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Spatial pattern formation is a key feature of many natural systems in physics, chemistry, and biology. The
essential theoretical issue in understanding pattern formation is to explain how a spatially homogeneous initial
state can undergo spontaneous symmetry breaking leading to a stable spatial pattern. This problem is most
commonly studied using partial differential equations to model a reaction-diffusion system of the type introduced
by Turing. We report here on a much simpler and more robust model of spatial pattern formation, which is
formulated as a novel type of coupled map lattice. In our model, the local site dynamics are coupled through a
competitive, rather than diffusive, interaction. Depending only on the strength of the interaction, this competitive
coupling results in spontaneous symmetry breaking of a homogeneous initial configuration and the formation of
stable spatial patterns. This mechanism is very robust and produces stable pattern formation for a wide variety
of spatial geometries, even when the local site dynamics is trivial.
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I. INTRODUCTION

Achieving a satisfactory understanding of spatial pattern
formation is an enduring problem in the physical and biological
sciences [1]. At the fundamental level the essential issue is
to explain how a spatially inhomogeneous stationary pattern
can emerge dynamically from a spatially homogeneous initial
state. The most widely studied mechanism for producing
such spatial patterns is that proposed by Turing [2]. Turing’s
model is formulated as a system of coupled reaction-diffusion
equations that describe the dynamical interaction of two
chemical species or morphogens. Pattern formation in Turing’s
system results from the counterintuitive fact that, under
suitable conditions, the diffusion of the morphogens can drive
symmetry breaking in the initial homogeneous configuration.
This is possible in Turing’s system because diffusion is acting
in concert with other processes: namely, one of the morphogens
(which undergoes an autocatalytic reaction) activates the
other morphogen, while this morphogen in turn inhibits
the former. Whether such a system can produce stationary
spatial patterns (as opposed to, for example, spiral waves as
in the Belosov-Zhabotinsky reaction [3]) depends delicately
on the diffusion rates of the morphogens, and on the rate
at which the inhibitor responds to changes in the activator
concentration [4]. This subtle dependence of the mechanism
on parameter values makes Turing structures challenging to
produce experimentally [5], which suggests that the mecha-
nism may have limited applicability to pattern formation in
many real-world situations.

A variety of spatiotemporal patterns have also been shown
to arise in the context of coupled-map lattices. Originally
introduced by Kaneko, these well-studied systems [6] consider
a lattice geometry where the temporal site dynamics of a
single variable is described by a discrete time mapping, while
a functional dependence on the neighboring values of the
site variable determines the spatial dynamics. This coupling
between sites is often diffusive in character [6], though a
number of variants have been studied (see, for example,
Ref. [7]). A common feature of these models is that the
uncoupled site dynamics needs to be sufficiently complex

(often chaotic in terms of the local map dynamics) in order
to generate nontrivial spatial patterns on introducing spatial
interactions. As is clear from the case of diffusive coupling,
the spatial coupling serves to coarse-grain the large variations
at the sites leading to patterns. A natural question that proceeds
from this is whether or not there are mechanisms to generate
nontrivial spatial patterns when the onsite dynamics is fully
trivial (i.e., the local dynamics has a stable equilibrium point).

The purpose of this paper is to study a model of spatial
pattern formation, which is both simpler and more robust
than Turing-type models and readily produces stationary
patterns from a homogeneous initial configuration. Our model
is formulated as a variant of a coupled map lattice [6], in
which there is a single dynamical variable (i.e., a single
species or morphogen level) at each spatial site and the
site dynamics are coupled through a competitive (that is,
inhibitory) interaction rather than through a conventional
diffusive coupling. The competitive coupling in our model
allows the production of complex spatial patterns even when
the dynamics at each site is trivial, in the sense that the
local dynamics exhibits a stable fixed point. This is in stark
contrast to the dynamical behavior in conventional diffusively
coupled map lattices where trivial site dynamics can only result
in a spatially homogeneous state [8–11]. This latter result
reflects the fact that for a single species model diffusion can
never have a destabilizing effect. In diffusively coupled map
lattices, pattern formation can occur but this is only possible
when the local site dynamics is complex. Indeed, nontrivial
pattern formation typically requires that the local dynamics is
chaotic [6].

