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Nonlinear energy transfer in classical and quantum systems
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In this paper we investigate the effect of slowly-varying parameters on the energy transfer in a weakly
coupled system. For definiteness, we consider a system of two nonlinear oscillators, in which the directly excited
first oscillator with constant parameter is attached to the oscillator with slowly time-varying frequency. It is
proved that the equations of the slow passage through resonance in this system are identical to the equations of
nonlinear Landau-Zener (LZ) tunneling. Three types of dynamical behavior are distinguished, namely, quasilinear,
moderately nonlinear, and strongly nonlinear ones. Quasilinear systems exhibit a gradual energy transfer from the
excited to the attached oscillator, while moderately nonlinear systems are characterized by an abrupt transition
from the energy localization on the excited oscillator to the localization on the attached oscillator. In strongly
nonlinear systems, the transition from the energy localization to strong energy exchange between the oscillators is
revealed. Explicit approximate solutions describing the transient processes in moderately and strongly nonlinear
systems are suggested. Correctness of the constructed approximations is confirmed by numerical results. The
results presented in this paper, in addition to providing an analytical framework for understanding the transient
dynamics, suggest an approximate procedure for solving the nonlinear LZ problem with arbitrary initial conditions
over a finite time-interval.
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I. INTRODUCTION

The concept of targeted energy transfer (TET) in nonlinear
classical systems with constant coefficients was introduced
earlier for a model of two weakly coupled nonlinear oscillators,
one of which is initially excited [1]; motivated by this
concept, a common consideration of classical and quantum
energy transfers was suggested [2,3]. Classical and quantum
transitions have interesting and nontrivial applications in
diverse fields of applied mathematics, natural sciences, and
engineering, and numerous studies have been devoted to the
theory and applications of these phenomena, see, e.g., [4–11]
and references therein. Most of the theoretical results concern
the systems with constant parameters but over the last decade
nonlinear quantum transitions under slow driving have been
investigated using different methods [10–17].

The occurrence of irreversible energy transfer and an
adequate analytical description of the transient processes in
linear and quasilinear systems with time-dependent parameters
and arbitrary initial conditions was presented in earlier works
[7–10]. Additionally, it was shown that the equations of the
slow dynamics in the passage through resonance in linear
[7–9] and quasilinear [10] systems of two weakly coupled
oscillators with slowly varying frequencies are equivalent
to the well-known Landau-Zener (LZ) equations [12,13]. In
this paper we extend earlier obtained results to the system
with stronger nonlinearity and examine different types of
the transient processes occurring in the systems with slowly
varying parameters.

The paper is organized as follows. In the first part of the
paper (Secs. II and III), the quasiresonant dynamics of a system
of two weakly coupled nonlinear oscillators with constant
parameters is analyzed.

Although the phase portraits for the conservative systems
as well we for the systems with “frozen” time-dependent
parameters were presented earlier [1–3,12–14,18–22], a more

detailed analysis given in Secs. II and III enables us to
distinguish three types of the dynamical behavior: quasilinear,
moderately nonlinear, and strongly nonlinear ones.

It is important to note that earlier work on nonlinear tunnel-
ing [12,13] outlined a single parametric boundary associated
with the change of the number of the stationary points and
corresponding, in our terminology, to the boundary between
quasilinear and moderately nonlinear systems. In Sec. III we
derive the second parametric boundary corresponding to the
boundary between moderately and strongly nonlinear systems.
It is shown that this dynamical transition is closely related
to the behavior of the so-called limiting phase trajectory
(LPT) [20]. This implies that the dynamical analysis cannot be
reduced to the study of the stationary points and their stability.

In Secs. IV and V we examine the dynamical behavior of
the slowly time-dependent moderately and strongly nonlinear
systems. We demonstrate an exact mathematical analogy
between energy transfer in a classical system and nonlinear LZ
tunneling. Section IV suggests an explicit asymptotic solution
describing the transient processes in the moderately nonlinear
system under adiabatically slow driving. The approach is based
on the fact that at each stage of motion, both before and after
tunneling, the energy of the system is localized on one of
the oscillators, while the energy of the second one is small
enough. This inherent property allows us to use an iterative
procedure earlier developed for quasilinear systems [10]. The
initial iteration expressed through the Fresnel integral formally
explains the convergence of energy to a certain limiting
value, while the successive iterations improve the accuracy
of the approximate solution. In addition to the description of
the transient processes, the explicit approximation allows the
analytical calculation of the change of energy in tunneling.
Numerical results show that even the main approximation
provides an adequate representation of the transient processes.

Section V presents an approximate analysis of energy
transfer in the strongly nonlinear system under slow driving.
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Details of this analysis are provided in Appendix. A special
case of the rapid irreversible energy transfer in the strongly
nonlinear system with slow time-dependent parameters is also
investigated.

II. STATIONARY MODEL

In this part of the paper, the dynamics of two weakly
coupled nonlinear oscillators with constant parameters is
examined in detail. Although the dynamics of the conservative
systems was investigated earlier, e.g., in [18–22], here we
analyze the dynamical transitions in more detail with the
aim of highlighting different types of the nonlinear behavior
manifested in both classical and quantum systems and finding
the sets of the parameters corresponding to quasilinear,
moderately nonlinear, and strongly nonlinear types of the
dynamical behavior.

The classical model of two weakly coupled oscillators is
presented in Fig. 1. We denote by m the equal masses of the
oscillators; c1 and c2 denote the coefficients of linear stiffness
of the corresponding oscillators, c denotes the coefficient of
cubic nonlinearity, and c12 denotes the stiffness of the linear
coupling.

