at any time. They have been used to find the
asymptotic solution for large time with vanishing boundary
conditions (see Refs. [21,22]); see Ref. [23] for a NLS shock
example. For our purposes, the GLM integral equation and our
matched-asymptotic method is sufficient.

Hruslov [24] and then Cohen [25] and Cohen and Kappeler
[26] studied the IST theory for steplike initial data; we state
the IST results that we need to find our asymptotic solution
in Sec. II. Hruslov [24], based on Ref. [27], presented the
GLM integral equations and investigated the soliton train
at the DSW’s right. Cohen [25] and Cohen and Kappeler
[26], using the methods of Refs. [16,27], rigorously studied
some scattering-data properties, rederived the GLM integral
equations, and analyzed existence for piecewise-constant
initial conditions. We derive the GLM integral equations in
a different way in Appendix B.

B. Long-time asymptotic solution

We find the long-time-asymptotic solution for nonvanishing
boundary conditions (where c �= 0) by using and suitably
modifying the methods in Refs. [19,20]. Ablowitz and Segur
[19,20] developed these IST and matched-asymptotic meth-
ods to find the long-time-asymptotic solution for vanishing
boundary conditions (where c = 0). We show, for large time,
that u(x,t) goes to a single-phase DSW that has three basic
regions (Fig. 2):
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FIG. 2. Numerically computed solutions of the KdV equation
for the initial conditions shown in gray. (a) Nonvanishing boundary
conditions, c �= 0. This solution has three basic regions: rapid decay
in region A, right of the DSW; strong nonlinearity of width O(t)
in region B; and an oscillating tail in region C, left of the DSW.
(b) Vanishing boundary conditions, c = 0. Here, the solution has
four basic regions (see Ref. [19]). Region III has strong nonlinearity
with height O[(log t)1/2t−2/3] and width O[t1/3(log t)2/3].

an exponentially small solution for x � O(t) [region A in
Fig. 2(a)];

a slowly varying cnoidal-wave solution for |x| � O(t)
[region B in Fig. 2(a)], which has a soliton train on its
right and an oscillatory wave on its left; and

a slowly varying oscillatory solution for (−x) � O(t)
[region C in Fig. 2(a)].

C. Comparison with vanishing boundary conditions

The long-time-asymptotic solution of the KdV equation
when c �= 0 is quite different from when c = 0 (see Fig. 2):
the strong nonlinearity when c = 0 is only over |x| �
O[t1/3(log t)2/3], but when c �= 0 it is over |x| � O(t). From
Ref. [19], the long-time-asymptotic solution when c = 0 has
four basic regions:

an exponentially small solution for x � O(t) [region I in
Fig. 2(b)];

a growing similarity solution for |x| � O(t1/3)
[region II in Fig. 2(b)], which is related to Painlevé II’s
solution;

a collisionless-shock solution for (−x) = O[t1/3(log t)2/3]
[region III in Fig. 2(b)], which is a slowly varying cnoidal
wave analogous to a DSW; and

an oscillatory similarity solution for (−x) � O(t)
[region IV in Fig. 2(b)], which has the same form as region
C in Fig. 2(a).

The amplitude for all these regions when c = 0 decays in time
at least as O(t−1/2); the amplitude when c �= 0 is O(1).

D. Comparison with the linear problem

The long-time-asymptotic solution of the KdV equation is
also quite different from the linear problem (ũt + ε2ũxxx = 0).
Both problems have three basic regions, but the middle regions
have different widths: the linear KdV equation has a middle
region with strong nonlinearity over |x| � O(t1/3), while the
nonlinear KdV equation has a middle region [region B in
Fig. 2(a)] over |x| � O(t). The linear problem’s solution in
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the middle region is

ũ(x,t) ∼ U0(0)
∫ η

−∞
Ai(η′) dη′, η = x

(3ε2t)1/3
,

where Ai(x) is the Airy function and U0 is the Fourier
transform of ũx(x,0).

E. Comparison with viscous shock waves

In the long-time limit, both DSWs and VSWs merge to
form a single shock wave. For shock waves where dissipation
dominates dispersion, Burgers’ equation is the leading-order
asymptotic equation. Burgers’ equation, in normalized form, is

wt + wwx − νwxx = 0,

where ν > 0 is a measure of dissipation and is typically
small. If we take initial data that go rapidly to the boundary
conditions limx→−∞ w(x,t) = 0 and limx→+∞ w(x,t) = −h2,
then the long-time-asymptotic solution is

w(x,t) ∼ −h2

2

{
1 + tanh

[
h2

4ν

(
x − x0 + h2

2
t

)]}
,

where x0 is a real constant that depends on the initial data—see
Appendix A for details. Thus, for both Burgers’ and the KdV
equation, well separated step data go to a single shock wave
in the long-time limit; the boundary conditions determine its
form, and the initial data determine its location. But unlike
with Burgers’ equation, the solution of the KdV equation
can also have a finite number of solitons, which move to the
DSW’s right in the long-time limit.

F. Relation to previous work

Single-step data, such as a Heaviside function, have been
studied extensively (see Refs. [28–31]) using wave-averaging
techniques, which are often called Whitham theory [32,33].
Whitham theory averages over suitable, slowly varying peri-
odic waves to get reduced equations; these reduced equations
are a quasilinear, first-order, hyperbolic system that describes
how the periodic wave’s parameters slowly evolve.

The evolution of multiphase DSWs to a single-phase DSW
was investigated in the two-phase case by Grava and Tian [13]
using Whitham theory in the zero-dispersion limit (ε → 0)
for finite time and by Ablowitz et al. [14] using numerical
and asymptotic methods in the fixed-dispersion, long-time
limit. Both zero-dispersion and long-time are important, but
different, limits. Here we study the long-time limit with fixed
dispersion. By using the IST method, we find the asymptotic
solution directly: we can investigate general, steplike initial
data and DSW interactions without having to find the solution
at intermediate times. On the other hand, Whitham theory in
the zero-dispersion limit requires that the solution be found at
intermediate times through a nonlinear hyperbolic system.