In order to appreciate the importance of competitive
coupling, as opposed to diffusive coupling, for spatial pattern
formation in map lattices, it is necessary to briefly review
the stability properties of diffusively coupled map lattices.
An important issue in formulating a diffusively coupled map
lattice is the form taken for the diffusive coupling term. The
initial work on coupled map lattices [6,8] considered maps of
the form

xi(t + 1) = f [xi(t)] + d[xi+1(t) + xi−1(t) − 2xi(t)], (1)
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in one-dimension with nearest-neighbor interactions, and
the obvious generalizations to other spatial dimensions and
interaction neighborhoods. The map f (x) defines the local
dynamics, and d represents a “diffusion” constant. The case
in which f (x) is the logistic map f (x) = rx(1 − x) has often
been considered in the literature [6,8,12]. The question of
whether nontrivial spatial patterns can arise when the local
dynamics is trivial [i.e., when the local dynamics f (x) has
a stable fixed point] depends on the stability of the coupled
map (1). For f (x) of the form of the logistic map the stability
theory of Eq. (1) has been derived in Ref. [8], and also
in Ref. [10]. It has been shown that Eq. (1) always has a
stable homogeneous fixed point if the map f (x) has a stable
fixed point. Thus, if the local dynamics is trivial then it is
impossible to obtain nontrivial spatial pattern formation in the
coupled map lattice. For this reason, attempts to find nontrivial
patterns in coupled maps of this form have used local maps
with nontrivial dynamics. For example, in Ref. [12] spatial
pattern formation was found in the two-dimensional version
of Eq. (1) with f (x) = rx(1 − x), and r = 3.25 and r = 3.30,
which correspond in both cases to the local dynamics being a
stable two-cycle.

The coupled map lattice Eq. (1) has, however, a fundamental
problem, which was first identified in Ref. [13] (see also
Ref. [10]): the coupled map Eq. (1) is mathematically not
well-defined—namely, the iterates of Eq. (1) can become
unbounded for perfectly reasonable values of d and initial
values xi(0). This lack of boundedness is an indication that a
coupled map lattice of the form of Eq. (1) does not provide
an appropriate model of a discrete reaction-diffusion system.
In fact, a careful analysis shows that a coupled map of the
form of Eq. (1), for any local dynamics, spatial dimension, and
interaction neighborhood, does not have a coherent physical in-
terpretation in terms of a discrete analog of a reaction-diffusion
process [11]. Systems governed by coupled maps of the form
of Eq. (1) have the unphysical property that individuals (e.g.,
molecules or organisms) may disintegrate (or die) and still
diffuse (or disperse) (see Ref. [11] for a detailed discussion).
This lack of mathematical well-definedness together with the
lack of any coherent physical interpretation has resulted in
coupled map lattices with diffusive interactions of the form
taken in Eq. (1) falling out of use.

The solution to the problems alluded to above is simple and
elegant—to separate the reaction (or reproduction) process
represented by the local map f (x) from the diffusive process
[10,11]. Each iterate of the coupled map is now viewed as
having two stages. In stage 1 (the reaction stage) we have

x ′
i(t) = f [xi(t)]. (2)

This is followed by stage 2 (the diffusion stage) to give the
final value of the next iterate:

xi(t + 1) = x ′
i(t) + d[x ′

i+1(t) + x ′
i−1(t) − 2x ′

i(t)]. (3)

Combining these two stages we obtain the complete coupled
map lattice:

xi(t + 1) = f [xi(t)] + d{f [xi+1(t)] + f [xi−1(t)]

− 2f [xi(t)]}. (4)

This form of the coupled map lattice generalizes directly to
arbitrary spatial dimensions and interaction neighborhoods.
This form [Eq. (4)] of the coupled map lattice completely
resolves the two problems associated with the earlier form
of the coupled map lattice [Eq. (1)]: it is easy to show that
iterates of Eq. (4) are always bounded for reasonable values of
d and xi(0) [10], and Eq. (4) has a clear physical interpretation
as a discrete reaction-diffusion system with a reaction stage
followed by a diffusion stage [10].