The equations of motion are given by

m
d2u1

dt2
+ c1u1 + cu3

1 + c12(u1 − u2) = 0,

(2.1)

m
d2u2

dt2
+ c2u2 + cu3

2 + c12(u2 − u1) = 0.

where u1 and u2 are the absolute displacements of the first and
second oscillators, respectively (Fig. 1). The small parameter
ε is defined through the relative stiffness of weak coupling:
c12/c1 = 2ε � 1. Assuming weak nonlinearity and taking into
account resonance properties of the system, we redefine the
parameters as follows:

c1/m = ω2
0, c2/m = ω2

0(1 + 2εg), τ0 = ω0t,
(2.2)

c/c1 = 8εα, c12/cr = 2ελr, r = 1, 2,

where a constant parameter g is chosen to ensure the desired
dynamics of the originally symmetric (c1 = c2) system. It
follows from (2.2) that λ1 = 1, λ2 = (1 + 2εg)−1.

Transforming Eqs. (2.1) to the dimensionless form and sav-
ing the notations u1,2 and α for corresponding dimensionless
quantities, we obtain the following system (the terms of order
higher than ε are ignored):

d2u1

dτ 2
0

+ u1 + 2ε(u1 − u2) + 8εαu3
1 = 0,

(2.3)
d2u2

dτ 2
0

+ (1 + 2εg)u2 + 2ε(u2 − u1) + 8εαu3
2 = 0.

c1 c2

m m
c12

c c
u1 u2

FIG. 1. Nonlinear weakly coupled oscillators.

System (2.3) is assumed to be initially at rest, with the
initial unit impulse v1 = 1 applied to the first oscillator. The
corresponding initial conditions are given by

τ0 = 0, u1 = u2 = 0;
(2.4)

v1 = du1/dτ0 = 1, v2 = du2/dτ0 = 0.

If the initial impulse v2 = 1 is applied to the second oscillator
but the first one is initially at rest, then the initial conditions
are written as

τ0 = 0, u1 = u2 = 0;
(2.5)

v1 = du1/dτ0 = 0, v2 = du2/dτ0 = 1.

Initial conditions (2.5) determine the limiting phase trajectory
(LPT). The LPT concept for symmetric systems (g = 0) was
introduced by one of the authors [20] and then used in various
applications [21]. A more detailed discussion of the LPT
properties in asymmetric systems (g �= 0) is given below.

An asymptotic solution of system (2.3) for small ε is sought
in the form of the multiple-scale expansion [23]. Changing to
complex variables,

fr = (vr + iur )e−iτ0 , f ∗
r = (vr − iur )eiτ0 , r = 1, 2, (2.6)

where the functions fr and their time derivative are sought as

fr (τ0, τ1, · · ·) = fr0(τ0, τ1, · · ·) + εfr1(τ0, τ1, · · ·) + O(ε2),
dfr

dτ0
= ∂fr

∂τ0
+ ε

∂fr

∂τ1
+ O(ε2), τ1 = ετ0, (2.7)

and then reproducing the transformations of [20,21] we find
that

f10(τ1) = a(τ1)eiτ1 , f20(τ1) = b(τ1)e−iτ1 , (2.8)

where the envelopes a(τ1) and b(τ1) satisfy the equations

da

dτ1
+ ib − 3iα|a|2a = 0,

(2.9)
db

dτ1
+ ia − 3iα|b|2b − 2igb = 0.

It follows from (2.4)–(2.8) that the initial conditions take the
form a(0) = 1, b(0) = 0 if the first oscillator is excited but
the second one is initially at rest; in the opposite case, when
the second oscillator is excited but the first one is initially at
rest, the initial conditions are written as a(0) = 0, b(0) = 1.
It is easy to prove that system (2.9) conserves the integral
|a|2 + |b|2 = 1.

It is important to note that Eqs. (2.9) are identical to the
equations of the two-state atomic tunneling [18], thereby
confirming a mathematical analogy between quantum and
classical transitions.

Once the solution a(τ1), b(τ1) is found, the leading-order
approximations ur0 and vr0(r = 1,2) can be calculated by (2.6)
and (2.8). As a result, we obtain

u10(τ0, τ1) = |a(τ1)| sin[τ0 + γ1(τ1)],

v10(τ0, τ1) = |a(τ1)| cos[τ0 + γ1(τ1)],
(2.10)

u20(τ0, τ1) = |b(τ1)| sin[τ0 + γ2(τ1)],

v20(τ0, τ1) = |b(τ1)| cos[τ0 + γ2(τ1)],
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where γ1(τ1) = τ1 + arg a(τ1), γ2(τ1) = τ1 + arg b(τ1). The
well-known estimate of the discrepancy between the precise
solution of Eq. (2.3) and its approximation (2.10) is of
O(ε) in the time interval τ0 ∼ O(1/ε) (see, e.g., [23,24]).
However, a refined analysis has shown that the interval
of convergence depends on the properties of approximate
solutions (see, e.g., [24]). Moreover, relatively large values
of ε used in particular problems do not necessarily imply that
the derived analytical approximations will be poor at larger
times (numerical examples can be found, e.g., in [6]). The
accuracy of approximations should be additionally verified by
numerical simulations.

The polar representation a = cos θeiδ1 , b = sin θeiδ2 , � =
δ1 − δ2, reduces system (2.9) to the real-valued equations

dθ

dτ1
= sin �,

(2.11)

sin 2θ
d�

dτ1
= 2(cos � + 2k sin 2θ ) cos 2θ − 2g sin 2θ,

where k = 3α/4. The initial conditions for system (2.11) are
chosen as θ = 0, � = π/2 (the first oscillator is excited but
the second one is initially at rest) or θ = π/2, � = π/2 (the
second oscillator is excited but the first one is at rest). Both
conditions correspond to the LPTs of system (2.11).