The IST method also gives the behavior to the left and right
of the DSW; it is nontrivial to get such behavior from the
Whitham theory results. For example, it is useful to compare
Ref. [34] with Refs. [19,20] to see how each matches the
solution (for vanishing boundary conditions) in region III
[Fig. 2(b)] to that in region IV. Also compare Ref. [35] with
Ref. [19] to see how each matches the solution in region II to
that in region III.

The key result for the fixed-dispersion, long-time limit is
that the DSWs from well separated, multistep data merge to
form a single-phase DSW.

To find the KdV equation’s long-time-asymptotic solution,
we do the following: We give the IST results that we need
in Sec. II. Then we asymptotically solve the linear GLM
integral equation to find the exponentially small solution
right of the DSW (Sec. III A). From this solution, we use
matched asymptotics to get the DSW (Sec. III B), which is
a slowly varying cnoidal wave that has a soliton train on
its right and an oscillatory tail on its left. Next we find
the small, decaying, oscillatory solution left of the DSW
(Sec. III C) that matches into the DSW. Finally, we draw some
conclusions (Sec. IV), find Burgers’ equation’s long-time-
asymptotic solution (Appendix A), derive the GLM integral
equation (Appendix B), and outline (Appendix C) how we
find the solution in Sec. III C.

II. IST SOLUTION

The IST method first associates a Lax pair with the
nonlinear PDE. Using the Lax pair’s scattering equation,
we transform the initial data into the scattering data. We
then evolve the scattering data in time using the associated
linear equation. The GLM integral equation, a linear integral
equation, provides the inversion at any time, and so we can
recover the solution at any time.

The Lax pair associated with (1) is

vxx + (u/6 + λ2)v/ε2 = 0, (4a)

vt = (ux/6 + γ )v + (4λ2 − u/3)vx, (4b)

where λ is the spectral parameter and γ is a constant.
This linear pair is compatible (vxxt = vtxx) when u = u(x,t)
satisfies (1) and λ is isospectral (∂λ/∂t = 0).

We use (2) to define the eigenfunctions that satisfy (4a) (for
notational simplicity, we often suppress the time dependence):

φ(x; λ) ∼ exp(−iλx/ε), φ̄(x; λ) ∼ exp(iλx/ε), (5a)

as x → −∞ and

ψ(x; λr ) ∼ exp(iλrx/ε), ψ̄(x; λr ) ∼ exp(−iλrx/ε), (5b)

as x → +∞, where λr ≡ √
λ2 − c2. We take the branch

cut of λr to be λ ∈ [−c,c], and the branch cut of λ to
be λr ∈ [−ic,ic]; then Im(λr ) ≷ 0 when Im(λ) ≷ 0. This
branch cut is one of the main differences between vanishing
and nonvanishing boundary conditions: vanishing boundary
conditions give eigenfunctions that do not have a branch cut.

The Wronskian, W (f,g) ≡ fgx − fxg, is constant (in x)
for (4a) by Abel’s identity; so, from (5), W (φ,φ̄) = 2iλ/ε

and W (ψ,ψ̄) = −2iλr/ε. The scattering eigenfunctions and
scattering data a and b associated with (4a) satisfy

φ(x; λ) = a(λ,λr )ψ̄(x; λr ) + b(λ,λr )ψ(x; λr ) (6)

for λr �= 0, λr ∈ R (or, equivalently, |λ| > c, λ ∈ R). The
scattering data can be written as

a = ε

2iλr

W (φ,ψ) and b = ε

2iλr

W (ψ̄,φ). (7)
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We can use this to extend a to |λ| < c, λ ∈ R (where λr is pure
imaginary); when |λ| < c, λ ∈ R, ψ is real and exponentially
decaying. This also gives that a = −b for |λ| � c, λ ∈ R and
|a|2 − |b|2 = λ/λr for |λ| > c, λ ∈ R.

It is convenient to define the transmission coefficient T ≡
1/a and the reflection coefficient R ≡ b/a. Then (6) can be
written as

T (λ,λr )φ(x; λ) = ψ̄(x; λr ) + R(λ,λr )ψ(x; λr ). (8)

We use (2), (4b), and (8) to find how T and R evolve in time:

T (λ,λr ; t) = T (λ,λr ; 0) exp[i(4λ2λr − 4λ3 + 2c2λr )t/ε]

and

R(λ,λr ; t) = R(λ,λr ; 0) exp[i(8λ2λr + 4c2λr )t/ε].

For vanishing boundary conditions (c = 0), the transmission
coefficient T does not depend on time. But here, where
c �= 0, the transmission coefficient does depends on time; this
dependance when |λ| < c, λ ∈ R is not pure phase.

The associated GLM integral equation—see Appendix B
for a derivation—is

G(x,y; t) + 
(x + y; t) +
∫ ∞

x


(y + z; t)G(x,z; t) dz = 0,

(9)
where


(ξ ; t) = 1

2επ

∫ ∞

−∞
R eiλr ξ/ε dλr +

∑
j

cj e
−κ̃j ξ/ε

+ 1

2επ

∫ c

0
|λT/λr |2e−√

c2−λ2ξ/ε dλ,

the constants {iκj }Nj=1 are the (simple) poles of

T (iκj ,λr (iκj ); t), κ̃j =
√

κ2
j + c2, cj = −iμj/[ε∂λr

a]λ=iκj
,

φ(x; iκj ,t) ≡ μj (t)ψ(x; iκj ,t), and 0 < κ1 < · · · < κN are
real. The kernel 
 has contributions from the reflection
coefficient, from the poles, and from the branch cut (the
|λT/λr |2 term)—there is no branch-cut contribution in the
c = 0 case. We will omit any contributions from poles in our
asymptotics. These poles relate to the solitons, which move
to the right of the DSW, and so do not affect the DSW in the
long-time limit.

