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Role of inertial forces on the chaotic dynamics of flexible rotating bodies
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The nonlinear dynamics of isolated flexible but rotating many-body atomic systems is theoretically investigated,
following the dependence on initial conditions through Lyapunov exponents. The tangent-space equations of
motion that rule the time evolution of such small perturbations are rewritten in the rotating reference frame,
and the various contributions of the centrifugal, Coriolis, and Euler forces are determined. Evaluating the largest
Lyapunov in the rotating frame under various approximations, we show on the example of Lennard-Jones clusters
that the dynamics in phase space is qualitatively at variance with the effective dynamics on the centrifugal energy
surface. Coupling terms between positions and momenta in phase space, especially arising from the Coriolis
force, are essential to recover the measure of chaos in the fixed reference frame.
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I. INTRODUCTION

Rotation has a crucial role in the nonlinear dynamics
and phase-space structures of various systems ranging from
molecules [1,2] or atomic clusters [3–7] to gravity-bound
systems [8], including galaxies [9]. Rotation is also essential
in the development of turbulence in fluids [10], even with
possible industrial implications in powder manufacturing [11].
For an isolated system, rotational motion removes some of
the available energy to the expense of vibrations, which at
high angular momentum usually results in the regularization of
motion. However, high angular momenta can also destabilize
the overall system with respect to fragmentation [12,13].

The classical dynamics of an isolated flexible many-body
system conserves angular momentum in addition to total
energy. The interplay between rotational and vibrational
motion can be studied on the fly using projection schemes of
effective or normal modes [14,15], and the kinematics in the
instantaneous Eckart frame has been investigated in relation
with isomerization [16]. An important advance came from
Jellinek and Li [17], who identifed the effective rovibrational
potential energy surface sampled by the system. This effective
surface may significantly differ from the original purely
vibrational energy surface, which explains how phenomena
like isomerization [12,13,18–20] or fragmentation [12,13] are
affected by angular momentum.

The extent of regularity or stochasticity in the dynamics
is intimately connected to the local details of the potential
energy surface [21], especially the curvature. In this respect it
is not surprising that angular momentum affects the nonlinear
dynamics, as evidenced in previous numerical simulations
reporting the Lyapunov exponents [5–7]. However, in those
works the effective rovibrational energy surface was not exten-
sively involved beyond the point of providing the equilibrium
geometries and the reference energy where vibrations are
frozen. Although projecting onto the rotating reference frame
is convenient to partition the energy into various components
[15,17], it does not in itself give quantitative insight into the
regularity of motion, as Lyapunov exponents are suited to.

The present work is motivated by reexamining the problem
of chaotic motion of a many-body flexible system at fixed
angular momentum, with the purpose of determining the

Lyapunov exponent in both the fixed laboratory frame and in
the rotating frame. Obviously, we do not expect differences
in the calculated exponents by simply changing reference
frames. However, working in the rotating reference frame
allows the distinct contributions to the nonlinear dynamics
to be separately identified. In particular, the roles of the
centrifugal, Coriolis, and Euler inertia forces can be quantified
individually.

We have applied the theory to rotating Lennard-Jones (LJ)
clusters, whose nonlinear dynamics has often been investigated
in the past [3–7,12–15,20–28]. Lyapunov exponents are useful
quantities not only to measure the extent of chaos in the
dynamics but also to provide indirect signatures of phase
transitions and critical phenomena [29–32]. For such systems,
the couplings between positions and momenta, which are
absent in the fixed reference frame, turn out to be rather
important at low energy but become negligible at high energies.

The paper is organized as follows. In the next section,
we present the general tangent-space approach for a flex-
ible system at finite angular momentum in both the fixed
laboratory frame and in the rotating reference frame. We
also briefly describe the way the rotating reference frame
is computationally followed along the molecular dynamics
trajectory. Our application to small LJ clusters is presented in
Sec. III, before some discussion and conclusions are given in
Sec. IV.