It should be mentioned that system (2.11) is 2π − periodic
in �, and the phase portrait in the interval −π � � � π is
then reproduced in the interval ±π � � � ±3π , etc. Then,
it is important to note that system (2.11) is integrable and
conserves the integral of motion,

K = (cos � + k sin 2θ ) sin 2θ + g cos 2θ, (2.12)

whose properties are made in use in the dynamical analysis.
The first step in the dynamical analysis is to define the steady
states of system (2.11). The first condition of stationarity
dθ/dτ1 = 0 yields sin � = 0; this implies that all steady states
lie on the vertical axes �1 = 0 and �2 = π (Figs. 2–5).

The second condition, d�/dτ1 = 0, implies that the corre-
sponding values of θ are given by

(±1 + 2k sin 2θ ) cot 2θ = g, (2.13)

where the signs “+” and “−” correspond to � = 0 and � = π ,
respectively.

If k � 0.5, then there exists a unique solution of Eq. (2.13)
on each of the axes � = 0 and � = π . It was recently shown
[10] that the solution of the nonlinear system is close to that

of the linear system. The proximity of the solutions allows
us to consider the systems with nonlinearity 0 � k � 0.5 as
quasilinear. Since the energy transfer in quasilinear systems
was examined in our preceding work [10], in this paper we
focus on the analysis of systems with k > 0.5.

As seen in Figs. 2–5, if k > 0.5, then there exists a certain
g∗ such that the system possesses three stationary points
on the axis � = π for |g| < |g∗| but it has a single point
for |g| � |g∗|. Referring to Eq. (2.13), we denote F (θ ) =
(−1 + 2k sin 2θ )ctg2θ , θT = arg{max F (θ )}, θ ∈ [0,π/2]. It
is obvious that two stationary points coalesce if F (θT ) = g∗.
The maximum condition dF/dθ = 0 at θ = θT shows that the
point of coalescence of two stationary states θT and the critical
parameter g∗ are given by

sin 2θT = (2k)−1/3, g∗ = ±[(2k)2/3 − 1]3/2. (2.14)

Therefore, the inequalities

k > 0.5, |g| < |g∗| (2.15)

determine the domain of existence of four stationary states.
Note that the parameter g∗ coincides with the critical parameter
γc reported without proof in [13] (in different notations).

As shown below, the system with four stationary states
exhibits two different types of motion. First, we consider the
system with k = 0.65. It is easy to deduce from (2.11) that
the change of the sign of the parameter g → −g entails the
following change of the solution: θ → π − θ , � → 2π − �.
This allows the construction of the phase portraits only for g �
0 (Fig. 2). Bold lines in Fig. 2 depict the LPT of system (2.11);
dotted lines correspond to the homoclinic separatrix. It is seen
that with an increase of g the lower homoclinic loop vanishes
through the coalescence of the stable and unstable states,
and the number of the stationary states changes from four
to two. The corresponding critical value g∗ = 0.083 coincides
with the theoretical value given by formula (2.14). It is easy
to find that the number of the stationary points changes from
two to four at g∗ = −0.083.

Figure 2(a) illustrates the complete energy exchange
between the symmetric oscillators (g = 0), i.e., the upper
level θ = π/2 is reached during the cycle of motion along
the LPT starting at θ = 0. Motion along the closed orbits
within the domain encircled by the LPT obviously provides
less extensive energy exchange than motion along the LPT.
Vanishing of the homoclinic separatrix and the emergence of
a new closed orbit of finite period [dotted line in Fig. 2(c)]

-2 0 2 4
0

0.5

1

1.5

θ

-2 0 2 4

Δ
-2 0 2 4

(a) (b) (cc)

FIG. 2. (Color online) Phase portraits for k = 0.65. (a)–(c) g = 0, 0.075, and 0.083 correspondingly.
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FIG. 3. (Color online) Phase portraits for k = 0.9. (a)–(f) g = −0.33, −0.2, −0.0945, 0, 0.0945, and 0.33, correspondingly.

characterizes moderately nonlinear systems. In these systems
the localization of energy near the lower center changes to
the localization near the upper center. This phenomenon,
responsible for the occurrence of nonlinear tunneling in the
slowly time-dependent systems [12,13], underlies the study of
transient processes in Sec. IV.

From Fig. 3, it is seen that the system with k = 0.9 exhibits
a more complicated dynamical behavior. For clarity, the phase
portraits for both g < 0 and g > 0 are shown; bold lines
correspond to the LPTs; dash-dotted lines in Figs. 3(c) and
3(e) depict the homoclinic separatrix coinciding with the LPT;
edges of the dashed “beaks” in Figs. 3(a) and 3(f) lie at the
points of annihilation of the stable and unstable states. The
change from two to four fixed points at g = −0.33 [Fig. 3(a)]
entails the emergence of a separatrix passing through the hy-
perbolic point that consists of the homoclinic and heteroclinic
branches [Fig. 3(b)] [by a heteroclinic separatrix in Fig. 3(b)
we understand a trajectory from the hyperbolic point on the
axis � = π to the hyperbolic point on the axis � = −π , which
separates closed and unbounded orbits]. At g = −0.0945, the

heteroclinic loop coincides with the LPT at θ = 0 [Fig. 3(c)].
Further increase of g leads to the occurrence of the homoclinic
separatrix [Fig. 3(d)] and then to the confluence of the
separatrix with the LPT at θ = π/2 for g = 0.0945 [Fig. 3(e)];
finally, the coalescence of the lower stable center with the
hyperbolic point results in the degeneration of the separatrix
and the change from four to two fixed points [Fig. 3(f)]. The
numerical value |g∗| = 0.33 is coincident with the results of
calculation by formula (2.14). Figure 3(d) illustrates complete
energy exchange in the symmetric system (g = 0) moving
along the LPT.

