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Identifying changes in the parameters of a dynamical system can be vital in many diagnostic and sensing
applications. Sensitivity vector fields (SVFs) are one way of identifying such parametric variations by quantifying
their effects on the morphology of a dynamical system’s attractor. In many cases, SVFs are a more effective means
of identification than commonly employed modal methods. Previously, it has only been possible to construct
SVFs for a given dynamical system when a full set of state variables is available. This severely restricts SVF
applicability because it may be cost prohibitive, or even impossible, to measure the entire state in high-dimensional
systems. Thus, the focus of this paper is constructing SVFs with only partial knowledge of the state by using
time-delay coordinate embeddings. Local models are employed in which the embedded states of a neighborhood
are weighted in a way referred to as embedded point cloud averaging. Application of the presented methodology
to both simulated and experimental time series demonstrates its utility and reliability.
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I. INTRODUCTION

Change in the dynamic response of a system indicates
that its parameters have changed in some way. Thus, by
monitoring a system’s dynamic response it is often possible
to identify and characterize any parametric variations the
system undergoes. Knowing about parametric variations can
be valuable in diagnostic or sensing applications, particularly
when identifying incipient changes is paramount, as is in cases
of damage detection.

Vibration-based modal methods [1] have been the tra-
ditional means of identifying parametric variations via the
dynamic response. These methods rely on relating measured
changes in modal parameters, such as resonant frequencies
or mode shapes, to underlying variations in the parameters.
Frequently employed in mechanical systems, modal methods
are the basis of both dynamic atomic force microscopy
(dAFM) and microcantilever based sensing. For these systems,
accurate measurements of frequency shifts of vibrating micro-
cantilevers are the basis of successful devices [2–4]. Continued
efforts to improve these and related technologies attest to the
general effectiveness of modal methods.

Under certain circumstances, however, modal methods can
be less effective. For example, when a system is significantly
nonlinear, when it has a low quality factor, or when multiple
simultaneous parametric variations need to be distinguished
from one another, other methods may be preferable. A specific
alternative championed here is based on sensitivity vector
fields (SVFs) [5–7], which quantify how dynamical system
attractors deform under parametric variations. Because a
SVF consists of a field of vectors distributed in state space,
it can be successful even when a frequency-shift method
would fail. To date, SVFs have been used in conjunction
with a variety of dynamical systems [8] and have proven to
be an effective method of identifying parametric variations.
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Carefully designed nonlinear feedback can further adjust a
system’s sensitivity to the parametric variations of interest.

Although SVFs have been successfully employed in con-
junction with data from both simulations and experiments [9],
previous SVF research has been limited to systems where a
full set of state variables is accessible. In all but the simplest
real systems, this kind of complete access is impossible. For
some systems, measuring certain dynamical variables may be
difficult. For others, it may be cost prohibitive to measure
the full state because the system has a large dimension.
For these kinds of systems, it is typical to have records of
only a few state variables in the form of one or more time
series; a time series being a sequence of scalar data points
measured at successive times. So long as the system has a
low-dimensional attractor, further analysis is feasible. Previous
research concerned with methods of reconstructing dynamical
system attractors when only time series data are available has
shown reconstruction is possible using an embedding. The
most common form is a time-delay coordinate embedding,
in which the embedded vectors are composed of individual
time series observations separated by a fixed delay time. The
mathematical basis of time-delay coordinate embedding has
been rigorously established [10–13] and several texts [14,15]
illustrate methods for performing such reconstructions.

The focus of this work is creating SVFs within the
reconstructed state space established by a time-delay coor-
dinate embedding of time series data. Specifically, for an
initial condition in the reconstructed space, it is necessary
to determine two future embedded states: one for the system
retaining the nominal set of parameters, and a second for the
system having some parametric variation(s). The difference
between these two future states is defined as an embedded
sensitivity vector (eSV). A collection of eSVs across the entire
attractor is an embedded sensitivity vector field (eSVF). Thus,
the fundamental problem involved in constructing eSVFs
is one of prediction. Making predictions using embedded
nonlinear time series is an established research area, and we
draw on the previous body of work [16–19]. Typically, we
choose initial conditions that are on the nominal attractor so
that only the future state of the varied system needs to be
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predicted. Making a good prediction then requires gathering
neighborhoods of states for the varied system surrounding a
given initial condition belonging to the nominal system and
constructing local models to fit these neighborhoods. Once an
eSV is estimated, it must be validated to ensure its accuracy.
This is accomplished by requiring accurate predictions of near-
neighbor surrogates, checking local modeling coefficients,
and ensuring the correct linearity and proportionality of
eSVs that are generated by known parametric variations of
different magnitudes. A method of quantifying the error in
eSV predictions based on local modeling is outlined for
cases where the equations of motion of the system are
known. Applications of the methodology to various simulated
time series, including series for a Duffing oscillator and
for the Lorenz attractor demonstrate the effectiveness of
the technique. These systems are also used to explore how
additive noise influences the results. Further application to
an experimental time series generated by a Chua’s oscillator
demonstrates how the methodology can be applied to a real,
physical system.

