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In recent years, the theory and application of complex networks have been quickly developing in a markable
way due to the increasing amount of data from real systems and the fruitful application of powerful methods
used in statistical physics. Many important characteristics of social or biological systems can be described by
the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated
in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical
properties of random network models with zero correlations and also investigate, mainly numerically, the effects
of different types of correlations. The behavior of the hierarchy is different in the absence and the presence
of giant components. We show that the hierarchical structure can be drastically different if there are one-point
correlations in the network. We also show numerical results suggesting that the hierarchy does not change
monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of
hierarchy.
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I. INTRODUCTION

The application of complex networks in a broad range
of social and biological systems has been a subject of
much interest recently [1–5]. These applications involve, for
example, the description of small-world properties of networks
[6] or the consequences of scale-free degree distributions [7].
Many aspects of the real systems can be studied in the
framework of undirected networks [8–11]. The most important
property of the network is the degree distribution pk , which is
the probability of a randomly chosen node having k edges [7].
Other features of the network can be understood through
the degree distribution (average length of the shortest path
between nodes, average number of edges between a node’s
neighbors [12], characteristics of epidemics on the network
[10], or robustness against failures and attacks [13]).

However, most of the real networks are directed, i.e., the
connection between two units of the system is not symmetric.
Many structural properties of a directed network can be derived
from undirected networks in a straightforward way [8], but the
appearance of directionality also opens the door to features
that are essentially different from those in undirected graphs
(Fig. 1).

In the presence of directed edges, the organization level
of the nodes on a large scale can be very complex and flow
hierarchy can emerge. It is the global structure of the network
that results from the different roles of the nodes (see Fig. 2 for
a comparison of different hierarchy types).

As the growing number of findings show, hierarchy is a
frequently appearing property of real networks, especially of
networks describing social interactions [17–21]. The concept
of hierarchy has led to different definitions (Fig. 2) and also
to algorithms for measuring it in both directed and undirected
networks [22–27]. In this paper we investigate flow hierarchy
by a corresponding measure, the global reaching centrality
GR , that has the intent to quantify that [28]. In the following
sections we show that the behavior of GR is different below
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and above the critical average degree kc, i.e., in the absence and
presence of giant components. We also give an approximation
to its dependence on the average degree for different random
network models when there are no degree correlations. Finally,
we study the effects of degree correlations.

II. REACHING CENTRALITIES IN UNCORRELATED
RANDOM NETWORKS

A. Local and global reaching centralities

Given a directed graph of the set of vertices V and edges
E [G(V,E) with N = |V | vertices and M = |E| edges], the
local reaching centrality of node i is defined as the number of
reachable nodes via out-edges divided by the total number of
nodes

cR(i) = |Si |
N − 1

= CR(i)

N − 1
, (1)

where Si = {j ∈ V |0 < d out(i,j ) < ∞} is the set of nodes
that has a finite, nonzero out-distance from node i. We will
denote the size of the reachable set (i.e., the local reaching
centrality without normalization) by CR . The global reaching
centrality of the graph is the normalized sum of the distances
from the maximum local reaching centrality

GR = 1

N − 1

∑
i

[
cmax
R − cR(i)

]
, (2)

where cmax
R denotes the largest local reaching centrality in the

network. The normalization factor is the maximum possible
value of the sum in a graph with N nodes (this can be achieved
in a star graph). The definition of the GR can be written in a
more expressive form

GR = N

(N − 1)2

[
Cmax

R − 〈CR〉]. (3)

Here 〈·〉 is the average over the nodes. Thus GR is proportional
to the difference between the average and the maximum size
of the reachable sets.
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FIG. 1. (Color online) Difference between (a) undirected and (b) directed graphs. (c) On a large scale, the structure of the undirected graph
can be described by the largest connected component [the giant component (GC)] and the small components (SC) [14]. (d) In the case of a
directed graph, the giant components are best summarized in the bow-tie diagram [15,16]: The primary core is the giant strongly connected
component GS . Inside GS , each node can reach every other node. There are nodes that can reach the whole GS , but not vice versa (IN), and
together with GS they form the giant in-component Gin. The situation is similar for the giant out-component Gout, but in the reverse direction.
There are nodes that connect the Gin and Gout components, but are not in GS ; they form the tubes. There are also tendrils that attach to the Gin

and Gout components. The rest of the nodes are in the small disconnected components (DC).