Figures 4 and 5 demonstrate the transformations of the
phase portraits for k = 1, g > 0 and k = 1.1, g > 0, respec-
tively. The phase portraits for g < 0 can be constructed by
symmetry.

The system featuring the confluence of the separatrix
with the LPT and the transition from energy localization
to energy exchange is referred to as a strongly nonlinear
system. The coalescence of the stable and unstable states
entails the emergence of a new unlocked orbit and an

-2 0 2 4
0

0.5

1

1.5

θ

-2 0 2 4

Δ

-2 0 2 4

FIG. 4. (Color online) Phase portraits for k = 1 and g = 0, 0.1, 0.45 (from left to right).
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θ

FIG. 5. (Color online) Phase portraits for k = 1.1 and g = 0.1, 0.45, 0.575 (from left to right).

associated transition from weak to strong energy exchange
(Figs. 3–5).

III. CRITICAL PARAMETERS

The existence of the transition from energy localization
near the stable state to energy exchange in the asymmetric
system was first investigated in [22] but an analytical boundary
between the dynamical domains was not derived. In this
section, we find analytical conditions that ensure the transition
from the energy localization on the excited oscillator to strong
energy exchange.

As noted previously, the system may be considered as
strongly nonlinear if its separatrix coincides with the LPT.
We find the prerequisites for the existence of such a trajectory.

Consider the integral of motion (2.12). The initial condition
θ = 0 yields K = g and, therefore,

(cos � + k sin 2θ ) sin 2θ − 2g sin2 θ = 0 (3.1)

on the LPT. It now follows from Eqs. (2.11) and (3.1) that

dθ/dτ1 = V = sin �; V = ±[1 − (k sin 2θ−g tan θ )2]1/2.

(3.2)

Using equality (3.1) to exclude �, we replace system (2.11)
by the second-order equation

d2θ

dτ 2
1

+ dU

dθ
= 0, (3.3)

with θ (0) = 0, V (0) = 1. The potential U (θ ) in (3.3) can
be found from the energy conservation law E = 1/2V 2 +
U (θ ) = 1. We thus obtain

U (θ ) = 1 − 1
2V 2 = 1

2 [1 + (k sin 2θ − g tan θ )2], (3.4)

and, therefore, the maximum value U (θ ) = 1 is attained at
V = 0. Potential U (θ ) and phase portraits for system (3.1)
with different coefficients k and g are shown in Fig. 6.
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FIG. 6. (Color online) Potential U (θ ) and phase portraits in the plane (θ,v) for system (3.1) at k = 0.65, k = 0.9 (from left to right in the
upper row) and k = 1, k = 1.1 (from left to right in the bottom row). The value of detuning is indicated on each curve; bold lines depict critical
potentials and corresponding separatrices confluent with the LPT at θ = 0.
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The sought separatrix may exist if and only if dU/dθ = 0
at θh ∈ (0,π/2), as in this case there exists a potential barrier
corresponding to the local maximum U (θh) and attained at
V = 0; the latter condition is equivalent to � = 0. This implies
that (θh, 0) is a hyperbolic point. It now follows from (3.4) that
the equality dU/dθ∗ = 0 is equivalent to

(k sin 2θh − g tan θh)(2k cos 2θh − g/ cos2 θh) = 0. (3.5)

It follows from (3.2) that

(k sin 2θh − g tan θh)2 = 1 at V = 0. (3.6)

Using (3.5) and (3.6), we reduce Eq. (3.5) to a simple
biquadratic equation for cos θh,

4k cos4 θh−2k cos2 θh−g = 0, cos2 θh = 1

4
±

√
1

16
+ g

4k
.

(3.7)

If g/k � 1/4, then cos2 θh ≈ 1/2 + g/2k, θh ≈ π/4 − g/2k.
Using this approximation, we obtain from Eq. (3.6) a simple
condition for the existence of the required separatrix:

|k − gh| = 1. (3.8)

It is easy to check that the theoretical threshold gh closely
agrees with the results of numerical calculations. In particular,
for k = 0.9 we have gh = −0.1, whereas the numerical
threshold g = −0.0945 (Fig. 3); for k = 1.1 we have g =
gh = 0.1 (Fig. 5).

In the same way, one can prove that if the initial condition
is taken at θ = π/2, then the condition (3.8) is turned into the
equality

|k + gh| = 1. (3.9)

If g < 0, then solution (3.7) exists provided |g| � k/4; in the
limiting case g = −k/4 we have cos θh = 1/2, θh = π/3, and
condition (3.6) becomes

3
√

3

4
k = 1, k∗ ≈ 0.77. (3.10)

The inequalities k � k∗, |g| � k/4 express the necessary
condition for the existence of the separatrix coinciding with
the LPT at θ = 0. Additionally, one needs to calculate the
argument θh from Eq. (3.7).

IV. TUNNELING IN MODERATELY
NONLINEAR SYSTEMS

In this section, we analyze energy transfer in a system of two
moderately nonlinear weakly coupled oscillators with slowly
varying parameters. It is well known that energy transfer in
a nonlinear system with adiabatically changed parameters is
divided into two stages, with each characterized by adiabatic
invariance but separated by an abrupt jump at a moment of
tunneling. Breaking of adiabaticity under slow driving has
been intensively studied over the last decades using various
approximations [11–16]. However, an explicit analytical de-
scription of the transient processes in nonstationary nonlinear
systems is prohibitively difficult, and the study of adiabatic
tunneling was mainly focused on the calculation of the jump
of the adiabatic invariant at tunneling. In this section we

investigate slow transient processes before and after tunneling.
The asymptotic analysis accounts for the fact that in the first
interval of motion most of the energy is localized on the excited
oscillator but the residual energy of the coupled oscillator is
small enough. After tunneling, localization of energy takes
place on the coupled oscillator but the energy of the initially
excited oscillator becomes small. An introduction of a small
parameter characterizing a relative energy level allows an
explicit asymptotic solution.