Due to these advantages, all recent work on diffusively
coupled map lattices have used the form of Eq. (4) and its
generalizations. The stability theory of coupled map lattices
of the form of Eq. (4) has been studied in great generality. It
has been shown that for such a map lattice with arbitrary local
map f (x), spatial dimension, and interaction neighborhood,
if f (x) has a stable fixed point, then the corresponding
coupled map has a stable homogeneous fixed point [9,11].
Thus, if the local dynamics is trivial, it is impossible for
any coupled map lattice of the general form of Eq. (4) to
produce nontrivial spatial patterns. We note that this general
result is in accord with physical intuition: if the local map
approaches the same equilibrium value at every site, then it
would be most surprising if the introduction of a diffusive
spatial coupling (which will act to reduce differences between
site variables at different positions) could result in a spatially
inhomogeneous equilibrium. It follows from these stability
results that nontrivial global dynamics is only possible in any
coupled lattice map of the form of Eq. (4) if the local dynamics
defined by f (x) is nontrivial, in the sense that it does not have
a stable fixed point. It is for this reason that any coupled
map of the form of Eq. (4) that displays nontrivial global
dynamics is necessarily based on a local map that has nontrivial
dynamics. Examples of such situations include: Ref. [14], in
which the local dynamics is defined by a chaotic tent map;
Ref. [15], where the local dynamics is given by a chaotic
logistic map; and Ref. [16], in which the local map has a stable
three-cycle.

The notion of coupling local-site dynamics via a com-
petitive interaction, as in our model, has naturally arisen
in both theoretical ecology and developmental biology. In
the ecological context, the dynamical variable xi(t) can be
interpreted as the size of the population at site i and at time
t . Since the growth in the population at a given site will
be limited both by competition with individuals at that site
and also with individuals from neighboring populations, it
is natural to consider competitive coupling in the population
dynamics of such systems. For example, Hara and coworkers
[17] addressed the effects of local versus global competition on
size distributions in tree populations. The site dynamics there
was described by a single logistic differential equation, which
exhibits only a stable equilibrium point, which corresponds
to a uniform tree size. However, on including either global
or local spatial competition, there emerges a parameter
threshold beyond which variation in size distribution is seen. A
discrete-time model of spatial population dynamics with local
competition has also been addressed in Ref. [18]. The notion
of competitive coupling as a basic mechanism for pattern
formation is also closely related to the idea of lateral inhibition,
in which the growth of a structure at a given location inhibits
the growth of similar structures in a region surrounding the
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focal object, which has been studied in connection to pattern
formation in developmental biology [19].

It is interesting to note that a similar model to the one we
study here has been investigated in Refs. [20–22] in the context
of understanding income distributions. Although the model
studied in these papers is formally similar to our model, the
aims of our work and that of Refs. [20–22] are very different.
Whereas our focus is on how a homogeneous initial state can
undergo spontaneous symmetry breaking and result in stable
pattern formation, Refs. [20–22] do not contain any discussion
of spatial pattern formation and are, instead, concerned with
modeling wealth or income distributions in society.

It is also worth mentioning that the form of our model is
typical of that of various discrete competition models [23,24].
The novel aspect of our work is that we show that a simple,
coupled map model incorporating spatial competition can
produce stable spatial pattern formation, even when the local
dynamics is completely trivial. In contrast, the models studied
in Refs. [23,24] are not spatial models and are unconcerned
with any aspects of spatial pattern formation.

Finally, in contrast to the specific (and in some cases rather
complicated) models of spatiotemporal dynamics with local
competition that have been previously investigated, our aim
in this paper is to explore in some detail a very simple class
of discrete-time spatiotemporal dynamical models in which
competitive interactions lead to spatial pattern formation. We
show that in this general class of models, pattern formation
is a robust consequence of local spatial competition and does
not depend on the specifics of either the local dynamics or the
spatial geometry.