II. CHAOTIC DYNAMICS IN THE FIXED AND ROTATING
REFERENCE FRAMES

The system of interest is made of N point particles
interacting through a potential energy surface V function of
the collective coordinates R0 = {r0

i }, where r0
i denotes the

three-dimensional position vector of particle i in the laboratory
reference frame. The corresponding momenta are denoted as
P0 = {p0

i = mi ṙi}, with mi the mass of particle i and ẋ the
time derivative of x.

For the purpose of computing the Lyapunov exponents, it
is useful to introduce the notation ϕ0(t) = (R0,P0) for the
set of phase-space variables. The motion of the particles
follows Newton’s equations, conserving the total energy E,
the linear and angular momenta that are denoted as �P and
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�L, respectively. Because a finite linear momentum only
alters the time evolution of the system by an extra but
constant kinetic energy, we thus safely assume �P = �0 in
what follows. These equations of motion can be written in
short as the first-order equation ϕ̇0 = F0[ϕ0(t)], where F0 is
a nonlinear multidimensional function of the positions and
momenta ϕ0.

A rotating reference frame can be defined by introducing
the instantaneous angular velocity �ω(t) in such a way that
�L = I(t) · �ω(t), where I(t) is the three-dimensional inertia
tensor [17]. It should be stressed that, because the inertia
tensor varies in time, so does the angular velocity vector. In
this rotating frame, the coordinates and associated momenta
are simply denoted as R and P, respectively, or together
as the variable ϕ. The equations of motion in the rotating
frame, ϕ̇ = F [ϕ(t)], now contain the well-known centrifugal,
Coriolis, and Euler inertial terms,

F ({ri ; pi}) =
⎛
⎝ pi/mi

−∂V

∂ri

+ �f centrifugal
i + �f Coriolis

i + �f Euler
i

⎞
⎠
(1)

with

�f centrifugal
i = −mi �ω × ( �ω × ri)

�f Coriolis
i = −2 �ω × pi (2)

�f Euler
i = −mi �̇ω × ri .

A. Tangent-space equations of motion

The Lyapunov exponents are obtained using the tangent-
space method [33,34], in which a set of 6N -dimensional
vectors forming at time t = 0 the basis of an hypersphere
monitors the distances between initially infinitesimally close
trajectories. The Lyapunov exponents λk are obtained by the
logarithmic rates of variations of the lengths �k of the axes as

λk = lim
t→∞

1

t
ln

�k(t)

�k(0)
. (3)

In principle, the Lyapunov exponents do not depend on the
initial point in phase space, provided that the trajectory is
ergodic. For a Hamiltonian system, there are a number of zero
Lyapunov exponents associated with conserved quantities,
and the exponents go by positive/negative pairs [35]. The
associated vectors thus can expand or shrink depending on
the sign of λk , and it is necessary to orthonormalize the basis
vectors regularly along the trajectory.

The tangent-space equations of motion describe the time
variations of the initial perturbation δϕ of the vector ϕ obeying
the equation ϕ̇ = F (ϕ). Differentiation readily yields

dδϕ

dt
= ∂F

∂ϕ
δϕ, (4)

where ∂F/∂ϕ is a 6N × 6N matrix referred to as the
dynamical matrix. For the original equations of motion in the
fixed laboratory frame, the dynamical matrix can be expressed

as

∂F0

∂ϕ0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
0 1/mi

. . .

− ∂2V

∂q0
i ∂q0

j

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with K0
ij = ∂2V/∂q0

i ∂q0
j the Hessian of the potential energy,

q0
i being any of the 3N coordinates.

B. Dynamical matrix in the rotating reference frame

We now aim at calculating the dynamical matrix in the
rotating frame for the phase-space vector ϕ rather than
ϕ0. Differentiating the equations of motion in the rotating
frame keeps the block matrix form for ∂F/∂ϕ, which we
write as

∂F

∂ϕ
=

(
0 1/mi

−Kij −Cij

)
, (6)

and where Kij contains contributions from the physical and
inertial forces arising from positions only, and Cij are the
contributions due to inertial forces that couple positions and
momenta with each other. Those contributions can be explicitly
written as

Kij = ∂2V

∂qi∂qj

+ K
centrifugal
ij + KCoriolis

ij + KEuler
ij ;

(7)
Cij = CCoriolis

ij + CEuler
ij .