As in Sec. II, we consider a system of two weakly
coupled oscillators. We assume here that linear stiffness of
the second oscillator is a slow function of time, namely
c2(τ2) = c1[1 + 2εg(τ2)], where g(τ2) = g0 + g1τ2, τ2 = ετ1.
Reproducing the transformations (2.2)–(2.7), we reduce the
equations for the slow envelopes to the form similar to (2.9)
but involving the time-dependent detuning g(τ2),

da

dτ1
+ ib − 3iα|a|2a = 0,

db

dτ1
+ ia − 3ia|b|2b − 2ig(τ2)b = 0, (4.1)

a(0) = 1, b(0) = 0.

Equations (4.1) are obviously identical to the nonlinear
analog of the LZ equations of quantum tunneling [12,13]. It is
easy to prove that the conservation law |a|2 + |b|2 = 1 holds
true for system (4.1) despite its nonstationarity. The change
of variables a = cos θeiδ1 , b = sin θeiδ2 , � = δ1 − δ1 reduces
system (4.1) to the equations similar to (2.11):

dθ

dτ1
= sin �,

sin 2θ
d�

dτ1
= 2(cos � + 2k sin 2θ ) cos 2θ − 2g(τ2) sin 2θ,

θ (0) = 0, �(0) = π/2. (4.2)

Figure 7 depicts the dynamical behavior of system (4.2) with
k = 0.65, g0 = −0.5, εg1 = 0.001 on the interval 0 � τ1 �
1000.

The phase portrait of system (4.2) and the plots of |a|2 and
|b|2 clearly demonstrate the occurrence of adiabatic tunneling
at T ≈ 585. The corresponding value of critical detuning g =
0.085 is close to the theoretical value g∗ ≈ 0.083. Note that the
parameters of numerical simulations are chosen for illustrative
purposes but the qualitative features of the results hold true for
a wide range of parameters.

First we analyze the dynamical behavior in the interval
S1 : 0 � τ1 < T before tunneling. To this end, we employ the
change of variables and rescaling of the parameters similar to
that described in [15]. The change of variables,

 = |b|ei� = | sin θ |ei�, ∗ = |b|e−i� = | sin θ |e−i�,

(4.3)
|| = |b|,

reduces system (4.2) to a single complex-valued equation,

d

dτ1
= 4i

[
1 − 1

2 (2 + 2||2)√
1 − ||2

+ 2ω(τ2) − 8k||2
]
,

(4.4)
(0) = 0,
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FIG. 7. (Color online) (a) Phase portrait in the plane (θ,V = dθ/dτ1). (b) Plots of |a|2 [blue (dark gray)] and |b|2 [light blue (light gray)]
in the interval 0 � τ1 � 1000.

where ω(τ2) = 2k − g(τ2) = ω0 − g1τ2, ω0 = 2k − g0. It is
important to note that the frequency ω(τ2) directly depends on
the coefficient k, thereby reflecting the effect of nonlinearity
even in the linear approximation of Eq. (4.4).

Using the condition |b| = || � 1 in S1 [Fig. 7(b)], we
define the variable ψ = ε−1/2 and introduce a proper time
scale s = ε−1/2τ1. Then, direct estimation shows that the
coefficients of Eq. (4.4) allow rescaling 8k = ε−1/2κ , 2ω0 =
ε−1/2w0, where the parameters κ and w0 are of O(1). Finally,
we denote ε3/2g1 = β2/4 keeping in mind that β � 1. When
we substitute the variable ψ and the rescaled coefficients into
Eq. (4.4) and ignore the terms of order higher than ε, we obtain
the equation

dψ

ds
= 4i

[
w(s)ψ + 1 − 1

2
ε(ψ2 + |ψ |2) − κεψ |ψ |2

]
,

(4.5)
ψ(0) = 0,

where w(s) = w0 − β2s/2. Thus we get a quasilinear equa-
tion, and the earlier developed iteration procedure [10] can
be used to construct an approximate solution. Following [10],
the initial iteration ψ0(s) is chosen as a solution of the linear
equation

dψ0

ds
= 4i[w(s)ψ0 + 1], ψ0(0) = 0,

ψ0(s) = 4ieiφ(s)�(s), �(s) =
∫ s

0
e−iφ(z)dz, (4.6)

φ(s) = w0s − (βs)2.

Simple algebra shows that

ψ0(s) = 4iβ−1ei(φ(s)−α2)F (s), (4.7)

where h(s) = βs − α, α = w0/β, and

F (s) =
∫ h(s)

−α

eih2
dh = {C[h(s)] + C(α)} + i{S[h(s)] + S(α)}.

Here F (s) is the complex-valued Fresnel integral, C(h) and
S(h) are the cos- and sin-Fresnel integrals, respectively. If ψ0 is
found, the main approximation to the function |b| is calculated

as |b0| = ε1/2|ψ0|. Note that the parameter w0 depends on
the coefficient of nonlinearity k, and thus, the behavior of the
solution ψ0(s) is conditioned by the value of k.

As in [10], the first iteration ψ1 should be found from the
“linearized” equation

dψ1

ds
= 4i

{
[w(s) − εκ|ψ0(s)|2]ψ1

− e

[
1

2
ψ2

0 (s) + |ψ0(s)|2
]

+ 1

}
, ψ1(0) = 0, (4.8)

which yields the solution

ψ1(s) = ψ0(s) + 4ieiϕ(s)�1(s),

ϕ(s) = φ(s) − εκ

∫ s

0
|ψ0(z)|2dz,

(4.9)

�1(s) =
∫ s

0
e−iϕ(z)dz − ε

∫ s

0
e−iϕ(z)R(z)dz,

R(z) = 1
2ψ2

0 (z) + |ψ0(z)|2.