II. COMPETITIVELY COUPLED MAPS

We begin, for the sake of generality, by defining a com-
petitively coupled system of maps for an arbitrary network,
which we shall refer to as a competitively coupled map network
(CCMN). However, most of this paper will focus on the case
of relevance for pattern formation in which the network is a
lattice, corresponding to competitively coupled map lattices
(CCML).

We define a CCMN as follows. First, let f : R → R be
a smooth, one-dimensional, unimodal map. Further, let us
assume that f can be written in the form f (x) = xF (x)
where F : R → R is also a smooth map that is monotonically
decreasing on the domain of interest. We note that many
celebrated maps f can be expressed in this form. Well-known
examples [25] include: the logistic map, where F (x) = r(1 −
x); the Ricker map, where F (x) = λe−ax ; the Hassell map,
where F (x) = λ/(1 + ax)b; and the Maynard Smith map, for
which F (x) = λ/(1 + axb). The parameters r,λ, a, and b are
positive constants. The parameter a can be scaled away so we
can, without loss of generality, set a = 1. It is well-known
that all these maps have qualitatively identical dynamical
features, including stable fixed points, limit cycles, and a
period-doubling route to chaos [25]. Here we focus on pattern
formation arising from the Ricker, Hassell, and Maynard Smith
maps, which are a representative sample of one-dimensional,
unimodal maps for which the iterates are always nonnegative.
We do not consider the logistic map, as the possibility of the
iterates becoming negative results in technical complications

which have no bearing on the pattern formation mechanism we
are investigating. Futhermore, as we wish to emphasize the role
competitive interactions play in pattern formation, we chose to
employ maps with the simplest possible dynamical behavior.
As such, we always consider here only parameter values for
which the maps have a stable fixed point. We reiterate that
for such parameter values, diffusively coupled map lattices
always evolve to a spatially homogeneous state and pattern
formation is impossible. Thus, any pattern formation that
results in our model is a consequence of local competition
and not the complexity of the local dynamics.

First, we consider in some detail the case in which the local
dynamics is given by the Ricker map, and then we will expand
the discussion to include the Hassell and Maynard Smith
maps. For the Ricker map, f (x) = λxe−x , the fixed points
are x̂ = 0 and x∗ = ln λ given by the condition F (x∗) = 1.
The corresponding stability is determined by the function
φ(x) = F (x) + xF ′(x). A fixed point x∗ is linearly stable
if |φ(x∗)| < 1 and unstable if |φ(x∗)| > 1. For the Ricker
map, x̂ = 0 is stable for 0 < λ < 1, while x∗ is stable for
|1 − ln λ| < 1, that is for 1 < λ < e2. When λ exceeds 1, the
stable fixed point x̂ = 0 loses stability through a transcritical
bifurcation and gives birth to the stable fixed point x∗ = ln λ.
Here we always restrict attention to λ < e2 corresponding to
stable fixed point dynamics.

To form a CCMN based on a map f (x) = xF (x), we first
introduce a network �; i.e., � is a simple, undirected graph
with m vertices (or nodes), which are labeled by i = 1, . . . ,m.
The topology of � is determined by the adjacency matrix
A = (aij ),i,j = 1, . . . ,m, where aij = 1 if nodes i and j

are connected by an edge (or link) and aij = 0 otherwise.
Given a node i ∈ �, we define the set of neighbors of i to
be N (i) = {j ∈ � : aij = 1}. The CCMN associated with f

and � is a discrete-time dynamical system � on Rm. The
state of this system at time t is determined by a vector
x(t) = [x1(t), . . . ,xm(t)] ∈ Rm, where xi(t) represents the
value of the state variable associated to node i of the network
at time t . The dynamical system � gives the time evolution of
the state x(t); i.e., �[x(t)] = x(t + 1), where � is defined by

xi(t + 1) = xi(t)F

[
xi(t) +

∑
j ∈ N(i)

αxj (t)

]
, (5)

for all i ∈ �. In this expression, α is a nonnegative parameter
that represents the strength of the competitive interaction
between site i and a neighboring site j .