II. EMBEDDED SENSITIVITY VECTOR FIELDS

A. Sensitivity vector field definition

A SVF is a collection of vectors that capture how a
dynamical system attractor deforms as a result of a given
parametric variation. The individual SVs making up a SVF
are constructed by sampling trajectories of nominal and varied
systems as they diverge over time. Two trajectories that are
initially coincident in state space but differ by some parametric
variation will evolve differently. By sampling these trajectories
a time �T after their coincidence, a SV is generated that
connects the sampled point on the nominal attractor to the
sampled point on the varied attractor. This vector quantifies the
divergence of the two trajectories. It depends on the underlying
dynamical system, the nature of the parametric variation,
and the evolution time �T . For short �T , the SV will be
proportional to the parametric variation. Thus, by obtaining
SVFs corresponding to several known parametric variations,
a set of basis vectors can be constructed against which further
unknown parametric variations can be compared, allowing
them to be identified.

More mathematically, consider a dynamical system de-
scribed by the flow ẋ = f(x,p,t), where x is the state vector
and p is a system parameter that can vary. Using a Taylor
series to develop a variational equation about the nominal
trajectory x(t) = x0(t) and nominal parameter value p = p0

and retaining only the linear terms results in

δẋ(t) = A(t)δx(t) + b(t)δp, (1)

where

A(t) = ∂f
∂x

(t)

∣∣∣∣ x = x0
p = p0

, (2)

and

b(t) = ∂f
∂p

(t)

∣∣∣∣ x = x0
p = p0

. (3)

Here, the state variation (from the nominal trajectory) is
represented by δx and the parameter variation (from the
nominal parameter value) is represented by δp. If Eq. (1)
is integrated over the evolution time �T , the result is an
equivalent map

δx(t + �T ) = �(t + �T, t)δx(t) + q(t + �T )δp, (4)

where the state transition matrix for the dynamical system
� depends only on A(t). Trajectory divergence, expressed
in the state variation δx(t + �T ) that develops over the
evolution time �T , can be interpreted as the sensitivity vector
q(t + �T )δp when δx(t) = 0 at the initial time (that is, if
the trajectories are truly initially coincident at time t). In
general, q will depend on both A(t) and b(t). The linearity of
Eq. (4) highlights the fact that a specific parametric variation
will elicit a proportional change in the generated SVF. This
proportionality is what enables quantification of parametric
variations through the comparison of newly generated SVFs
to known, reference SVFs.

B. Embedded sensitivity vector field definition

Consider again the flow ẋ = f(x,p,t), where the state is
given by x = [x1 x2 · · · xn]T , with n being the dimension of
the system. In its simplest form, performing a time-delay
coordinate embedding of the flow involves sampling a single
state component and then constructing time-delay coordinate
vectors having the form

s(t) = [x∗(t) x∗(t − τ ) · · · x∗(t − mτ )]T , (5)

where ∗ indicates a single state of the system (from the total
of n states), τ is the delay time, and m is the number of
time-delay coordinates. It has been proven [13] that m � 2dA

is a sufficient condition to reconstruct an attractor of dimension
dA, although the necessary dimension may be less. In this time-
delay coordinate embedding space, the definition of an eSVF
is similar to that of a SVF in ordinary state space, but what
is measured is the time-delay coordinate variation δs rather
than the state variation δx. Time-delay coordinate variation is
variation solely in the component of the state x∗ selected for
constructing the time-delay coordinate vectors. Figure 1 shows
the flow and its variation for a two dimensional embedding
in x∗, illustrating graphically how the time-delay coordinate

ΔΔ

FIG. 1. Consider a flow with two state variables x1 and x2

embedded two dimensionally in x∗. This figure illustrates the required
initial coincidence of the nominal and varied trajectories and the
variations δx∗ at later times which comprise an eSV.
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variation has the general form

δs(t + �T ) = [δx∗(t + �T )

δ x∗(t − τ + �T ) · · · δx∗(t − mτ + �T )]T .