Once the solution ψ1 is derived, the first iteration to the
function |b| is calculated as |b1| = ε1/2|ψ1|. The exact solution
|b(τ1)|2 and the iterations |b0(τ1)|2 and |b1(τ1)|2 are presented
in Fig. 8.

Figure 8(a) clearly indicates that in the first half of the
interval S1 the maximum difference between the exact solution
and the linear approximation is less than 15%. Increased
divergence in the second part of S1 is due to the different
behavior of the exact and approximate solutions near the point
of transition: While the exact solution undergoes a sudden
increase at an instant of tunneling, the linear approximation
tends to a certain limiting value.

The dynamical behavior in the interval S2 : τ1 > T is stud-
ied in a similar way. Given |a| � 1, the variables analogous
to (4.3) are introduced:

Z = −|a|ei� = −| cos θ |ei�,
(4.10)

Z∗ = −|a|e−i� = −| cos θ |e−i�, |Z| = |a|.
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FIG. 8. (Color online) Exact and approximate solutions before and after tunneling: (a) Plots of the exact solution |b|2 [red (dark gray)
dashed lines] and the iterations |b0|2 (light gray) and |b1|2 (black) in the interval S1; (b) plots of the exact solution |a|2 [red (dark gray) dashed
lines] and the iterations |a0|2 (light gray) in the interval S2.

Transformations of the same sort that led to Eqs. (4.4) yield
the following equation for Z:

dZ

dτ1
= 4i

[
2ω1(τ2)Z − 1+1

2
(Z2 + |Z|2) − 8κZ|Z|2

]
,

Z(T ) = p0, (4.11)

with ω1(τ2) = 2k + g(τ2) = ω10 + g1τ2, ω10 = 2k + g0. As
shown in Sec. II, the initial condition for Eq. (4.11) at τ1 = T

should be defined from the condition of coalescence of the
stable and unstable points. This means that the quantity θ (T ) =
θT [see (2.14)] determines the initial condition |a(T )| =
| cos θT | = p0.

Given |Z| � 1 in S2, we introduce the transformations

Z = ε1/2z, τ1 = ε1/2s, 8k = ε−1/2k, 2ω10 = e−1/2w10,

and denote ε3/2g1 = β2/4, ε−1/2T = s0, ε1/2p0 = p10. Substi-
tuting the rescaled quantities into Eq. (4.11) and ignoring the
higher-order terms, we obtain the quasilinear equation similar
to (4.5),

dz

ds
= 4i

[
w1(s)z − 1 + 1

2
ε(z2 + 2|z|2) − εkz|z|2

]
,

z(s0) = p10, (4.12)

where w1(s) = w10 + β2s/2 is an adiabatically increasing
parameter. The initial iteration z0(s) is sought as a solution
of the linear equation

dz0

ds
= 4i[w1(s)z0 − 1], z0(s0) = p10,

(4.13)

z0(s) = [p1 − 4i�(s)]eiδ(s), �(s) =
∫ s

0
e−iδ(r)dr.

where δ(r) = 4[w10r + (βr)2]. Using the representa-
tion δ(r) = h2

1(r) − α2
1, h1(r) = 2βr + α1, α1 = w10/β, we

rewrite �(s) as

�(s) = eiα2
1 F1(s)/2β,

F1(s) =
∫ h1(s)

α1

e−ih2
dh = {C[h1(s)] − C(α1)}

− i{S[h1(s)] − S(α1)}, (4.14)

where F1(s) is the complex-valued Fresnel integral. Applying
the inverse rescaling, we get the initial iteration to |a| as |ā0| =
ε1/2|z0|. As seen in Fig. 8(b), the plot of |a0(τ1)|2 is close to
|a(τ1)|2.

Now we calculate the stationary state |ā0|. If s → ∞ and,
therefore, h1(s) → ∞, then the cos- and sin-Fresnel integrals
are approximated as [25]

C [h1(s)] → 1

2

√
π

2
, S[h1(s)] → 1

2

√
π

2
. (4.15)

Since α1 = w10/β � 1 for β � 1, the terms C(α1) and
S(α1) in (4.14) allow the approximation

C(α1) ≈ 1

2

(√
π

2
+ sin α2

1

α1

)
+ O

(
1

α2
1

)
,

(4.16)

S(α1) ≈ 1

2

(√
π

2
− cos α2

1

α1

)
+ O

(
1

α2
1

)
.

Combining (4.14)–(4.16), we obtain that F1(s) →
ie

−iα2
1 /2α1, �(s) → i/4w10, z0(s) → (p10 + 1/w10)eiδ(s),

and therefore, |z0(s)| → z̄0 = |p1 + 1/w10| as s → ∞. Fi-
nally, we obtain

|ā0| = ε1/2z̄0 = |p0 + 1/ω10| . (4.17)

The resulting nonzero limiting value of |ā0| implies the
existence of the residual energy depending on the initial
condition p0. Given k = 0.65, g0 = −0.5, we obtain |ā0| =
0.445. It follows from (4.17) that in the interval S2 : τ1 > T

the quantity e2 tends to the limiting value ē2 = |b̄0|2/2 = (1 −
|ā0|2)/2 = 0.401 as τ1 → ∞. The quantity ē2 characterizes
the amount of energy transferred from the excited oscillator
with initial energy e10 = 1/2 to the coupled oscillator being
initially at rest.
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FIG. 9. (Color online) Transient processes in the interval 0 �
τ1 � 1200.