The first step in understanding the dynamics of Eq. (5) is
to study its fixed points and their stability. In discussing the
fixed points of �, it is convenient to assume that the network
� is a regular graph of degree k, which means that every node
has exactly k edges incident upon it. In this case, there are two
homogeneous fixed points of Eq. (5), where this term refers to
every node i ∈ � having the same value for the state variable.
The first of these is the trivial fixed point x̂ = 0 = (0,0, . . . ,0),
while the nontrivial fixed point is x∗ = (x∗,x∗, . . . ,x∗), where
x∗ satisfies F [(1 + kα)x∗] = 1. For the case of the Ricker map,
this latter fixed point is given by x∗ = ln λ

1+kα
.

The stability of the fixed points is determined by the
eigenvalues of the Jacobian matrix J (x), which has elements
Jij (x) = ∂�i (x)

∂xj
. Direct calculation from Eq. (5) shows that
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the Jacobian evaluated at the trivial fixed point x̂ = 0 is
J (0) = F (0)I , where I is the m × m identity matrix. Thus,
every eigenvalue is equal to F (0), which means simply that
the eigenvalue of the original uncoupled map determines
the stability at the fixed point x̂ = 0. Therefore, the CCMN
dynamics is trivial if and only if the dynamics of the uncoupled
map f is stable for x = 0, which for the Ricker map means
λ < 1.

Considering now the nontrivial, homogeneous fixed point
x∗, we find that the Jacobian evaluated at x∗ is

J (x∗) = {1 + x∗F ′[(1 + kα)x∗]}I +{αx∗F ′[(1 + kα)x∗]}A,

(6)

where A is the (m × m) adjacency matrix of �. The stability
of x∗ is determined by the m eigenvalues ψj of J .

It follows immediately from Eq. (6) that J (x∗) is a circulant
matrix whenever A is a circulant. Note that circulant matrices
are fully specified by the first row vector as all other rows
are cyclic permutations of the first row where the offset
corresponds to the row index [26]. Those networks for which
the adjacency matrix is a circulant form an interesting class,
known as circulant graphs. The networks we study here are
all either circulant graphs or are networks that can be directly
related to circulant graphs. For such networks, the eigenvalues
ψj of J (x∗) can be directly computed using Eq. (6).

For the Ricker map, the nontrivial fixed point is x∗ = ln λ
1+kα

and the network Jacobian Eq. (6) evaluated at this fixed
point is

J (x∗) =
(

1 − ln λ

kα + 1

)
I −

(
α ln λ

kα + 1

)
A. (7)

Given any circulant graph �, it is possible to explicitly compute
the eigenvalues ψj ,j = 0, . . . ,m − 1, of this Jacobian from
which the stability of the nontrivial fixed point in the CCMN
can be established.

III. SPATIAL PATTERN FORMATION

Within the general framework of a CCMN, we will now
focus on such systems in the cases of most interest for
pattern formation, when the network � is a spatial lattice
in one or two dimensions. We begin with the simpler case,
where � is a one-dimensional lattice with m nodes subject
to periodic boundary conditions. Let us also restrict the
analysis to nearest-neighbor interactions, where site i interacts
with sites (i − 1) and (i + 1). The generalization to other
interactions is straightforward. Thus, in this case, k = 2 and
the homogeneous fixed point of the competitively coupled map
lattice is x∗ = ln λ

2α+1 . Given the periodic boundary conditions,
the Jacobian Eq. (6) is a symmetric circulant matrix and the
associated real eigenvalues can be explicitly computed from
the properties of circulant matrices [26]. This calculation gives
ψ0 = ln λ = φ(x∗), which is the eigenvalue of the uncoupled
Ricker map evaluated at the nontrivial fixed point x∗ = ln λ

of the map. Thus, |ψo| < 1 whenever the fixed point x∗ =
ln λ of the Ricker map is stable. However, if x∗ = ln λ is
unstable for the uncoupled Ricker map, then |ψ0| > 1 and
the homogeneous fixed point x∗ = ln λ

2α+1 of the CCML is also
unstable.