(6)

In the embedding space, time-delay coordinate vectors are
guaranteed to have a map of the form s(t + �T ) = H(s(t)),
where H depends on �T (which we assume is some multiple
of τ ) and p. This means we can define an eSV q∗δp as

δs(t + �T ) = ∂H
∂s

(t + �T,t)

∣∣∣∣ s = s0
p = p0

δs(t) + q∗(t + �T )δp,

(7)

where

q∗(t + �T ) = ∂H
∂p

(t + �T,t)

∣∣∣∣ s = s0
p = p0

. (8)

Note that one can numerically compute the eSVs using
Eq. (4) when the state space and the time-delay embedding
space have the same dimension and the equations for the
original flow ẋ = f(x,p,t) are available. This idea is further
developed in Sec. III E in the context of eSV validation.

In practical cases, one is unlikely to know the function H
and must rely on some form of modeling to generate eSVs. The
natural choice is to use local modeling, where neighborhoods
of states are collected that serve as analogues for the initial
conditions of interest. The future images of these states,
used in conjunction with the local modeling, allow unknown
trajectories to be predicted.

III. METHODOLOGY

There are four steps to generate an eSV for a given initial
condition drawn from the nominal system’s data set; namely:

(1) Gather a neighborhood of nearby states from the varied
system’s data set.

(2) Adjust the size of the neighborhood to optimize its
accuracy in making predictions.

(3) Use local modeling in conjunction with the resized
neighborhood to make a prediction of the varied system’s
trajectory beginning at the given initial condition.

(4) Take the difference between the varied trajectory (pre-
dicted by local modeling) and the nominal trajectory (known)
in order to construct an eSV.
This process of eSV construction is illustrated in Fig. 2.

Once eSVs have been constructed, they are validated. There
are three steps in this validation; namely:

(1) Rank eSV neighborhoods based on the distance between
the initial condition and the nearest state of the varied system
along with the error in predicting that state’s future trajectory.

(2) Examine the coefficients resulting from the local model-
ing used to generate a given eSV and discard those eSVs whose
coefficients are poor. For example, discard all neighborhoods
when any coefficients are larger than 1.

(3) If the eSVs are being used to build up basis vectors for
future testing (and hence have known parametric variations),
check their colinearity and proportionality in conjunction with
the eSVs of other calibration sets.
This process of eSV validation is also illustrated in Fig. 2.

FIG. 2. Process of generating and validating eSVs that are
suitable for analyzing parametric variations.

Below some important details regarding both the eSV
construction process and the eSV validation process are
provided.

A. Local modeling using embedded point cloud averaging

The question of how to effectively predict nonlinear
time series using local models has been studied by several
authors [16,18,19]. Global approaches for nonlinear time
series prediction have also been proposed, including methods
based on radial basis functions [17]. However, global methods
are more difficult to implement and less likely to give accurate
results. Thus, our focus is constructing eSVs using local
models exclusively, specifically using embedded point cloud
averaging (ePCA) (similar to the original PCA [7]).

For an initial condition on the nominal attractor, ePCA
involves solving an underdetermined problem involving the
neighboring embedded states from the varied data set given by[

1
xt

k,center

]
m+1×1

= Xt
kα, (9)

with

α = [α1 · · · αn]T , (10)

and

Xt
k =

[
1 1 · · · 1

xt
1 xt

2 · · · xt
n

]
m+1×n

. (11)

Here xt
k,center is an initial condition of interest on the nominal

attractor (i.e., the center of neighborhood k at time t), and α is a
vector of unknowns. Xt

k holds the n embedded states from the
varied data set in neighborhood k, and m is the embedding
dimension. This is the original PCA formulation [7]. For
ePCA, we enforce the additional condition that

n∑
i=1

αix
t
i,rx

t
i,s = xt

center,rx
t
center,s ∀ r,s = 1, . . . ,m, (12)
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where xt
i,s refers to the sth component of the measured

embedded state xt
i . Solving Eqs. (9) and (12) together in

the least-norm sense determines the weights each measured
embedded state should be given so that their weighted average
matches the initial condition as closely as possible while also
minimizing quadratic cross terms.