From G, we recover u(x,t) from

u(x,t) = −6c2 + 12ε2 d

dx
G(x,x; t). (10)

III. LONG-TIME ASYMPTOTICS

For large time, we use (9) to asymptotically compute the
behavior right of the DSW (Sec. III A). When this asymptotic
solution breaks down, we use the matched-asymptotic method
introduced in Ref. [19] to find the DSW’s slowly varying
elliptic-function solution (Sec. III B). This naturally leads to
Whitham’s equations, which Whitham [32] originally found by
an averaging method; Luke [36] later developed a perturbative
method (and [37] used such a method on the KdV equation).
Then we use the method in Ref. [20] to determine the
small-amplitude, slowly varying, oscillatory solution to the
left of the DSW (Sec. III C); this matches the slowly varying
elliptic-function solution in the middle region.

A. Shock front

Right of the DSW, we asymptotically compute 
(ξ ; t) for
large time, use 
 to compute G using a Neumann series, and
use G in (10) to find u. When our asymptotic expansion for 


breaks down, the Neumann series for G becomes disordered;
this gives us the boundary condition for the DSW’s right edge.

Far right of the DSW, where x 
 −2c2t , the reflection
coefficient’s contribution to 
 dominates. Using the steepest-
descent method (see Refs. [38,39]) gives


(ξ ; t) = − R+(λ∗)e−2t[ξ/(6t)+2c2]3/2/ε

8
√

επ [ξ/(6t) + 2c2]1/4
√

t
[1 + O(t−1/2)]

+ c.c.,

where λ∗ =
√

c2/2 − ξ/(24t) and c.c. is the complex conju-
gate. We can then find G using the Neumann series from the
iterates G(0)(x,y; t) = −
(x + y; t) and

G(n)(x,y; t) = −
(x + y; t)

−
∫ ∞

x


(y + z; t)G(n−1)(x,z; t) dz.

Using (10) then gives the exponentially small solution

u(x,t) = −6c2 + Re {R+(λ∗)} e−2t[x/(3t)+2c2]3/2/ε

4
√

επ [x/(3t) + 2c2]1/4
√

t

× [1 + O(t−1/2)],

for x 
 −2c2t .
Near the DSW’s right, the transmission coefficient’s contri-

bution to 
 dominates. The contribution from λ = 0 dominates
and is


(ξ ; t) = −e−ct(ξ/t+4c2)/ε√ε

16
√

π [6c − ξ/(2ct)]3/2
[H2(0)t−3/2 + O(t−5/2)],

where

Hj (λ∗) ≡
[

∂j

∂λj
|T (λ,λr (λ); 0)|2

]
λ=λ∗

.

The terms in the Neumann series become disordered when

[x + 2c2t + 3ε/(4c)ln(6c2t − x)] = O(1).

This is the DSW’s right edge. (See the asymptotic principles
discussed in Ref. [40].) When we sum the Neumann series, we
find that

u(x,t) ∼ −6c2 + 12c2sech2

[
c

ε
(ζ − ζ0)

]
, (11)

where

ζ0 = ε

2c
ln

{
32

√
π

H2(0)c1/2ε3/2

}
,

ζ = −x − 2c2t − 3ε

4c
ln(6c2t − x) + A1(x/t)t−1 + · · · ,

(12)
and

A1(x/t + 6c2) = 3ε2

8c2x/t
+ 135ε2

16(x/t)2
+ 3c2ε2H4(0)

8(x/t)2H2(0)
.

This provides the boundary condition on the DSW’s right edge.
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This procedure gives the DSW’s phase, ζ0. This phase only
depends on H2(0) [since H0(0) = H1(0) = 0]. In the vanishing
case, Ref. [19], Eq. (2.25c), found a similar phase term:
r ′′(0) − [r ′(0)]2/r(0), where r is the corresponding reflection
coefficient. Burgers’ equation’s long-time-asymptotic solution
also has a phase term that depends on the initial data in a similar
way (see Appendix A).

B. DSW

For the DSW, we find the slowly varying, cnoidal-wave
solution using matched asymptotics. First we make a variable
change in (1) based on (11). Then we use the multiple-scales
method (see Ref. [12]) to determine how its solution slowly
varies: this gives secularity and compatibility conditions that
lead to three conservation laws, which we can transform
into Whitham’s equations [32]. Matching to (11) and assum-
ing a similarity solution determines the DSW’s long-time-
asymptotic solution.

Analogous to Ref. [19], we look for a solution of the form

u(x,t) = −6c2 + g(ζ,t),

based on (11), where ζ is defined in (12). We substitute this
into (1). Then we introduce the slow-variables Z ≡ δζ and
T ≡ δt , where δ = O(t−1) is a small parameter. Grouping
terms in like powers of δ gives

ε2gζζζ + ggζ − 4c2gζ − gt

= δ

{
3ε(3ε2gζζζ + ggζ − 12c2gζ )

4c(8c2T + Z)

}
+ · · · . (13)

To leading order, (13) has the special solution

g(ζ,t) ∼ 4c2 − V + 4ε2κ2(1 − 2k2)

+ 12k2ε2κ2cn2 [κ(ζ − ζ0 − V t),k] , (14)

where cn(z,k) is the Jacobian elliptic “cosine” (see Ref. [41]);
it can be found using the methods in Ref. [42]. If we neglect
the right-hand side of (13), κ , k, and V are arbitrary constants
but vary slowly in general. In the special case k = 1, κ = c/ε,
and V = 0, g(ζ,t) = 12c2sech2[c(ζ − ζ0)/ε], which exactly
matches (11).