FIG. 1. Evolution of the population with time t on a one-
dimensional chain with 200 nodes. In (a), the coupling α = 0.49,
which is smaller than the threshold value. Panel (b) corresponds
to α = 0.53 and results in a nontrivial pattern. In both cases, the
parameter λ = 6 for which the site dynamics has a stable fixed
point.

Consequently, stability of the fixed point x∗ = ln λ is a
necessary condition for the stability of the homogeneous fixed
point x∗ of the CCML, but it is not sufficient. This may
be seen by computing ψm/2, for even m, or ψ(m−1)/2, for
odd m. For even m we obtain ψm/2 = 1 + 2α−1

2α+1 ln λ, which
is the same result as that for the odd m case, ψ(m−1)/2, for
m � 1. It is straightforward to show from the eigenvalues
of J (x∗) that if |ψ0| < 1, (i.e., for 1 < λ < e2), then the
stability of the homogeneous fixed point x∗ is determined by
ψ̂ = 1 + 2α−1

2α+1 ln λ, for m � 1. Thus, x∗ is stable if |ψ̂ | < 1,
i.e., for α < 1/2 and unstable for α > 1/2. This clearly
demonstrates that the competitive coupling results in the
stability of the nontrivial homogeneous fixed point being
distinct from the stability of the nodal Ricker map dynamics.
Therefore, for 1 < λ < e2 (i.e., for trivial site dynamics),
α > 1/2 results in spontaneous symmmetry breaking of
the spatially homogeneous initial state. As we shall show,
this results in the emergence of complicated stable spatial
patterns.
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FIG. 2. Typical patterns seen in two-dimensional, nearest-
neighbor CCMLs, illustrated for the Ricker map. In both cases,
λ = 5, N = 1002: (a) α = 0.26 and shows both toroidal patterns and
a long-term transient loop; (b) α = 0.35.

In this one-dimensional situation, the dynamics at a site i

given by Eq. (5) takes the form

xi(t + 1) = λxi(t)e
−{xi (t)+α[xi−1(t)+xi+1(t)]} . (8)

It is apparent from Eq. (8) that our CCML naturally incorpo-
rates the principle of local activation and longer-ranged inhi-
bition that is the essential, but indirectly realized, mechanism
of pattern formation in Turing-type systems [4]. It is also clear
from the negative exponential in Eq. (8) that a site surrounded
by neighbors with large values of the site variable x will feel
strongly the effects of the coupling and will be suppressed.
However, while a strong coupling has an inhibitory effect on
a site between two neighbors with large x values, the same
coupling can leave the larger neighbors relatively unaffected,
since low surrounding sites have little inhibitory effect on their
neighbors. This is in strong contrast to diffusive coupling [6],
which for a single species can only act to uniformize the levels
of the site variable [8,9]. It is this difference that is responsible
for the pattern formation seen in our model.

Figure 1 illustrates the change in stability in our model at
α = 1/2 for a one-dimensional chain with periodic boundary

FIG. 3. Schematics illustrating (a) the basic checkerboard pattern
arising with nearest-neighbor interactions and (b) the disappearance
of the effect due to geometrical frustration once next-nearest-neighbor
interactions are included. The + and − symbols refer to high and
low site variable values, respectively. The symbol ± in the central
cell of (b) indicates that, with next-nearest-neighbor interactions, it
is not possible for all nine site variables in the fundamental 3 × 3
neighborhood to assume their dynamically preferred values. This
obstruction is the origin of the geometrical frustration that occurs in
CCMLs with next-nearest-neighbor interactions.