Minimizing the terms in Eq. (12) minimizes the second-
order terms in the Taylor series expansion (7). This is important
and can improve eSV accuracy. A (future) prediction at time
t + �T can then be made using the previously determined α

by calculating

xt+�T
k,center = Xt+�T

k α, (13)

with

Xt+�T
k = [

xt+�T
1 xt+�T

2 · · · xt+�T
n

]
. (14)

Here Xt+�T
k holds (future) states that correspond to the

embedded states in the initial neighborhood k at time t + �T .
The eSV q is given by the difference between future points on
the nominal and varied trajectories, i.e., the known nominal
system trajectory known and the varied system trajectory
predicted by the model. That is,

q = δx = yt+�T
k,center − xt+�T

k,center, (15)

where yt+�T
k,center is the predicted embedded future state of the

varied system and xt+�T
k,center is the known embedded future state

of the nominal system.
More typical linear (first-order) approximations found in

the literature [19] have the form[
Xt+�T

k

]T = [
Xt

k

]T
β + ε, (16)

with

β =

⎡
⎢⎣

β1,1 · · · β1,m

...
...

...
βm,1 · · · βm,n

⎤
⎥⎦ . (17)

Here, β is, in general, a collection of vectors of unknowns,
and ε represents error terms. Solving this overdetermined
system for β in the least-squares sense, and then using the β

vector in conjunction with an initial state allows computation
of a predicted (future) state at t + �T . Using this general
framework, more accurate predictions may be possible by
using higher-order models [20], but these quickly require
a large number of neighborhood points, as the required
coefficients increase as m(s + m)!/(s!m!), where m is the
embedding dimension and s is the order of the model. Related
methods with additional complexities such as filtering [21] or
methods which avoid a least-squares solution [22] have also
been proposed.

The primary advantage of ePCA over these other methods
is that the α vector provides a metric that can be used to
judge the relative contribution of each neighborhood point in
constructing eSVs. Different magnitudes in the α entries can
indicate a poor neighborhood that will generate an inaccurate
eSV.

B. Neighborhood sizing

Once a neighborhood of nearby states from the varied
system’s data set has been gathered, the closest of these
states is sequestered as a surrogate for the initial condition.
Predictions are made for this surrogate using local modeling in
conjunction with neighborhoods of various sizes to determine
what neighborhood size to use when making a prediction
from the actual initial condition. Because we know the future
(embedded) state of the surrogate, it is easy to determine what
neighborhood size results in the most accurate prediction of
its future trajectory.

This optimal neighborhood sizing capability is incorporated
into the algorithm in two different ways. The first is suitable for
cases where there are a large number of measured embedded
states. Using the points closest to the initial condition, one
can set up a series of increasing radii around the initial
condition and consider the accuracy of predictions based on
the neighborhood of embedded states contained within each
radius. The radius with the lowest prediction error is selected
for making predictions from the actual initial condition. The
second way, appropriate when data are sparser, eschews the
need for radii and simply drops the embedded state furthest
from the initial condition in making consecutive predictions.
One again chooses the neighborhood that results in the
minimum prediction error.

C. Validation

To avoid regions of the state space giving poor eSVs, one
can calculate the distance between the surrogate embedded
states and the initial condition of interest. Then, one can rank
eSV generating neighborhoods according to the product of
this distance and the prediction error. Thus, close surrogate
embedded states with good predictions are highly ranked
whereas neighborhoods with surrogates that are distant or
poorly predicted are not. This helps to avoid neighborhoods
with especially bad predictions or disparate state space
structure.

When the state space is highly structured, as is the case
for many chaotic attractors, an initial condition that lies on
the attractor of the nominal data set likely will not lie on the
attractor of the varied data set. This occurs, for instance, when
the parametric variation is large enough to significantly deform
the varied attractor with respect to the nominal attractor.
Simply using the neighborhood of embedded states in the
varied set that is closest to the initial condition could lead to an
incorrect eSV in this case because the selected neighborhood
does not provide reasonable analogues for the initial condition.

In general, the ranking methodology places the worst
performing neighborhoods near the bottom of the ranking.
However, there is still considerable variability in eSVF
accuracy for highly ranked neighborhoods so it is not sufficient
in and of itself. The method’s value lies in the fact that it quickly
provides a list of reasonably good neighborhoods, and thus
can be used to save time when checking for proportionality
(discussed next) by providing a basis for limiting the number
of neighborhoods that need to be checked in this subsequent
stage.