V. TUNNELING IN STRONGLY NONLINEAR SYSTEMS

A. Adiabatic transitions

The analysis of strongly nonlinear systems with constant
detuning (Sec. II) demonstrates that the change of detuning
g may result in a transition from weak to strong energy
exchange (Figs. 3–5). In this section we extend this conclusion
to strongly nonlinear systems with slowly varying detuning.

Figure 9 demonstrates the evolution of the coordinate θ for
system (4.2) with the parameters k = 0.9, g0 = −0.25, εg1 =
0.001. The phenomenon of energy localization is observed
in the initial interval S1 : 0 � τ1 < T . After tunneling, in
the interval S2 : T � τ1 < T ∗, energy localization changes to
intense exchange; in the interval S3 : τ1 > T ∗, a new transition
to localization is observed. Note that tunneling occurs at the
value of T = 580 that corresponds to g = 0.33; this value
of g coincides with the result obtained for the stationary
system (Fig. 3) as well as with the result of the calculation by
formula (2.14).

The adiabatic convergence to the transition point at the
first stage of motion can be examined using the techniques
of Sec. IV. In the current section, we analyze the dynamical
behavior at the second stage S2 : T < τ1 < T ∗, where varia-
tions of θ (τ1) are large enough, and the asymptotic approach
of Sec. IV is inapplicable. We note that the local minima
and maxima of θ lie on the slowly varying envelopes Q−(τ2)
and Q+(τ2), respectively. The stroboscopic method (see
Appendix) leads to the following nonlinear equations for the
envelopes:

2[cos 2Q− + k sin 4Q− − g(τ2) sin 2Q−]
dQ−

dτ1

= εg1
(
cos 2Q+ − cos 2Q−)

,
(5.1)

2[− cos 2Q+ + k sin 4Q− − g(τ2) sin 2Q+]
dQ+

dτ1

= εg1(cos 2Q− − cos 2Q+),

with initial conditions Q− = θ−
0 , Q+ = θ+

0 at τ1 = T . The
point θ−

0 is defined as a point of coalescence of the stable and

600 700 800 900
0

0.5

1

1.5

τ
1

θ

Q-

Q+

FIG. 10. (Color online) Plot of θ (τ1) in the interval S2; black
dashed lines depict the envelopes (5.2).

unstable states at the moment of tunneling; the point θ+
0 may

be calculated by Eq. (A4) in which Gn = G0 = g0 + εg1T .
Given that the quantities |Q−| and |π/2 − Q+| are small

enough (Fig. 10), the initial approximation can be chosen as
Q−

0 = 0, Q+
0 = π/2. Linearization of Eq. (5.1) near Q−

0 , Q+
0

yields the first approximation:

Q±
1 (τ1) = θ±

0 − εg1 (τ1 − T ) . (5.2)

Figure 10 demonstrates a good agreement between the ap-
proximation (5.2) and the precise (numerical) solution in the
interval S2.

B. Rapid transitions

As noted previously, the adiabatic tunneling requires a very
long time for reaching the transition point from the initial
state. Here we demonstrate an alternative scenario of rapid
tunneling, which may occur in the presence of the homoclinic
separatrix coinciding with the LPT (Fig. 11).

Figures 11(a) and 11(c) show that the transition of the
trajectory starting at θ = 0 to the upper level near θ = π/2 is
due to the passage through the separatrix in a neighborhood
of the saddle point. The time interval from the initial time
instant to transition is small, and, therefore, in this interval
the change of detuning in each cycle of oscillations as well
as deviations of the bottom points from θ = 0 can be
ignored. By the same reason, deviations of the top points
from θ = π/2 remain negligible in the interval S2 (in the first
approximation).

We now evaluate extrema of θ (τ1) in each cycle
of motion. One can derive from (2.11) that V (θ ) =
±[1 − (k sin 2θ − g tan θ )2]1/2 on the lower branch of the
LPT and V (θ ) = ±[1 − (k sin 2θ + g cot θ )2]1/2 on the up-
per branch (the argument τ2 is omitted). The extrema
θ∗ of the function θ (τ1) obey the condition V (θ ) = 0,
yielding

k sin 2θ − g tan θ = 1 on the lower branch of LPT,
(5.3)

k sin 2θ + g cot θ = 1 on the upper branch of LPT
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FIG. 11. (Color online) Phase portraits (left column) and plots of |a|2 and |b|2 in course of rapid tunneling with detuning g(τ1) =
−0.1 + 0.0015τ1 (upper panel) and g(τ1) = −0.15 + 0.0015τ1 (lower panel). Bold (light gray) lines in the left column depict the separatrix of
the system with critical detuning g∗ = −0.1; bold red (black) dashed line R depicts the approximate envelope of |b(τ1)|2 [see Eq. (5.3)].

Since θ∗ = π/4 + q, |q| < 1, expressions (5.3) can be
transformed into the linear equations

k − g(1 + 2q) = 1, q = 1/2[(k − 1)/(g − 1)]

on the lower branch of LPT,
(5.4)

k + g(1 − 2q) = 1, q = 1/2[1 − (1 − k)/g]

on the upper branch of LPT.

The insertion of the time-dependent detuning g(τ2) into (5.4)
provides an adiabatic approximation of the slowly varying
envelopes of the function θ . Figure 11(d)) shows the approx-
imation R(τ1) of the lower envelope of the process |b|2 =
sin2 θ in the system with parameters k = 0.9, g0 = −0.15,
εg1 = 0.0015. It is obvious that the theoretical approximation
is close to the result of numerical calculations. The upper
envelope is approximated as θ = π/2, |b| = 1.