As in Ref. [36], we use the multiple-scales method—with
a fast variable θ—to determine how κ , k, and V vary with the
slow variables Z and T . This leads to three conservation laws
from a compatibility condition and two secularity conditions;
we can transform these conservation laws into a convenient
diagonal system of quasilinear, first-order equations, which
were first found by Whitham [32].

To get the compatibility condition, we introduce the rapid-
variable θ (ζ,t) with

θζ ≡ κ(Z,T ) and θt ≡ −ω(Z,T ) ≡ −κV . (15)

This leads to the compatibility condition (θζ )t = (θt )ζ or

κT + ωZ = 0, (16)

which is a conservation law.
To get the secularity conditions, we rewrite (13) in terms

of θ , and then require that the leading-order solution be
periodic in θ . We use ∂t = −ω∂θ + δ∂T and ∂ζ = κ∂θ + δ∂Z

to transform (13) into

ε2κ3gθθθ + κggθ + (ω − 4c2κ)gθ

= δ

[
3εκ

4c(8c2T + Z)
(3ε2κ2gθθθ + ggθ − 12c2gθ )

+ gT − (3ε2κ(κgθθ )Z + ggZ − 4c2gZ)

]
+ · · · . (17)

Then we expand g(θ,Z,T ) = g0(θ,Z,T ) + δg1(θ,Z,T ) +
δ2g2(θ,Z,T ) + · · · and group the terms in like powers of δ.
The O(1) equation is

ε2κ3g0,θθθ + κg0g0,θ + (ω − 4c2κ)g0,θ = 0; (18)

the O(δ) equations is

ε2κ3g1,θθθ + κ(g0g1)θ + (ω − 4c2κ)g1,θ

= 3εκ

4c(8c2T + Z)
(3ε2κ2g0,θθθ + g0g0,θ − 12c2g0,θ )

+ g0,T − 3ε2κ(κg0,θθ )Z − g0g0,Z + 4c2g0,Z ≡ F. (19)

To eliminate secular terms (that is, terms that grow arbitrarily
large), we enforce the periodicity of g0(θ,Z,T ) in θ :∫ 1

0
F dθ = 0 and

∫ 1

0
g0F dθ = 0.

Using ∫ 1

0

∂ig0

∂θ i
dθ = 0,

∫ 1

0
g0

∂jg0

∂θj
dθ = 0,

for i = 1, 2, 3, . . . and j = 1, 3, 5, . . . , and∫ 1

0
g0g0,θθ dθ = −

∫ 1

0
g2

0,θ dθ,

we get from
∫ 1

0 F dθ = 0 that

∂

∂T

∫ 1

0
g0 dθ + ∂

∂Z

(
4c2

∫ 1

0
g0 dθ − 1

2

∫ 1

0
g2

0 dθ

)
= 0

(20)
and from

∫ 1
0 g0F dθ = 0 that

∂

∂T

∫ 1

0
g2

0 dθ + ∂

∂Z

(
4c2

∫ 1

0
g2

0 dθ

− 2

3

∫ 1

0
g3

0 dθ + 3ε2κ2
∫ 1

0
g2

0,θ dθ

)
= 0. (21)

The solution of (18) is

g0(θ,Z,T ) = a(Z,T ) + b(Z,T )cn2[2(θ − θ0)K,k(Z,T )],

(22)

where K ≡ K(k(Z,T )) is the complete elliptic integral of the
first kind,

κ2 = b

48ε2k2K2
, and a = 4c2 − V − 2

3
b + b

3k2
. (23)

We can use these to rewrite the conservation law (16) as

∂

∂T

(
1

4
√

3εK

√
b

k2

)
+ ∂

∂Z

(
V

4
√

3εK

√
b

k2

)
= 0.
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We can also use (22) to rewrite the conservation laws (20)
and (21) in terms of b/k2, V , and k. Using (22) and elliptic-
function properties (see Byrd and Friedman [43], formulas 312
and special values 122), we can write

∫ 1
0 g0 dθ , . . . ,

∫ 1
0 g3

0 dθ ,

and ω2
∫ 1

0 g2
0,θ dθ in terms of b/k2, V , k, and the complete first

(K) and second (E) elliptic integrals. After simplification, we
get the conservation laws

∂

∂T

[
(4c2 − V ) + 1

3

(
3

E

K
+ v − 2

)
b

k2

]
+ ∂

∂Z

[
1

2
(4c2 − V )(4c2 + V )

+ V

3

(
3

E

K
+ k2 − 2

)
b

k2
− 1

18
(1 − k2 + k4)

(
b

k2

)2]
= 0

and

∂

∂T

[
(4c2 − V )2 + 2(4c2 − V )

3

(
3

E

K
+ k2 − 2

)
b

k2
+ 1

9
(1 − k2 + k4)

(
b

k2

)2]
+ ∂

∂Z

[
2

3
(4c2 − V )2(2c2 + V )

+ 2V

3
(4c2 − V )

(
3

E

K
+ k2 − 2

)
b

k2
− 2

9
(2c2 − V )(1 − k2 + k4)

(
b

k2

)2

+ 1

81
(2 − k2)(1 + k2)(2k2 − 1)

(
b

k2

)3]
= 0.

These three conservation laws determine b, k, and V .
We can transform these conservation laws into Whitham’s

equations. Make the variable changes

b

k2
= 2(r3 − r1), k2 = r2 − r1

r3 − r1
, V = 4c2 − r1 + r2 + r3

3
.