The second validation of constructed eSVs is ensuring
reasonable neighborhood coefficients. The α coefficients for
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successful eSVs must all be less than 1 for the eSV to meet the
requirements of this test. This ensures that all of the states in the
neighborhood are contributing relatively equally in predicting
the future trajectory.

The third validation of constructed eSVs is a proportionality
check (in conjunction with a colinearity check). It only applies
to eSVs for which we know the corresponding parametric
variations, such as those generated to serve as part of a basis
set. The proportionality check requires that eSVs meet the
linearity requirement of Eq. (7). That is, any change in a
given parameter perturbation δp should elicit a proportional
change in the magnitude of the eSV. Checking proportionality
requires having at least two different parameter perturbations
for each parameter of interest available when generating SVFs
belonging to the basis sets. The proportionality check can be
used to reduce the error in the acceptable eSVs to very low
levels for noiseless data.

D. Combination

Once a collection of validated eSVs is obtained, one can
combine them into an eSVF in the form of a column vector
of individual eSVs. If one is concerned with identifying
only a single parameter, simply examining a test vector’s
proportionality to this eSVF can determine the unknown
variation. However, to identify linearly independent changes
in the attractor that occur under multiple simultaneous pa-
rameter variations, proper orthogonal decomposition (POD)
is required [5–9]. When different eSVFs corresponding to
several different parameter variations are collected as column
vectors, they can be used to form a matrix Q. The correlation
matrix C = QQT can then be constructed. The dominant
eigenvalues of the correlation matrix indicate the number of
linearly independent parameter changes that can be identified
and the corresponding eigenvectors provide the basis for
doing so.

E. Measuring prediction error

To determine the accuracy of eSVs, it is necessary to have
some means of determining eSV error. When predictions are
made for a single time series, it is typical to report the root
mean square (rms) prediction error for out-of-sample data.
This means that while most of the time series is used as a
training set to determine the parameters to be used in the local
modeling, the remainder of the series is sequestered to serve
as a test set. This provides an independent repository of states
for which predictions can be made using local models, but
for which one also knows future states exactly. To determine
the modeling error, one simply compares model predictions to
known future states.

However, in constructing eSVs, we are making predictions
for initial conditions on the nominal attractor using data from
the varied attractor. This means that we have no test set to
sequester. Thus, for cases when time series data alone is
available, it seems that estimates of an eSVF’s efficacy must
be based solely on its ability to identify parameter variations
accurately. However, when generating time series data from
flow equations, there is an advantage in that the variables of the
dynamical state that are not being embedded (and that would

normally be unknown) can be retained. Having knowledge
of these normally hidden state variables allows eSVs to be
checked analytically.

An example serves to illustrate the methodology. Consider
a two-dimensional dynamical system with a state x = [x1 x2]T

that is also embedded in two dimensions using the x1 variable.
One can rewrite Eq. (1) as

[
˙δx1

˙δx2

]
=

[ ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

] [
δx1

δx2

]
+

[ ∂f1

∂p

∂f2

∂p

]
δp. (18)

The equivalent of Eq. (4), the map involving the state transition
matrix, is then given by

[
δx1(t + τ )

δx2(t + τ )

]
=

[
φx1x1 φx1x2

φx2x1 φx2x2

] [
δx1(t)

δx2(t)

]
+

[
bx1

bx2

]
δp.

(19)

Here, the time t corresponds to the initial condition in the
embedded state, and the time t + τ corresponds to a future
state, which occurs at a time lag τ later. Since both the nominal
and the varied trajectories are required to have the same initial
embedded state, one has a boundary value problem, as δx1(t) =
δx1(t + τ ) = 0, in Eq. (19). One obtains two equations for
variations in the variable x2 as

δx2(t) = −bx1δp

φx1x2

(20)

and

δx2(t + τ ) = φx2x2δx2(t) + bx2δp. (21)

Integrating Eq. (18) between t and t + τ in conjunction with
the original flow ẋ = f(x, p, t), allows one to obtain the
unknown entries of Eqs. (20) and (21). One integrates once
with the initial conditions [δx1 δx2]T = [0 1]T and δp = 0
to obtain δx1(τ ) = φx1x2 and δx2(τ ) = φx2x2 , and again with
initial conditions [δx1 δx2]T = [0 0]T and δp = 1 to obtain
δx1(τ ) = bx1 and δx2(τ ) = bx2 . Using these to solve Eqs. (20)
and (21), one finds the δx2 values for δx1 = 0 at t and t + τ .
Integrating from either of these states with the known δx2

values and a specified δp allows the calculation of δx1A and
δx1B at t + �T and t + τ + �T . These quantities, δx1 and
δx2, are the two components of the eSV. Figure 1 illustrates
this when x∗ = x1. Note that this technique for validating eSV
predictions only works when the dimensions of the original
state space and the embedded state space are equal and is
susceptible to singularities if the parametric variation is large
or the evolution time is long.