The centrifugal force �f centrifugal
i derives from the effective

centrifugal potential [17]

V centrifugal(R) = 1
2 �ωt · �L = 1

2
�Lt · I−1 · �L, (8)

where the superscript t denotes transpose. The corresponding
Hessian reads

∂2V centrifugal

∂qi∂qj

= 1

2
�Lt · ∂2I−1

∂qi∂qj

· �L, (9)

where we have exploited the conservation of angular momen-
tum �L. By differentiating �L = I · �ω as

d �L = dI · �ω + I · d �ω = �0, (10)

we get

∂I−1

∂qi

= −I−1 · ∂I
∂qi

· I−1, (11)

which after further differentiating leads to

∂2I−1

∂qi∂qj

= I−1 · ∂I
∂qi

· I−1 · ∂I
∂qj

· I−1 − I−1 · ∂2I
∂qi∂qj

· I−1

+ I−1 · ∂I
∂qj

· I−1 · ∂I
∂qi

· I−1. (12)
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The final expression for the centrifugal contribution can be
simplified as

K
centrifugal
ij = 1

2
�ωt ·

[
2

∂I
∂qi

· I−1 · ∂I
∂qj

− ∂2I
∂qi∂qj

]
· �ω. (13)

The contribution KCoriolis
ij reads, in vectorial form,

−∂ �f Coriolis
i

∂qj

= 2
∂ �ω
∂qj

× pi , (14)

which is explicit in phase-space coordinates once we express
∂ �ω/∂qj as −I−1 · (∂I/∂qj ) · �ω. Coriolis forces also produce
some couplings between positions and momenta, giving some
constant 3 × 3 block matrices

CCoriolis
ij =

⎛
⎝ 0 −2ωx 2ωy

2ωx 0 −2ωz

−2ωy 2ωz 0

⎞
⎠ . (15)

The contribution KEuler
ij is, again in vectorial form,

−∂ �f Euler
i

∂qj

= mi �̇ω × ∂ri

∂qj

+ mi

∂ �̇ω
∂qj

× ri . (16)

In the above equation, the first term in the right-hand
side is a simple δ function, and the only significant effort
consists of evaluating ∂ �̇ω/∂qj . Using again Eq. (10) we get
�̇ω = −I−1 · İ · �ω, and

∂ �̇ω
∂qj

= I−1 · ∂I
∂qj

· I−1 · İ · �ω − I−1 · ∂ İ
∂qj

· �ω

+ I−1 · İ · I−1 · ∂I
∂qj

· �ω, (17)

in which all terms but I−1 and �ω are explicit functions
of coordinates. The Euler force also contributes to some
couplings between positions and momenta as

∂ �f Euler
i

∂pj

= ∂ �̇ω
∂pj

× ri , (18)

but the expression for ∂ �̇ω/∂pj can be simplified due to

∂ �̇ω
∂pj

= −I−1 · ∂ İ
∂pj

· �ω = −I−1 ·
(

1

mj

∂I
∂qj

)
· �ω

= − 1

mj

I−1 · ∂I
∂qj

· �ω = 1

mj

∂ �ω
∂qj

, (19)

a term already involved in the Coriolis coupling CCoriolis
ij .

The tangent space dynamics of the rotating system thus
involves five additional terms with respect to its counterpart
in the fixed laboratory frame. At this stage, the form of the
dynamical matrix in Eq. (6) already suggests a few remarks.
If the system is at a local minimum on the rovibrational
potential energy surface, then the excess kinetic energy is
stored as pure rotation with no additional vibrational energy
and the terms KCoriolis

ij and KEuler
ij both vanish. But the coupling

terms CCoriolis
ij and CEuler

ij do not, indicating that inertial forces
will play a role on the phase-space dynamics by mixing the

positions and momenta variables. This result also illustrates
that the nonlinear dynamics of the rotating system cannot be
partitioned as pure vibrations on the effective rovibrational
surface.