B. Generating the function method in directed networks

The calculation of the reachable set of a node is equivalent to
the problem of finding the out-component, which is the union
of the reachable set and the node itself. The out-component
can be determined by the generalization of the generating
function formalism developed by Newman et al. [8,12] to
directed networks. Assuming that our graph has a joint degree
distribution pij , which is the probability of a randomly chosen
node having i in-degrees and j out-degrees, the corresponding
double generating function can be defined as

g00(x,y) =
∞∑

i,j=0

pijx
iyj (4)

and the generating functions for the excess in- and out-degree
distributions [8]

g10(x,y) = 1

〈k〉∂xg00(x,y), (5)

g01(x,y) = 1

〈k〉∂yg00(x,y), (6)

where 〈k〉 is the average degree of the network. Let πout
s

denote the probability that a randomly chosen node has
an out-component of size s and ρout

s the probability that a
randomly chosen edge points to an out-component of size s.
Their generating functions are

h0(y) =
∞∑

s=1

πout
s ys, (7)

h1(y) =
∞∑

s=1

ρout
s ys . (8)

If we assume that the graph is locally treelike (i.e., loops are
infrequent), these functions satisfy the following equations [8]:

h0(y) = yg00[1,h1(y)], (9)

h1(y) = yg10[1,h1(y)]. (10)

A B C D A B C D

(a) Order hierarchy (b) Nested hierarchy

(c) Flow hierarchy

FIG. 2. (Color online) Three different types of hierarchy. (a) The order hierarchy is simply a rank assigned to each unit making them an
ordered set. (b) The nested hierarchy is the hierarchy of the nested clusters of nodes. (c) In a (complete) flow hierarchy, nodes can be layered
in different levels so that the nodes that are influenced by other nodes (via an out-edge) are at lower levels. As the figures illustrate, each type
can be transformed into a flow hierarchy. In the order hierarchy one can introduce a directed edge between every pair of adjacent nodes in the
hierarchy. In the nested hierarchy one can assign a virtual node to each cluster and link a cluster to its contained clusters.
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Using these equations for the generating functions, it is
possible to derive a closed formula for the out-components
in directed graphs (for details see Appendix A):

πout
s = 〈k〉

(s − 1)!

[
ds−2

dys−2
(g01(1,y)g10(1,y)s−1)

]
y=0

. (11)

Thus, if we know the joint degree distribution, we can calculate
the P (CR) distribution of the reachable sets [and thus the
distribution of the local reaching centralities as well since it
differs from P (CR) only by a scale factor]. In order to calculate
P (CR) we have to determine the out-components and apply
the s = CR + 1 substitution. Knowing P (CR), we are able to
calculate GR at different average degrees.

It is important to note that Eq. (11) describes only the small
reaching centralities, i.e., the distribution of local reaching
centralities of the nodes outside the giant components. Above
the critical average degree, where the giant components are
already present, a significant fraction of the nodes can reach
a finite fraction of the whole network. In this regime, there
are three type of nodes besides the ones with small reaching
centrality: the nodes inside GS , Gin, and Gout; each type can
reach a different fraction of the graph. Thus, in the distribution
of the local reaching centrality above the percolation threshold,
a peak with finite width appears at large values. Before
applying these equations to random networks with different
degree distributions, we determine GR for the case of a
hierarchical tree.