IV. TIME SERIES SOURCES

A. Simulated time series sources

Two familiar dynamic systems are used to generate
simulated time series for analysis. The first system is the
well-known Lorenz attractor whose equations are given by

ẋ = σ (y − x), ẏ = −xz + rx − y, ż = xy − bz, (22)
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where x, y, and z are state variables, and σ , r , and b are system
parameters. For these parameters, the standard nominal values
σ = 10, r = 28, and b = 8/3 were chosen. The system was
sampled every �t = 0.05. Collected data consisted of 105

samples for each data set with 104 samples on the nominal
attractor serving as initial conditions.

The second system for demonstrating the approach is a
Duffing oscillator whose representation is

ẋ = y,

ẏ = −x3 + x − by + A sin z, (23)

ż = ω,

where x, y, and z are state variables, and A, b, and ω are
system parameters. The nominal parameter values were A =
0.4, b = 0.25, and ω = 1. The system was sampled 100 times
each driving period, and 105 samples for each data set were
collected with 104 samples on the nominal attractor serving as
initial conditions.

The data sets generated computationally were also cor-
rupted by having various levels of Gaussian white noise added
to them. This additive noise has the form

xn = sn + ηn, (24)

where xn is the noisy signal, sn is the clean signal, and ηn is the
additive white noise included at each time instant indicated by
subscript n. The relative noise level can then be expressed as

〈η2〉
〈(s − 〈s〉)2〉 , (25)

with 〈 〉 representing the mean.

B. Experimental time series sources

The source of experimental time series is a variant on the
well-known Chua’s circuit where the inductor is replaced by
an operational-amplifier realization of a gyrator [23]. Figure 3
shows the layout of the circuit. The relevant component values
are given in Table I. These are identical to those in Ref. [23]
except that the capacitors are adjusted to 10 and 100 nF,

TABLE I. Chua’s circuit properties.

Component Value

R1 220 �

R2 220 �

R3 2.2 k�

R4 22 k�

R5 22 k�

R7 100 �

R8 1 k�

R9 1 k�

R 2 k� pot
RL 2 k� pot
RN 5 k� pot
C 100 nF
C1 10 nF
C1 100 nF

respectively. Within the gyrator is a variable resistance RL.
One of the resistors within the realization of Chua’s diode is
also replaced with a variable resistor RN . Thus, the circuit has
three parameters (R, RL, and RN ) which can be varied (to
construct eSVFs) and also identified.

During each test, the system was sampled for approximately
106 data points using a digital to analog converter having a
16-bit resolution over a ±10 V range. A set of 104 samples
was drawn from the nominal system to serve as the set of initial
conditions.

C. Initial data processing

Before any eSVFs can be constructed in an embedded state
space, appropriate dimension [24,25] and time delay [26,27]
with which to construct time-delay coordinate vectors need
to be determined. These two quantities depend on both the
dynamical system being studied and the way in which the
system is sampled. Both factors can be determined using
available software, such as the TISEAN package [28] or other
specialized programs, such as those for determining dimension
based on false strands [25]. The TISEAN package is also useful

FIG. 3. Layout of the Chua circuit used to acquire the experimental data.
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FIG. 4. Example of a good SV prediction for Lorenz attractor.
The large � represents the nominal trajectory; small circles indicate
the varied data in the neighborhood nearby. The × represents a
prediction of the varied trajectory via local modeling and the � via
semi-analytical methods. Coincidence of the × and � indicate a good
prediction.

for determining whether or not given dynamics are chaotic via
a calculation of the largest Lyapunov exponent (a system is
chaotic when this exponent is positive).

V. RESULTS AND DISCUSSION

A. Simulated time series

For the simulated time series, using the data processing
techniques in Sec. IV C, we found that an embedding dimen-
sion m = 3 appears sufficient for the Lorenz system, and the
best time lag based on mutual information is approximately
τ = 3 (�t = 0.15). For the Duffing oscillator, we choose
either to embed x and y in an m = 2 embedding, treating the
phase information (z) as known, or to separately fully embed
in a m = 3 dimension embedding. For the Duffing system, the
appropriate time delay is approximately τ = 10.