Simplifying then gives the convenient diagonal system

∂ri

∂T
+ vi(r1,r2,r3)

∂ri

∂Z
= 0, i = 1,2,3, (24)

where v1 = V + bK/[3(K − E)], v2 = V + b(1 − k2)K/

[3(E − (1 − k2)K)], v3 = V − b(1 − k2)K/(3k2E), and

g0(θ,Z,T ) = r1 − r2 + r3 + 2(r2 − r1)cn2 [2(θ − θ0)K,k] .

Whitham first found (24) in Ref. [32] (see also Refs. [14,28]).
Here, θ is found through integrating with (15).

For large time, the solution tends to a self-similar solution.
We assume that ri = ri(χ ) with χ ≡ Z/T = ζ/t . Taking
r1 = 0 and r3 = 6c2 satisfies the boundary conditions; so (24)
reduces to (v2 − χ )r ′

2(χ ) = 0 or

v2 = 2c2 − r2 + 2

3

r2E
(√

r2
6c2

)
E

(√
r2

6c2

) − (
1 − r2

6c2

)
K

(√
r2

6c2

) = χ.

10 c2 0
Χ6 c2

0

6 c2
r2 Χ

a
t 10

10 c2 0
Χ6 c2

0

6 c2
r2 Χ

b
t 200

FIG. 3. The value of r2(χ ) found numerically for 0 < χ < 10c2,
where χ ≡ ζ/t . For comparison, we include −r2(χ ) as a dashed line
and a numerical simulation of u(x,t) in gray (inside the envelope of
r2 and −r2) for a single step at (a) t/ε = 10 and (b) t/ε = 200. Note
that χ = 0 corresponds to x ∼ −2c2t and χ = 10c2 to x ∼ −12c2t .

We can numerically solve this implicit equation for r2 (Fig. 3).
We can also directly compute the DSW’s left- and right-edge
speeds: At the right edge, we take the limit r2 → r3, and
get that v2 → 0 or x ∼ −2c2t—the leading soliton’s speed.
At the left edge, we take the limit r2 → r1, and get that
v2 → 10c2 or x ∼ −12c2t . Moreover, at the left edge where
0 < (10c2 − χ ) � 1, we have that r2 = 2(10c2 − χ )/3 +
O[(10c2 − χ )2]; using this and taking x → −12c2t gives
u = (2/3)(10c2 − χ ) cos[16c3t/ε + O(log t)].

C. Trailing edge

The solution left of the DSW has the same form for both
vanishing (c = 0) and nonvanishing (c �= 0) boundary con-
ditions. In both cases, the GLM integral equation formulated
from −∞ to x has the same form. The scaling symmetry of (1),
(u,x,t) → (γ 2u,γ −1x,γ −3t), leads to a similarity solution;
in this region, we find that the slowly varying, asymptotic
similarity solution is

u(x,t) = 2A
X1/4

√
τ

cos(θ ) − A2(1 − cos 2θ )

3τ
√

X
+ O(τ−3/2),

(25)
where X = −x/(3t), τ = 3t , and

θ = τ

ε

[
2

3
X3/2 − A2

18

ln(τX3/2)

τ
+ θ0

τ
+ O(τ−2)

]
.

We can use several methods to find A and θ0 in terms of the
scattering data.

One method for finding A and θ0 is to use the GLM
integral equation formulated from −∞ to x. Following the
same procedure as Sec. III A requires that we sum the whole
Neumann series; that is, unlike in Sec. III A, we cannot get A

and θ0 from the Neumann series’ first few terms. But the first
few terms are sufficient to show our main result: the long-time
limit of general, steplike data is a single-phase DSW.

While we do not need expressions for A and θ0 to show our
main result, we can use the method as in Ref. [20] to find A
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and θ0. We find that

A2(X) ∼ −9ε

π
ln(1 − |R(

√
X/2)|2), (26)

where R(
√

X/2) ≡ R(λ = √
X/2,λr (λ),t = 0), and

θ0

ε
∼ π

4
− arg{r̃(λ)} − arg

{
�

(
1 − iA2(4λ2)

18ε

)}

− c2A2(4c2)

9ελ2
ln

(
c − λ

c + λ

)
− A2

6ε
ln2

− 1

9λ2ε

∫ λ

c

(ξ 2A2(4ξ 2))ξ ln

(
ξ − λ

ξ + λ

)
dξ, (27)

where λ = √
X/2, r̃ ≡ b̃/ã, and φ → ã(λ)e−iλx/ε +

b̃(λ)eiλ(x+8λ2t)/ε as x → −12c2t . This r̃ can be related to a

and b through the GLM integral equation formulated from
−∞ to x. See Appendix C for details.

IV. CONCLUSION

DSWs appear when weak dispersion and weak nonlinearity
dominate the physics; they arise in many physical systems,
including fluid dynamics, plasmas, superfluids, and nonlinear
optics. For systems with weak dispersion and weak, quadratic
nonlinearity, the KdV equation is the leading-order asymptotic
equation. Here we showed that the long-time-asymptotic solu-
tion of the KdV equation for general, steplike initial data tend
to a single-phase DSW; we found this long-time-asymptotic
solution using the IST method and matched-asymptotic ex-
pansions. Therefore, a single-phase DSW eventually forms
from well separated, multistep initial data, despite having
more complex multiphase dynamics at intermediate times.
We anticipate that our IST and matched-asymptotic procedure
for general, steplike data will be applied to other important
nonlinear integrable systems.