C. Hierarchical tree

1. Local reaching centralities

In a tree graph with N vertices and a branching number d,
nodes in the same level have the same local reaching centrality.
Let us denote the size of reachable set of a node in the �th level
by C

(�)
R . The number of nodes and the size of the reachable set

in the �th level are (see Fig. 3)

k� = d�, (12)

C
(�)
R = N − ∑�

j=0 dj

d�
= N − d�+1−1

d−1

d�
. (13)

The probability that a randomly chosen node has a reachable
set of size C

(�)
R is k�/N . Substituting Eq. (12) in Eq. (13) gives

P
(
C

(�)
R

) = N (d − 1) + 1

N (d − 1)C(�)
R + Nd

. (14)

In the asymptotic limit of N → ∞, we get the following
approximation for the probability of the normalized local

k0 = 1, C
(0)
R = 39

k1 = 3, C
(1)
R = 12

k2 = 9, C
(2)
R = 3

k3 = 27, C
(3)
R = 0

FIG. 3. (Color online) Number of nodes and size of reachable
sets in the different levels of a hierarchical tree.

10-5

10-4

10-3

10-2

10-1

1

10-5 10-4 10-3 10-2 10-1 1

R
el

at
iv

e 
fr

eq
ue

nc
y

Size of reachable set

Theoretical (d = 2)
Numerical (d = 2)

Theoretical (d = 3)
Numerical (d = 3)

FIG. 4. (Color online) Theoretical and measured distributions of
the local reaching centrality in the hierarchical tree. The dots are
the results from graphs with d = 2 (red squares) and d = 3 (black
circles) the corresponding numbers of nodes are N2 = 32 767 and
N3 = 29 524.

reaching centrality (we also omit the � index since in the
mentioned limit the allowed discrete values of C

(�)
R /(N − 1)

are becoming dense in the interval [0,1] and c
(�)
R becomes

continuous):

P (cR) ≈ 1

NcR + d
d−1

. (15)

A comparison with numerical results is plotted in Fig. 4.
In the simulations, trees with branching numbers of 2 and
3 are used; the corresponding numbers of levels are 15 and
10. The numerical results show satisfactory agreement with
Eq. (15).

2. Global reaching centrality

Using the equations for the number of nodes and size of
reachable sets in the �th level, we can easily calculate the size
of the reachable sets

〈CR〉 =
L−1∑
�=0

P
(
C

(�)
R

)
C

(�)
R =

L−1∑
�=0

(
1 − d�+1 − 1

N (d − 1)

)
, (16)

where L denotes the number of levels (the level of the root is
zero). This number can be determined by the constraint that
the sum of the nodes in all levels gives the number of nodes:

L−1∑
�=0

d� = dL − 1

d − 1
= N. (17)

Arranging for L and simplifying, we obtain

L = ln[N (d − 1) + 1]

ln d
. (18)
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Calculating the sum on the right-hand side of Eq. (16) gives

〈CR〉 = L

(
1 + 1

N (d − 1)

)
− d

(d − 1)
. (19)

Substituting L into Eq. (19) and using Eq. (3) we get

GR = N

(N − 1)2

[
N − 1︸ ︷︷ ︸

Cmax
R

− ln[N (d − 1) + 1]

ln d

(
1 + 1

N (d − 1)

)
+ d

(d − 1)︸ ︷︷ ︸
〈CR〉

]
.

(20)

In the asymptotic case of N → ∞,

GR = 1 + 2d − 1

N (d − 1)
− ln[N (d − 1) + 1]

N ln d
. (21)

In Fig. 5 we show a comparison of Eq. (20) with the
simulations. In the numerical results, the number of nodes is
105 for every branching number. Thus Eq. (17) for the number
of levels does not hold exactly: There are fewer nodes in the
last level than expected. This fact is taken into account by
summing up only to L − 2 in Eq. (17):

L−2∑
�=0

d� = N. (22)

This means that in the expression of L, the number of nodes is
replaced by a reduced number (which is the number of nodes
at the bottom level). This modification gives better agreement
with the numerical calculations for large branching numbers.
From Eq. (17) it is also clear that the approximation is more
accurate if a branching number has an integer power close to
105. This can be observed in Fig. 5 as well.
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FIG. 5. (Color online) Comparison of the measured GR with the
theoretical prediction. The dots are the GR of trees with N = 105

nodes. Because of the fixed number of nodes, the number of levels
is approximated by Eq. (22), which neglects the bottom nodes in
the total number of nodes. The deviations from the theoretical curve
depend on the branching number. For branching numbers with an
integer power close to 105, the theoretical curve is more accurate.