The choice of time delay is a critical factor in constructing
eSVs. If the time delay selected in the case of the Lorenz

attractor is not optimal according to the first minimum of the
mutual information, the error in eSV magnitudes increases
significantly; in some cases doubling versus the error at the
optimal time delay.

With embedding and time delay determined, one can
apply the proposed methods to construct embedded eSVs. An
example of such a construction is shown in Fig. 4. The states
indicated by small circles represent varied trajectory points
while the nominal trajectory is indicated by the large �. The
semi-analytical prediction of the varied trajectory based on the
state transition matrix formulation is indicated by the �, while
the prediction of the local model is indicated by ×. A coinci-
dent � and × indicate an accurate prediction. A 1% variation
in σ is being captured by this eSV for the Lorenz attractor.

The Lorenz system affords one the opportunity to compare
the locations of initial conditions which are appropriate for
constructing eSVs (as determined by the process outlined in
Sec. III) with the locations of initial conditions generating
low-error eSVs (as determined via the analytical methodology
outlined in Sec. III E). Figure 5 illustrates one way to make this
comparison. On the left, validated eSV initial conditions for
1% and 2% variations in σ are indicated by the darker points;
the remainder of the initial conditions are shown by the lighter
points. We consider the eSV validated if its proportionality is
within 5% of the expectation. On the right, the same sets
of initial conditions are shown, but in this case they are
darker if the error in constructing a vector corresponding to
1% variation in σ is less than 10% and lighter otherwise.
Here, we are making predictions for �T = 9. The similarity
between the two plots confirms that the methodology we have
outlined for validating eSVs does select the eSVs with the
lowest error. Moreover, these plots show that the distribution
of low-error or successfully validated eSVs is nonuniform
across the attractor, often being concentrated in bands or
clusters based on the deformation. Careful tightening of the
proportionality requirement in the validation step will reduce
the number of acceptable initial conditions but those that
remain will generally produce eSVs with less error. Similar
results hold for the Duffing oscillator, and when one only
embeds two of the state vectors and retains the phase as
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FIG. 5. Initial conditions used in generating eSVs for the Lorenz data; darker points indicate valid eSVs (left). The same set of initial
conditions; darker points indicate eSVs having less than 10% error (right).
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TABLE II. Simulated time series parameter reconstruction.

Case Parameter Variation (%) eSVF prediction (%)

σ 1.50 1.47
1

r 0.00 0.01

σ 0.00 0.04
2

r 1.50 1.65

σ 1.50 1.46
3

r 1.50 1.62

σ 3.00 2.97
4

r 3.00 3.18

additional information, the average eSV magnitude prediction
error is generally lower.

With both surrogate ranking and proportionality validation
one can consistently generate eSVFs with low error in low-
noise environments. These accurate eSVFs allow for excellent
parameter reconstructions. For example, in the case of the
Lorenz attractor after having collected initial eSVFs for
changes in σ , r , and b of 1% and 2% one can perform the
reconstructions shown in Table II. These required the calibra-
tion eSVs to have a proportionality within 5% of the expec-
tation based on the specified parameter variations. The eSVs
were recorded for an evolution time of one time step (�T = 1).

These results demonstrate the ability to make good pre-
dictions of parameter variations in this system, even when
they occur simultaneously. The case where both parameters
are changed by 3% also shows that, even in cases where
one extrapolates beyond the eSVFs collected initially (here
validations were performed only up to 2%), one can still
generate good results.

The accuracy of these types of parameter variation pre-
dictions is affected by several factors. The first of these is
the level of proportionality required to validate calibration
vectors. Figure 6 illustrates how tightening the proportionality
requirement influences the predictions over a range of different
evolution times. Here, the actual values of the variations are
−0.15 in σ , −0.2 in b, and 0 in r . It is obvious that, as

TABLE III. Simulated time series parameter reconstruction with
noise.

Noise level Parameter Variation eSVF prediction

σ −0.15 −0.149
0 b −0.20 −0.191

r 0.00 0.001

σ −0.15 −0.144
0.0001 b −0.20 −0.194

r 0.00 −0.001

σ −0.15 −0.132
0.001 b −0.20 −0.127

r 0.00 −0.008

the proportionality requirement is tightened, the predictions
generally improve, markedly from 5% to 2% and only slightly
from 2% to 1%. The number of initial conditions that are
considered valid also declines.