The long-time-asymptotic solution of the KdV equation
for general, steplike initial data has three basic regions:
an exponentially small region right of the DSW; the main
DSW region, which is a slowly varying cnoidal wave with a
soliton-train on its right and oscillatory behavior on its left;
and a small, decaying, oscillatory region left of the DSW.
The DSW region is over |x| � O(t) and has height O(1).
Compare this with the linear KdV equation with steplike
data and the nonlinear KdV equation with vanishing data:
the linear KdV equation with steplike data has a middle region
with strong nonlinearity over |x| � O(t1/3) and has height
O(1); the nonlinear KdV equation with vanishing data has a
collisionless-shock region over (−x) = O[t1/3(log t)2/3] and
has height O[(log t)1/2t−2/3]. The merging of shocks from
multistep data is similar for both the KdV and Burgers’
equations: in both, the boundary conditions determine its
form and the initial data determine its position—but the KdV
equation can also have a finite number of solitons.
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APPENDIX A: LONG-TIME ASYMPTOTIC SOLUTION
OF BURGERS’ EQUATION

We can transform Burgers’ equation,

wt + wwx − νwxx = 0, (A1)

into the heat equation (φt = νφxx) using the Hopf-Cole
transformation,

w = −2ν
φx

φ
. (A2)

For simplicity, we take

w(x,t = 0) = w0(x) =
⎧⎨
⎩

0, x � x�,

f (x), x� � x � xr,

−h2, x � xr,

where h is real and f is bounded. So, from (A2),

φ(x,t = 0) = φ0(x) = exp

(−1

2ν

∫ x

−∞
w0(x ′) dx ′

)

=
⎧⎨
⎩

1, x � x�,

exp
[ − 1/(2ν)

∫ x

x�
f (x ′) dx ′], x� � x � xr,

exp[h2(x − x̃0)/(2ν)], x � xr,

where x̃0 ≡ ∫ xr

x�
f (x ′)/h2 dx ′. Solving the heat equation gives

φ(x,t) = 1√
4πνt

(∫ x�

−∞
+

∫ xr

x�

+
∫ ∞

xr

)
φ0(x ′)e−(x−x ′)2/(4νt) dx ′

≡ I1 + I2 + I3.

And, in the long-time limit,

I1 ∼ 1

2
, I2 → 0, and I3 ∼ exp

[
h2

2ν

(
x − x̃0 + h2

2
t

)]
.

Therefore, from (A2),

w(x,t) ∼ −h2

2

{
1 + tanh

[
h2

4ν

(
x − x0 + h2

2
t

)]}
,

where x0 ≡ x̃0 + (2ν/h2)ln2.

APPENDIX B: DERIVATION OF
GLM INTEGRAL EQUATION

To find (9), the GLM integral equation, we need to know
the eigenfunctions’s and the scattering data’s analyticity; see
Refs. [26,44] for more details. Using Green’s functions, we
can write eiλx/εφ, eiλx/εφ̄, eiλrx/εψ , and eiλrx/εψ̄ as Volterra
integral equations, which can be solved using Neumann series.
From these Neumann series, we find that

eiλx/εφ is analytic for Im(λ) > 0,
e−iλx/εφ̄ is analytic for Im(λ) < 0,
e−iλr x/εψ is analytic for Im(λr ) > 0, and
eiλrx/εψ̄ is analytic for Im(λr ) < 0.

From (7), we have that a is analytic for Im(λ) > 0. If
n = 1, 2, . . . , N in (3), then we have the following: eiλx/εφ

and e−iλx/εφ̄ are N -fold differentiable (with respect to λ)
on Im(λ) = 0, λ �= 0 and (N − 1)-differentiable at λ = 0;
e−iλr x/εψ and eiλrx/εψ̄ are N -fold differentiable (with respect
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to λr ) on Im(λr ) = 0, λr �= 0 and (N − 1)-differentiable at
λr = 0. Likewise, if u(x,t) satisfies∫ ∞

−∞
|u(x,t) + 6c2H (x)|ed|x| dx < ∞, 0 < d ∈ R,

then eiλx/εφ and e−iλx/εφ̄ are analytic in −d < Im(λ) < d,
e−iλr x/εψ and eiλrx/εψ̄ are analytic in −d < Im(λr ) < d, and
b is analytic, from (7), in −d < Im(λ) and Im(λr ) < d.

Using the eigenfunctions’s and the scattering-data’s
analyticity, we find the GLM integral equation
by the following: assuming that ψ and ψ̄ have
triangular forms, substituting these forms into (8),
and operating on this equation with (2επ )−1

∫ ∞
−∞– dλr to

get (9). (We use
∫− to denote the principle-value integral

omitting λr = 0.) Following Ref. [18], we assume that ψ and
ψ̄ have the triangular forms

ψ(x; λr ; t) = eiλrx/ε +
∫ ∞

x

G(x,s; t)eiλr s/ε ds,

ψ̄(x; λr ; t) = e−iλr x/ε +
∫ ∞

x

G(x,s; t)e−iλr s/ε ds,

(B1)

with G(x,s; t) ≡ 0 when s < x. Substituting (B1) into (8)
gives

T φ = e−iλr x/ε +
∫ ∞

x

G(x,s; t)e−iλr s/ε ds

+R

{
eiλrx/ε +

∫ ∞

x

G(x,s; t)eiλr s/ε ds

}
;

multiplying by eiλry/ε and rearranging gives(
T φeiλrx/ε − 1

)
eiλr (y−x)/ε

=
∫ ∞

x

G(x,s; t)eiλr (y−s)/ε ds

+R

{
eiλr (x+y)/ε +

∫ ∞

x

G(x,s; t)eiλr (y+s)/ε ds

}
. (B2)

Now we operate on (B2) with (2επ )−1
∫ ∞
−∞– dλr , interchange

integrals, and use that δ(x) = (2επ )−1
∫ ∞
−∞ eiλrx/ε dλr . So, for

example,

1

2επ

∫ ∞

−∞
–

∫ ∞

x

G(x,s; t)eiλr (y−s)/ε ds dλr

=
∫ ∞

x

G(x,s; t)

(
1

2επ

∫ ∞

−∞
eiλr (y−s)/ε dλr

)
ds

=
∫ ∞

x

G(x,s; t)δ(y − s) ds = G(x,y; t)

and
1

2επ

∫ ∞

−∞
– R(λ,t)