However, the expressions for the various coupling addi-
tional terms are not trivial and make it difficult to evaluate
their respective role, which is why we turn to a computational
strategy.

C. Keeping track of the rotating frame

The numerical solution of the tangent-space equations of
motion first requires the dynamics to be integrated for the
main variables ϕ0 of position and momenta, and this task is
achieved using conventional symplectic integrators such as
velocity Verlet in the fixed laboratory frame. The tangent-
space equations of motion can be integrated also in this frame,
providing reference data for the Lyapunov exponents.

In order to evaluate the corresponding properties in the
rotating reference frame, the position and momenta ϕ must be
determined as a function of time. In this purpose we monitor
three orthonormal basis vectors (�ex,�ey,�ez) forming a matrix
E(t) and that rotate with the system angular velocity �ω(t) such
that �L = I · �ω. The vectors �eα(t), α = x,y,z, are obtained also
by velocity Verlet integration, from the knowledge of the first
and second time derivatives given by

d�e
dt

= �ω × �e
(20)

d2�e
dt2

= �̇ω × �e + �ω × ( �ω × �e)

and with �̇ω = −I−1 · İ · �ω. The projection of positions and
momenta in the laboratory frame onto the rotating frame is
carried simply by matrix product with E(t).

III. APPLICATION TO LENNARD-JONES CLUSTERS

A. Computational details

We have calculated the largest Lyapunov exponent of two
atomic clusters bound by Lennard-Jones pairwise interactions
and rotating along their most stable axis. Unfortunately, it
would be difficult to monitor the rotating frame for the trimer
due to the possible occurrence of linear configurations and
the resulting divergence of the angular velocity vector. The
tetramer and icosahedral 13-mer were chosen instead. The
molecular dynamics simulations were carried out at fixed
total energy E and angular momentum �L, starting from the
geometry optimized on the rovibrational potential surface
V (R) + �ωt · �L/2. In reduced LJ units of energy (ε), distance
(σ ), and mass (m), the time step was taken as 10−2, and
the simulations consisted of 105 equilibration steps and 106

time steps over which the properties of interest were calculated.
In order to prevent dissociation likely to occur at high energies,
the clusters were enclosed in a soft-wall container acting on
each particle i at distance ri from the center of mass through
the repulsive potential Vrep(ri) = κ(ri − R)4 for ri > R with
κ = 100 LJ units. This container is only important at high
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energies and does not significantly alter the values obtained
for the Lyapunov exponents. The results reported below were
obtained using R = 2 and R = 3 for LJ4 and LJ13, respectively.

For the determination of the largest Lyapunov exponent
based on the tangent-space method, the bred vectors δϕ0 and
δϕ were initially chosen randomly with a Euclidean norm of
‖δϕ‖ = 10−10, and after every 100 time steps the vectors were
renormalized to this value, the corresponding normalization
factor contributing to the Lyapunov exponent λ. The Lyapunov
exponents in the rotating frame were obtained from the
exact same molecular dynamics trajectories (as resulting from
specific seeds for the random generator) but by propagating the
tangent-space equations for the dynamical matrix of Eq. (7)
with the phase-space variables ϕ projected from ϕ0 on the basis
vector E(t).

B. Results

We show in Fig. 1 the variations of the largest Lyapunov
exponent as a function of increasing energy in LJ4 and LJ13,
for several values of angular momentum, obtained in the fixed
laboratory frame and in the rotating reference frame with all
terms included in the dynamical matrix of Eq. (7). In both
systems, λ monotonically increases with energy but decreases
with angular momentum, as the result of the increasing
amount of energy stored as rotation rather than vibration. The
variations are very smooth for all cases, even in the range
where the clusters undergo isomerization or melting [26] and
agree for LJ13 with previously reported results [6].