Figure 6 also demonstrates that the length of the evolution
time �T can have a large effect on eSV accuracy. If this time
is too short, the eSVs will have small magnitude and will be
prone to large error for any small errors in the individual time
series predictions. For large times, a dynamic system that is
chaotic will lose predictability and the error will again be large.
Our predictions of b with a 5% proportionality requirement
become inaccurate for �T > 10 because a few of the initial
conditions that pass the proportionality test generate eSVs that
are in error. This suggests that it is prudent to make variation
predictions over several different �T values and look for a
consistent result before drawing any conclusions about how
parameters may have changed.

A third factor affecting the accuracy of parameter predic-
tions is quantity and density of the time series themselves.
Having more data from which to construct a local model about
a given initial condition can lead to an improvement in the
predictions. The results are more subtle, but Fig. 7 shows
how increasing the number of points in the time series from
105 to 106 can slightly reduce some of the variability in the
variation predictions. The proportionality enforced for this plot
was 2%.
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FIG. 6. Number of initial conditions validated for eSV construction (out of 103) (left). Predictions of the parameter variations (right). Solid
line corresponds to 5% proportionality, dashed line corresponds to 2% proportionality, dashed-dotted line corresponds to 1% proportionality.
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FIG. 7. Number of initial conditions validated for eSV construction (out of 103) (left). Predictions of the parameter variations (right). Solid
line corresponds to 105 points in time series, dashed line corresponds to 106 points.

The error in embedded eSVs is also significantly influenced
by noise. To investigate this, noise was added to the simulated
time series as described in Eq. (24). The levels added ranged
from 0.0001 to 0.1. For levels of noise 0.0001 and below, errors
in eSV magnitude were not significantly influenced. However,
for noise around 0.001 the variation prediction began to be
degraded. For higher levels of noise it was often impossible
to find any initial conditions that generated eSVs meeting the
proportionality requirements. This suggests that minimizing
noise in any experimental system is very important in order to
be able to construct eSVs. It is possible that by predicting both
the future points on the nominal trajectory as well as on the
varied trajectory (rather than just accepting the nominal tra-
jectory data at face value) the impact of noise could be further
reduced through the effects of neighborhood averaging, but
this has not been explored here. Table III shows the impact of
noise on eSV parametric variation reconstruction for �T = 3.

B. Experimental time series

The investigation of eSVs using time series data generated
by simulated systems shows that the methodology laid out for
eSV construction is reliable. However, it is also important to
be able to achieve similar results with experimental data to
confirm that embedded SVF construction is applicable to real
systems. For this reason, we examine the effects of parametric
variation by adjusting R and RL in Chua’s circuit.

TABLE IV. Chua’s circuit time series parameter reconstruction.

Case Parameter Variation (δ�) eSVF prediction (δ�)

R 32 34.3
1

RL 0 0.3

R 0 3.9
2

RL − 47 − 44.2

R − 33 − 27.2
3

RL 48 49.8

Applying the techniques for determining state dimension
and time delay, we found that the experimental data should
be embedded in a state space having m = 3 and a time delay
of τ = 9. The reconstructed attractor using these parameter
values is shown in Fig. 8.

Once initial calibration eSVFs are taken about the nominal
parameter values one can perform the reconstructions shown
in Table IV. The fact that the data has low noise (the noise to
signal ratio could be as low as 10−10 based on the resolution
of the analog to digital converter) no doubt contributes to the
predictions being accurate.

VI. CONCLUSIONS

This paper presents a methodology for the construction
of SVFs in time-delay embedded coordinates based on local
linear modeling of time series. A specific method for weighting
neighborhood states in local modeling called ePCA was
introduced. This method minimizes quadratic cross terms in
an effort to improve eSV accuracy. Local modeling proved to
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FIG. 8. A three-dimensional projection of the Chua oscillator
attractor.
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be a reliable means of constructing eSVFs and identifying
parametric variations for both simulated and experimental
time series. A technique for checking the accuracy of these
SVF predictions was also presented for cases where the
system equations are known and the dimension of the
nonembedded state and the embedded state are equal. Being
able to construct SVFs in embedded coordinates will make
the application of SVFs to a wide variety of physical systems

feasible, even when it is not possible to measure the complete
state.
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