∫ ∞

x

G(x,s; t)eiλr (y+s)/ε ds dλr

=
∫ ∞

x

G(x,s; t)

(
1

2επ

∫ ∞

−∞
– R(λ,t)eiλr (y+s)/ε dλr

)
ds

=
∫ ∞

x

G(x,s; t)F (y + s; t) ds,

where

F (z; t) ≡ 1

2επ

∫ ∞

−∞
– R(λ,t)eiλr z/ε dλr . (B3)

Thus,

G(x,y; t) + F (x + y; t) +
∫ ∞

x

F (y + z; t)G(x,z; t) dz = I,

where

I ≡ 1

2επ

∫ ∞

−∞
– (T φeiλrx/ε − 1)eiλr (y−x)/ε dλr .

We find I by closing in the upper-half λr -plane because
φeiλrx/ε is analytic in Im(λ) > 0. We get that I ≡ −Ib − Ip,
where Ib is the contribution from the branch cut and Ip is the
contribution from the zeros of a.

To find Ib, we recall that the branch cut of λ is λr ∈ [−ic,ic],
and the branch cut of λr is λ ∈ [−c,c]. So

Ib = 1

2επ

( ∫ ic−0−

0−0−
−

∫ ic+0+

0+0+

)

×
{

φeiλrx/ε

a
− 1

}
eiλr (y−x)/ε dλr

= 1

2επ

∫ ic

0

{(
φ

a

)
λ=−|λ|

−
(

φ

a

)
λ=|λ|

}
eiλry/ε dλr .

Now we define α and β—the scattering data from the left—so
that

ψ ≡ αφ̄ + βφ, λ �= 0; (B4)

then

α = ε

2iλ
W (φ,ψ) = λra

λ
and β = ε

2iλ
W (ψ,φ̄).

For λr ∈ [0,ic], φ∗ = φ̄, ψ = ψ∗ = ψ̄ , and α∗ = β from (5),
where ∗ denotes the complex conjugate. So

Ib = 1

2επ

∫ ic

0

{(
φ

λα

)
λ=−|λ|

−
(

φ

λα

)
λ=|λ|

}
eiλry/ελr dλr .

Using (φ/α)λ=−|λ| = (φ∗/α∗)λ=|λ|, from (5a), and noting λ’s
sign change, gives

Ib = − 1

2επ

∫ ic

0

(
φ

λα
+ φ∗

λα∗

)
λ=|λ|

eiλry/ελr dλr

= − 1

2επ

∫ ic

0

[
1

λα∗

(
φ∗ + α∗

α
φ

)]
λ=|λ|

eiλry/ελr dλr .

Using the identities ψ∗ = ψ̄ and α∗ = β for λr ∈ [0,ic] and
then using (B4) gives

Ib = − 1

2επ

∫ ic

0

[
1

λα∗

(
φ̄ + β

α
φ

)]
λ=|λ|

eiλry/ελr dλr

= − 1

2επ

∫ ic

0

[
1

λ|α|2 ψ

]
λ=|λ|

eiλry/ελr dλr .

Making the change of variable from λr to λ and using that
T ≡ 1/a gives

Ib = 1

2επ

∫ c

0
|λT/λr |2ψe−y

√
c2−λ2/ε dλ.
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To find Ip, we use the residue theorem to get

Ip = − i

ε

∑
j

Res

(
φeiyλr/ε

a
,λ = λj

)

=
∑

j

cjψ(x; iκj ,t)e
−κ̃j y/ε,

where the constants {iκj } are the simple zeros of a(λ,t), κ̃j =√
κ2

j + c2,

cj = − iμj

ε
[
∂λr

a
]
λ=iκj

, φ(x; iκj ,t) ≡ μj (t)ψ(x; iκj ,t),

and 0 < κ1 < · · · < κN are real.
Using (B1) again gives (9),

G(x,y; t) + 
(x + y; t) +
∫ ∞

x


(y + z; t)G(x,z; t) dz = 0,

where


(ξ ; t) = 1

2επ

∫ ∞

−∞
R eiλr ξ/ε dλr +

∑
j

cj e
−κ̃j ξ/ε

+ 1

2επ

∫ c

0
|λT/λr |2e−√

c2−λ2ξ/ε dλ.

We get u from G as follows: we differentiate (B1) twice
with respect to x, multiply (B1) by λ2

r /ε
2, and substitute these

into (4a) (where we have used λ2 = λ2
r + c2) to get

eiλrx/ε

(
u(x,t)

6ε2
+ c2

ε2
− 2

d

dx
G(x,x; t)

)

+
∫ ∞

x

[
∂2

∂x2
G(x,s; t) − ∂2

∂s2
G(x,s; t)

+
(

u(x,t)

6ε2
+ c2

ε2

)
G(x,s; t)

]
eiλr s/ε ds = 0.

Therefore,

u(x,t) = −6c2 + 12ε2 d

dx
G(x,x; t)

and

∂2

∂x2
G(x,s; t) − ∂2

∂s2
G(x,s; t)

+
(

u(x,t)

6ε2
+ c2

ε2

)
G(x,s; t) = 0.

APPENDIX C: DETERMINING THE AMPLITUDE
AND PHASE LEFT OF THE DSW

To determine A and θ0, we use the method in Ref. [20]
(see also Ref. [17], Sec. 1.7.c): We substitute (25) into (4a)
and use the boundary values v → φ as x → −∞ and v →
ãe−iλx/ε + b̃eiλ(x+8λ2t)/ε as x → −12c2t . Here, ã and b̃ can be
found through the GLM integral equation from the left or by
relating them to a and b through the asymptotic forms of u

for −12c2t � x � ∞. Then we asymptotically solve for the
eigenfunction φ; this is a WKB-type problem that leads to a
matched-asymptotic problem. From the asymptotic form of φ,
we get A and θ0 in terms of r̃ ≡ b̃/ã.