FIG. 4. Typical patterns in next-nearest-neighbor CCMLs: λ = 5,
N = 1002, and (a) α = 0.26 and (b) α = 0.35.

conditions. In Fig. 1(a), the differences in initial populations at
the sites are quickly erased and the stable, nontrivial, spatially
homogeneous state is reached. By contrast, on crossing the
threshold α = 1/2, a very interesting spatial pattern emerges
as seen in Fig. 1(b). We note that at early times, the alternating
pattern discussed earlier is clearly visible, which then evolves
to a more complex pattern in time. This transition happens
progressively later in time as one approaches the α = 1/2
threshold. It should be emphasized that for this value of the map
parameter λ = 6 < e2, the uncoupled site dynamics would
converge to a fixed point, which clearly demonstrates that the
complexity seen in the spatial pattern is an effect of symmetry
breaking.

Let us now consider � to be a two-dimensional square
lattice with nearest-neighbor interactions, where each site
(i,j ) is coupled with sites (i − 1,j ),(i,j − 1),(i,j + 1), and
(i + 1,j ). The map dynamics is given by the appropriate
specialization of Eq. (5). Our earlier analysis can be readily
extended to this situation to show that α = 1/4 is the critical
value of the intersite coupling.

For λ < e2, the Ricker map evolves to a stable fixed point,
x∗ = ln λ. For these λ values and with coupling α < 1/4,
the homogeneous fixed point x∗ of the CCML is stable and
the value at each site converges to ln λ/(1 + 4α). When the
coupling reaches α = 1/4, we see the first qualitative change
in the dynamics of the CCML, a “checkerboard” pattern con-
sisting of alternating high and low values. The checkerboard

FIG. 5. Typical patterns in nearest-neighbor CCMLs on
(a) hexagonal and (b) triangular lattices. λ = 5, N = 1002, and
α = 0.45 in both cases. In each of these situations, the critical value
of α is 1/3.
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FIG. 6. Evolution of the population with time t on a one-dimensional periodic chain with 200 nodes. In (a), the Hassell map governs the
local dynamics with b = 2 and λ = 9, while panel (b) uses the Maynard Smith map for parameter values of b = 2 and λ = 4. The intersite
coupling α = 0.53 in both cases, which is the same value used for the Ricker map case described in the legend of Fig. 1 and it results in similar
nontrivial patterns.

pattern arises as a consequence of the short-range activation
and long-range inhibition inherent in competitive coupling.

At α = 1/4, the differences in neighboring sites evolves
slowly, and the checkerboard emerges after several tens of
thousands of iterations. However, with just slightly larger cou-
pling (α = 0.26), the formation of the checkerboard becomes
much more rapid. In particular, the checkerboard pattern forms
at several different regions of the lattice at the same time. This
leads to the formation of “domain walls” between neighboring
checkerboard patterns when the high and low sites are out of
phase. As seen in Fig. 2(a), the boundaries of these domains
either wrap around the toroidal geometry or form simple closed
loops on the lattice. At these values of the coupling, simple
loops on the lattice are transient patterns which ultimately
shrink to a point, over times that are larger than 105 iterations.
By contrast, the toroidal patterns are stable and may be
viewed as topological defects associated with the nontrivial
first homotopy group of the torus. As α increases, the minimum
and maximum values of the underlying checkerboard pattern
do not vary significantly. However, the increased coupling
strength results in the checkerboard emerging more rapidly and
at more points on the lattice, resulting in complicated domain
wall structures. Additionally, with the stronger coupling,
isolated closed loops no longer decay but become as persistent
as the toroidal patterns. [Fig. 2(b)].

Having illustrated the ability to generate stable spatial
patterns, we now include the effects of next-nearest-neighbor
interactions, where site (i,j ) interacts with all eight sites
surrounding it. The threshold value of α can be verified to
remain at 1/4. We observe that in the next-nearest-neighbor
CCML, the checkerboard pattern is no longer a feature of the
model. While the local activation and long-range inhibition
still persist, next-nearest-neighbor interactions allow for a new
possibility, namely, the occurrence of geometrical frustration
[27]. The resulting structure closely resembles glassy spin
systems [28].