The dynamics in those two clusters thus is generally chaotic
even at very low energies, indicating that the KAM threshold
below which λ strictly vanishes is very low already for the
tetramer, although it is known to be nonzero and measurable
for the trimer [21].

The Lyapunov exponents obtained in the fixed and rotating
frames essentially coincide, within minor fluctuations ascrib-

-6 -5 -4 -3 -2 -1 0
Total energy E

0

0.5

1

1.5

2

λ

L=0
L=1
L=2

(a) N=4

-50 -40 -30 -20
Total energy E

0

0.5

1

1.5

2

2.5

3

λ

L=0
L=4
L=8
L=12

(b) N=13

FIG. 1. (Color online) Largest Lyapunov exponent of rotating
LJN clusters, for different values of the angular momentum L, as
a function of total energy E in LJ units ε. (a) N = 4; (b) N = 13.
The symbols refer to values obtained in the fixed laboratory frame,
while the continuous lines show the data calculated in the rotating
frame using the full dynamical matrix in Eq. (7). All quantities are
expressed in reduced LJ units.

able to uncomplete asymptotic convergence of the time average
giving λ. This result was expected, because the underlying
trajectory is exactly the same, only is it observed from two
different reference frames. We interpret this equality as a
validation of our numerical implementation of the dynamical
matrix.

The contributions of the inertial forces to the extent of
chaotic dynamics were evaluated simply by focusing on their
respective roles in the dynamical matrix, neglecting the corre-
sponding terms and reevaluating λ accordingly. We distinguish
four cases, corresponding to the absence of both Coriolis and
Euler forces (neglecting also the couplings between positions
and momenta), the absence of either the Coriolis or Euler
force (but including the appropriate couplings), and, finally,
the sole neglect of coupling terms, keeping all Kij terms in the
dynamical matrix.

The variations of the largest Lyapunov exponent with
increasing total energy are represented in Fig. 2 for the
LJ tetramer with angular momenta of L = 1 and L = 2.
Strikingly, the Lyapunov exponent significantly depends on
the ingredients of the dynamical matrix only at low energies,
and the value of λ exhibits marked changes if some of those
contributions are not included.

If couplings between positions and momenta are neglected
altogether, as in the case where pure centrifugal forces are
considered but also when the contributions Kij of the Coriolis
and Euler forces are both included, the Lyapunov exponent
is clearly overestimated all the more than angular momentum
is high. This observation confirms our previous anticipation
that coupling terms are necessarily important, because they are
purely inertial and arise even for a frozen system at equilibrium
on the rovibrational potential surface.

But the Coriolis and Euler forces appear to have different
contributions as well. Neglecting the Euler force but keeping
the Coriolis inertia is generally a rather good approximation
except at very low energy. This is not a trivial result,
because the Euler force is expected to become more important
at high internal energy due to distortions of the principal
momenta axes as anharmonic vibrations increasingly couple
with rotation.

At high angular momentum, the discrepancy in the cal-
culated λ is highest when CCoriolis

ij is neglected, although
neglecting all inertia forces except the centrifugal one achieves
a more decent comparison with the reference data. It is
instructive to look at the relative importance of several
contributions to the dynamical matrix, and we show in Fig. 3
the variations of the modulus of the various matrices Kij and
of Cij = CCoriolis

ij + CEuler
ij for LJ4 at L = 1, as a function

of total energy. Here the modulus is defined as the average
absolute value of all matrix elements. The coupling matrix
remains approximately constant over the relevant energy
range, at variance with the position-only contributions to
the Coriolis and Euler forces that both smoothly increase.
However, the Euler term increases more strongly, which
reflects the increasingly large distortions of the cluster as
more vibrational energy is given to the system, leading to
more anharmonic variations in the inertia matrix and in the
instantaneous angular velocity vector. The Euler term crosses
the Coriolis term at an energy that is quite higher than the
threshold at which neglecting the inertia forces in the Lyapunov