To get a WKB-type problem for the eigenfunctions, we
substitute (25) and v = φ = φ1e

iλx/ε + φ2e
−iλx/ε into (4a),

break it into two consistent relations, and keep only the
leading-order terms. This gives

∂φ1

∂x
∼ i

AX1/4

12λε
√

τ
(ei(θ−η) + e−i(θ+η))φ2,

∂φ2

∂x
∼ −i

AX1/4

12λε
√

τ
(ei(θ+η) + e−i(θ−η))φ1,

(C1)

where η ≡ 2λx/ε. This has two rapidly varying phases, (θ +
η) and (θ − η). Then we expand φ1 and φ2 as

φi = φi,0(θ,η,X) + τ−1/2φi,1(θ,η,X)

+ τ−1φi,2(θ,η,X) + · · ·,
substitute this into (C1), and group terms with like powers of
τ . At O(τ−1/2), we find a resonance or turning-point region
near

1 ± ηx

θx

= 0 or X ∼ 4λ2,

where secular terms appear. This gives three regions to
consider: X 
 4λ2, X ∼ 4λ2, and 4λ2 
 X 
 4c2.

In the leftmost region, where 4λ2 � X < ∞, perturbation
theory gives

φ1,0(X) = 0,

φ2,0(X) ∼ exp

{
i

144λ2ε2

∫ ∞

X

A2(z)
√

z

(
1

θx(z) + ηx

− 1

θx(z) − ηx

)
dz

}
,

after matching to φ1 → 0 and φ2 → 1 as x → −∞. In the
limit as X → 4λ2, we get

φ2,0(X) ∼ (X − 4λ2)ν(4λ)−2νeI (λ),

where ν ≡ iA2(4λ2)/(18ε) and

I (λ) ≡ i

18λ2ε

∫ ∞

λ

(ξ 2A2(4ξ 2))ξ ln

(
ξ − λ

ξ + λ

)
dξ.

In the middle region, where X ∼ 4λ2, we can represent the
solution in terms of parabolic cylinder functions:

w1,0(Y ) = e−Ỹ 2/4
[
c1U

(
1
2 − ν,Ỹ

) + c2U
(

1
2 − ν,−Ỹ

)]
,

w2,0(Y ) = eỸ 2/4[c3U
(− 1

2 − ν,Ỹ
) + c4U

(− 1
2 − ν,−Ỹ

)]
,

where U is the parabolic cylinder function (see Ref. [41]),

Y ≡ (X − 4λ2)
√

τ ≡ −x − x0√
3t

, Ỹ ≡ Yeiπ/4

√
4λε

,

and

c1/c3 = −c2/c4 = A(4λ2)

3
√

2ε
exp

{
i

(
π

4
− 2λx0 + θ̃0

ε

)}
.

Matching wi as Y → +∞ to φi as X → 4λ2 gives

c3 = e−iπν/4

(
ε

(4λ)3τ

)ν/2

eI (λ) and c4 = 0.
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Taking the limit in the other direction, Y → −∞, then gives

φ1,0(Y ) =
√

2πν

� (1 − ν)
(4λ2 − X)−νe−iπν/2(4λτ )−νεν exp

{
−i

2λx0 + θ̃0

ε
+ I (λ)

}
+ O(|Y |−1),

φ2,0(Y ) = (4λ2 − X)νe−iπν(4λ)−2νeI (λ) + O(|Y |−1).

For 4λ2 
 X 
 4c2, perturbation theory and matching to φ1 → b̃(λ)e8iλ3t/ε and φ2 → ã(λ) as x → −12c2t gives

φ1,0(X) ∼ b̃(λ)ei8λ3t/ε+J (X;λ)

and

φ2,0(X) ∼ ã(λ)e−J (X;λ),

where

J (X; λ) ≡ i

144λ2ε2

∫ X

4c2
A2(z)

√
z

(
1

θx(z) + ηx

− 1

θx(z) − ηx

)
dz.

Matching the limits of φ2 as X → 4λ2 and as Y → −∞ gives

ã(λ) ∼ exp

{
c2

λ2

iA2(4c2)

18ε
ln

(
c − λ

c + λ

)
+ i

18λ2ε

∫ ∞

c

(ξ 2A2(4ξ 2))ξ ln

∣∣∣∣ξ − λ

ξ + λ

∣∣∣∣ dξ

}
.

So, after contour integration,

A2(X) ∼ 9ε

π
ln|ã(

√
X/2)|2 = −9ε

π
ln(1 − |R(

√
X/2)|2),

since X = 4λ2, r̃(λ,t) ≡ b̃(λ,t)/ã(λ) and |r̃(λ,t)| = |R(λ,t)|. Likewise, matching the limits of φ1 as X → 4λ2 and as Y → −∞
gives

b̃(λ) ∼
√

2πν

�(1 − ν)
eiπν/2εν exp

{
− i

θ0

ε
− 3νln2 − c2

λ2

iA2(4c2)

18ε
ln

(
c − λ

c + λ

)

+ i

18λ2ε

(
−

∫ λ

c

+
∫ ∞

λ

)
(ξ 2A2(4ξ 2))ξ ln

(
ξ − λ

ξ + λ

)
dξ

}
.

Using r̃ ≡ b̃/ã gives (27).
This matches the DSW’s left boundary, since taking the limits x → −12c2t and r2 ∼ 2(10c2 − χ )/3 ∼ 2AX1/4τ−1/2 gives

u ∼ 2
√

2c/(3t) cos[16c3t/ε + O(log t)]; see Ref. [44] for details.
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