VI. CONCLUSIONS

In this paper we studied an effect of slowly varying
parameters on the energy transfer between weakly coupled
nonlinear oscillators. For definiteness, we considered a system
of two nonlinear oscillators, in which the oscillator with con-
stant parameters is connected with the slowly time-dependent

oscillator. Motion is excited by an initial impulse applied to
the time-independent oscillator.

The preliminary examination of the conservative system
displayed three types of the energy transfer, namely, quasi-
linear, moderately nonlinearity, and strongly nonlinear ones.
The specifics of the ensembles of trajectories corresponding
to each type of motion were discussed. In particular, it was
shown that the dynamical transitions are closely related to the
behavior of the so-called limiting phase trajectory (LPT). The
relationships between the parameters determining each type
of the dynamical behavior were found.

In the second part of the paper we demonstrated the
mathematical equivalence of the equations describing the
slow passage through resonance in the classical system with
slowly varying parameters with the equations of nonlinear LZ
tunneling. It was noted that the well-known LZ tunneling is
typical for moderately nonlinear systems, while strongly non-
linear systems can exhibit both the transition from the energy
localization to intense energy exchange (with a large inductive
period) as well as the rapid passage through the separatrix. An
analytical description of the transient processes was achieved
through a set of approximations. Correctness of the constructed
approximations was confirmed by numerical simulations.

The revealed mathematical equivalence suggests a unified
approach to the study of such physically different processes
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as energy transfer in classical oscillatory systems under slow
driving and nonlinear quantum LZ tunneling. Furthermore,
this analogy paves the way for a simple mechanical simulation
of complicated quantum effects.
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APPENDIX

Here we derive Eqs. (5.1). Using the stroboscopic method
[24], we approximate a smooth function g(τ2) by its step
approximation,

G(τ2) =
N∑

n=0

Gn [η (Tn+1 − τ2) − η (Tn − τ2)] , (A1)

where Gn = g(Tn), Tn corresponds to a time instant at which
the function θ achieves its nth extremum θn; a corresponding
value of the phase � is given by �n = πn. It now follows from
(A1) that G(τ2) = Gn in each interval In : Tn � τ2 < Tn+1.
The step approximation allows one to replace Eqs. (4.2) by the
system with constant detuning in each interval In, namely,

dθ

dτ1
= sin �,

d�

dτ1
= 2(cos � + 2k sin 2θ ) cot 2θ − 2Gn.

(A2)

By analogy with (2.12), one can conclude that in each
interval In system (A2) preserves the first integral of motion,

Kn = (cos � + k sin 2θ ) sin 2θ + Gn cos 2θ. (A3)

The parameter Kn on both ends of the interval In, namely at
θn = θ (Tn), �n = πn and θn+1 = θ (Tn+1), �n+1 = π (n + 1),
is expressed as

Kn = [(−1)n + k sin 2θn] sin 2θn + Gn cos 2θn = n(θn),

Kn = [(−1)n+1 + k sin 2θn+1] sin 2θn+1 + Gn cos 2θn+1

= �n(θn+1), (A4)

so that n(θn) = �n(θn+1). Here and below the functions n

and �n are defined at the left and right ends of the interval In,
respectively. In the interval In+1 : Tn+1 � τ2 < Tn+2 system
(A2) preserves the integral

Kn+1 = (cos � + k sin 2θ ) sin 2θ + Gn+1 cos 2θ, (A5)

such that

Kn+1 = [(−1)n+1 + k sin 2θn+1] sin 2θn+1 + Gn+1 cos 2θn+1

= n+1(θn+1),

Kn+1 = [(−1)n + k sin 2θn+2] sin 2θn+2 + Gn+1 cos 2θn+2

= �n+1(θn+2), (A6)

where n+1(θn+1) = �n+1(θn+2) and θn+1 and θn+2 are the
initial and end points of In+1, corresponding to � = π (n + 1)
and π (n + 2), respectively. The quantities Kn+r for any r >

1 may be expressed in a similar way. It now follows from
(A4)–(A6) that

Kn+1 − Kn = �n+1(θn+2) − n(θn)

= n+1(θn+1) − �n(θn+1). (A7)

Let θn+2 − θn = δθn, Gn+1 − Gn = δGn. Substituting
(A4)–(A6) into (A7) and considering only the terms linear
in δθn, δGn, we obtain the difference approximations,

2[(−1)n cos 2θn + k sin 4θn − Gn sin 2θn]δθn

= (cos 2θn+1 − cos 2θn)δGn. (A8)

In the same way, a comparison of the integrals Kn+2 and
Kn+1 in the intervals In+2 and In+1 yields the following
difference equation:

2[(−1)n+1 cos 2θn+1 + k sin 4θn+1 − Gn+1 sin 2θn+1]δθn+1

= (cos 2θn+2 − cos 2θn+1)δGn+1. (A9)

For definiteness, we suppose that points θn and θn+1

coincide with a local minimum and a consequent maximum of
θ (τ1), respectively; that is, n = 2k. Since the local minima and
maxima of θ (τ1) lie on the slowly varying envelopes Q−(τ2)
and Q+(τ2), in the limit of small differences, Eqs. (A8) and
(A9) can be replaced by the following system of differential
equations for the slowly varying envelopes:

2[cos 2Q− + k sin 4Q− − g(τ2) sin 2Q−]
dQ−

dτ1

= εg1(cos 2Q+ − cos 2Q−),
(A10)

2[− cos 2Q+ + k sin 4Q+ − g(τ2) sin 2Q+]
dQ+

dτ1

= εg1(cos 2Q− − cos 2Q+),

with initial conditions Q− = θ−
0 , Q+ = θ+

0 at τ1 = T . The
point θ−

0 is defined as a point of coalescence of the stable and
unstable states at the moment of tunneling; the point θ+

0 may
be calculated by Eq. (A4) in which Gn = G0 = g0 + εg1T .
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