022901-4



ROLE OF INERTIAL FORCES ON THE CHAOTIC . . . PHYSICAL REVIEW E 87, 022901 (2013)

-6 -5 -4 -3 -2
Total energy E

0

0.5

1

1.5

2

2.5

λ

E=-5.3

E=-4.7

laboratory frame

with Euler
with Coriolis
with centrifugal

without (r,p) coupling

(a) L=1

-5.2 -5 -4.8

0.4

0.6

0.8

-5 -4 -3 -2 -1
Total energy E

0

0.5

1

1.5

2

2.5

λ

laboratory frame

with Euler
with Coriolis
with centrifugal

without (r,p) coupling

(b) L=2

-4 -3.9 -3.8 -3.7 -3.6 -3.5

0.6

0.8

1

1.2

FIG. 2. (Color online) Largest Lyapunov exponent of rotating
LJ4, calculated by solving the tangent-space equations in the
laboratory frame (black circles) or in the rotating frame, as a function
of total energy E in LJ units ε. The results in the rotating frame
are shown when considering only the centrifugal contribution (blue
triangles), adding to it the Coriolis (green diamonds) or the Euler (red
squares) contributions, or neglecting all couplings between positions
and momenta in the dynamical matrix. (a) L = 1; (b) L = 2. In case
(a), the triangle and the square symbols are practically superimposed.
The regions where the various curves meet are zoomed in the insets.

calculation becomes no longer important, preventing us from
attempting any tentative correlation. Unexpectedly, the least
significant contribution is that of the centrifugal force, even
though it is associated to changes in curvature of the potential
energy surface [13].

The behavior identified on the small four-atom cluster
also extends to larger systems. The variations of the largest
Lyapunov exponent with internal energy are depicted in Fig. 4
at low (L = 2) and high (L = 10) angular momenta. Only
three of the four approximate calculations of λ have now been
considered, because the result in absence of couplings is mostly
unchanged with respect to neglecting only the Euler force.
For this larger system, the value of the Lyapunov exponent
at high energy is again dominated by the main physical
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FIG. 3. (Color online) Average modulus of different contributions
Cij and Kij to the dynamical matrix, for the LJ tetramer at L = 1 and
as a function of increasing energy E in LJ units ε.

interactions, the inertial forces playing a negligible role. The
Coriolis contribution accounts for the discrepancy in λ at low
energy, and, contrary to LJ4, no appreciable difference is found
relative to the reference result of the fixed frame. The effect
of angular momentum appears more clearly for this cluster,
with a much higher convergence threshold energy at which the
four approximations for the dynamical matrix become equally
valid.

Further insight can be gained by considering the short-time
(or local) Lyapunov exponents [21,23] and their statistical
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FIG. 4. (Color online) Largest Lyapunov exponent of rotating
LJ13, calculated by solving the tangent-space equations in the
laboratory frame (black circles) or in the rotating frame, as a function
of total energy E in LJ units ε. The results in the rotating frame
are shown when considering only the centrifugal contribution (blue
triangles) or adding to it the Coriolis (green diamonds) or the Euler
(red squares) contributions. (a) L = 2; (b) L = 10. In both cases, the
triangle and the square symbols are practically superimposed, and the
regions where the various curves meet are zoomed in the inset.
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FIG. 5. (Color online) Distribution of local largest Lyapunov
exponent of LJ4 rotating at angular momentum L = 1, obtained in the
laboratory frame (black circles) or in the rotating frame using only
the centrifugal forces (blue triangles). The total energies considered
are (a) E = −5.3; and (b) E = −4.7 LJ units, as highlighted in
Fig. 2(a).

distributions. We have done so and show in Fig. 5 the
probability of the local λ resulting from integration over only
10 time steps, for the LJ tetramer at L = 1 at the two total
energies highlighted in Fig. 2(a) E = −5.3 and E = −4.7 LJ
units, lying either below or above the convergence threshold.
In the laboratory reference frame, the local Lyapunov exponent
exhibits a bell shape extending more than two orders of
magnitude on both sides of the average value. This extension
emphasizes the necessity of performing long trajectories in
order that the global exponent converges, the distributions at
the two total energies being very similar and only marginally
shifted with respect to each other.