Local competitive interactions tend to result in sites with
high values of the dynamical variable having neighbors with

low values and vice versa. With nearest-neighbor interactions,
there is no geometric obstruction to this occurring, as shown
in Fig. 3(a). However, next-nearest-neighbor interactions
introduce a geometrical obstruction to such a distribution of
dynamical site values, as shown in Fig. 3(b). The occurrence
of this geometrical frustration results in the appearance of
domains with distinct orientation as shown in Fig 4. As seen
from the second of the two panels shown, the domains get
smaller with increasing α. We note that in all the cases shown,
qualitative aspects of the results are independent of the initial
conditions. Specifically, even very small (one part in 106)
initial spatial variations evolve dynamically into the spatial
patterns shown.

The pattern formation mechanism based on competitively
coupled maps is applicable to any spatial geometry. In Fig. 5
we show typical spatial patterns that result on triangular
and hexagonal two-dimensional lattices, with nearest-neighbor
interactions and local Ricker map dynamics. The pattern
formation that occurs in these lattices is qualitatively very
similar to that which takes place on square lattices with

FIG. 7. Typical patterns in nearest-neighbor CCMLs with
(a) Hassell and (b) Maynard Smith local map dynamics. The relevant
parameter values are (a) b = 2 and λ = 9, and (b) b = 2 and λ = 4.
A square lattice with N = 1002 sites and α = 0.26 was considered
in both cases.
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nearest-neighbor interactions. This illustrates the important
result that pattern formation in our system results from the
competitive interaction and is not dependent on the details of
the spatial geometry.

Most of our discussion of pattern formation thus far has fo-
cused on local dynamics defined by the Ricker map. However,
as we now show, pattern formation occurs in CCML when
the local dynamics is described by any unimodal map. We
illustrate this by considering local dynamics defined either by
the Hassell map, f (x) = λx/(1 + ax)b, or the Maynard Smith
map, f (x) = λx/(1 + axb) [25]. Here, again, we restrict
ourselves to parameter values for which these maps have only
stable fixed points so as to make clear that any pattern for-
mation is an outcome of local, competitive, spatial interaction
and not a result of any dynamic complexity of the local map.

The stability analysis of the CCML with Hassell or
Maynard Smith maps is fully analogous to the Ricker map case
discussed. Thus, it may be shown that, for a one-dimensional
lattice with nearest-neighbor interactions, the critical value
of α remains α = 1/2. Similarly, the critical value for both
Hassell and Maynard Smith maps on a two-dimensional square
lattice with nearest-neighbor interactions is α = 1/4. We show
in Fig. 6 pattern formation for CCML with Hassell and
Maynard Smith local dynamics in a one-dimensional lattice
geometry. The results are qualitatively similar to those seen
earlier with Ricker map local dynamics.

In Fig. 7, pattern formation for the case of a square
lattice with Hassell and Maynard Smith local dynamics are
shown with nearest-neighbor interactions, which are again
very similar to those seen earlier for the Ricker map dynamics.

Adding next nearest neighbors results once again in the
appearance of geometric frustration in the dynamics. These
results make clear that pattern formation in CCML is a robust
property, which results from local competitive interactions and
not the specifics of either the spatial geometry or the local
dynamics.

IV. CONCLUSIONS

We have studied here a new model of spatial pattern
formation based on a novel type of map lattice, in which the
fundamental spatial interactions are competitive, rather than
the diffusive ones that are typically considered. This model
directly incorporates the principle of local activation and long-
range inhibition, which is fundamental to pattern formation
in Turing systems, but which is only indirectly implemented
via reaction-diffusion interactions in such systems. We have
demonstrated that competitive coupling of spatially distinct
maps results in complex stable patterns even when the site
dynamics is trivial, in the sense that the local map has a stable
fixed point. Further, we have shown that the patterns formed by
this mechanism are qualitatively independent of the detailed
form of the local site dynamics and of the spatial geometry.
Thus, competitively coupled maps provide a simple and robust
model of spatial pattern formation.
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