The corresponding distributions obtained in the rotating
reference frame on the rovibrational surface but without
the Coriolis and Euler contributions are also represented in
Fig 5. The distributions resulting from the neglect of either
the Coriolis force or all couplings between positions and
momenta, not shown, are both similar to the latter. At E =
−4.7, consistently with the equality between the long-time
exponent in Fig. 2(a), the two distributions are essentially
superimposed. However, at E = −5.3, where the long-time
exponents differ, the distribution in the rotating frame is
markedly narrower and centered at a clearly higher value
than its counterpart in the laboratory frame. The qualitative
differences between these two distributions illustrate again
the importance of momenta variables and their couplings
with the positions on the Lyapunov exponents in the rotating
frame.

IV. DISCUSSION AND CONCLUSIONS

Previous works on the nonlinear dynamics of rotat-
ing many-body systems have mostly emphasized the role
of angular momentum on the energy partitioning and

corresponding attenuation of the Lyapunov exponent [5–7].
Chaotic dynamics in nonrotating frames can be analyzed based
on the local [21] or even global [36] geometric properties
of the potential energy surface. At fixed angular momentum,
the instantaneous rotating frame can be well defined (except
maybe for systems going through a linear configuration), and
the rovibrational potential surface [17] provides a convenient
tool for partitioning the total energy of the system. However, in
absence of other inertia forces, the particle dynamics does not
faithfully account for the degree of chaoticness exhibited at low
energies.

As is clearly apparent from the analysis of the dynamical
matrix, couplings between positions and momenta are present
even at low rovibrational energies; hence, it was not surprising
that under such conditions those couplings are essential to the
Lyapunov exponent in the rotating frame. This conclusion is
further supported by the lower magnitude of the centrifugal
part of the dynamical matrix with respect to the other inertial
contributions from either the Coriolis, Euler, or coupling
matrices. More surprisingly, both Coriolis and Euler forces
appear to no longer contribute to the exponent above a certain
energy threshold, despite the different roles played by those
two forces. The results obtained for the larger cluster are
robust with system size, in the sense that the inertial forces
only seem to impact the regularity of the atomic motion at
low energy, and this conclusion should convey to other finite
systems.

The present analysis could be extended in several directions.
Quantum systems could have rather different phenomenology,
because angular momentum is a quantized variable and
couples nontrivially with vibrations. Previous studies [25,28]
have highlighted the importance of quantum effects on the
chaotic behavior of nonrotating clusters, and rotation could
also affect those conclusions. However, the present method-
ology of tangent-space dynamics would not be adapted to
quantum chaos, which is best studied from the perspective of
level statistics. Besides quantum effects, the entire Lyapunov
spectrum of classical systems could be calculated as well to
give more information about the nonlinear dynamics, with
quantitative estimates of the Kolmogorov entropy. Although
larger systems could be considered, it would probably be
more useful to focus on the trimer, for which a wealth
of computational data are available [5,7,21–23,27]. The
dynamics exhibited by this small cluster is more regular as
it crosses the linear saddle point [21,22,37], a feature arising
due to the locally more harmonic energy surface. Also, the
bimodal distribution of local Lyapunov exponents indicates
that phase space is partitioned into separate sets of mixed
and regular trajectories, with different corresponding time
scales for ergodic convergence [23]. We expect that any finite
angular momentum will also alter the dynamics at the saddle
point; hence, a richer behavior is anticipated for this system.
The practical difficulty amounts to determining the angular
velocity as the system approaches a linear configuration.
Such issues are well known in simulation [38] and could be
addressed, e.g., using quaternion coordinates [39]. However,
propagating the trajectory with such variables would also affect
the tangent-space equations of motion, and the dynamical
matrix in a rotating frame could become cumbersome [40].
This is left for future efforts.
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