D. Erdős-Rényi graph

1. Local reaching centralities

In the case of uncorrelated in- and out-degrees, the joint
degree distribution of an Erdős-Rényi (ER) graph [14,29] is
the product of two independent Poisson distributions

pij = e−2〈k〉 〈k〉i+j

i!j !
, (23)

where 〈k〉 denotes the average degree. The double generating
function has the form

g00(x,y) = e〈k〉(x+y−2), (24)

which is also the generating function of the excess degree
distribution in this case. Now using Eq. (11) we get

πout
s = 〈k〉

(s − 1)!

[
ds−2

dys−2
(e〈k〉s(y−1))

]
y=0

= 〈k〉s−1ss−2

(s − 1)!
e−〈k〉s . (25)

For the size of small reachable sets (without the giant
components)

P (CR) = 〈k〉CR (CR + 1)CR−1

CR!
e−〈k〉(CR+1). (26)

Figure 6 shows this result compared with the numerical
distributions. It is important to understand the limits of
Eq. (26). It is only the distribution for the size of the small
reachable sets, i.e., it does not contain GS [30]. This can
be seen on the plots. Before the transition, all of the nodes
are in separated small components and the reaching centrality
distribution vanishes very quickly. Above the transition point,
they start to aggregate inGS . Note that in this regime, where the
giant component appears, a large number of nodes have a large
reachable set. More precisely, the nodes in the Gin component
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FIG. 6. (Color online) Distribution of the small reachable set sizes
for the ER graph, based on the assumption that the graph is locally
treelike. Below the transition point (red squares), there is no node that
can reach any finite part of the graph. This changes when GS appears
at 〈k〉 = 1 (gray circles). The numerical results are the averages of
1000 independent calculations on networks with N = 104. Note that
Eq. (26) describes the distribution of the small components, thus the
emerging GS (the peak at large reachable sets) is beyond its scope.
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can reach every node in Gout. This is clearly seen in Fig. 6: The
peak has a finite width, corresponding to the three different
giant components.

2. Global reaching centrality

We have to distinguish between the graphs without GS and
with GS [8]. Below the transition point kc, there are only small
components. All of the nodes can reach only an infinitesimal
part in the graph, thus having an average reachable set size of
order unity [〈CR〉 = O(1)]. In this regime, GR is dominated
by the maximum value of the local reaching centrality.
Since most of the nodes can reach very few other nodes
and the distribution vanishes quickly, we can assume that
the largest reachable set belongs to only one node (and that
the corresponding out-component has the smallest relative
frequency). Given a graph with N nodes, this condition
translates as P (CR) ≈ 1/N for CR = Cmax

R . Thus, finding the
reachable set size that has only one realization can lead us to
find the largest component. In the Cmax

R � 1 limit we can use
the Stirling formula to approximate P (CR):

P (CR) ≈ e1−〈k〉 (〈k〉e1−〈k〉)CR

√
2π (CR + 1)3/2

. (27)

Writing the P (CR) ≈ 1/N condition and rearranging it for
CR we get the following exponential equation:( √

2π

Ne1−〈k〉

)2/3

(CR + 1)

= exp

[
2

3
(ln〈k〉 + 1 − 〈k〉)CR

]
. (28)

This equation can be solved in terms of the Lambert W

function [31]. The equation of the form

A(x − R) = e−Bx (29)

has the solution of x = R + 1
B
W [Be−Br/A]. Now we have

A =
( √

2π

Ne1−〈k〉

)2/3

, (30)

B = 2

3
(ln〈k〉 + 1 − 〈k〉), (31)

R = −1, (32)

so the final expression for the largest local reaching centrality
is

Cmax
R = −W

[
2
3 (ln〈k〉 + 1 − 〈k〉)e−(2/3)(ln〈k〉+1−〈k〉)( √

2π
Ne1−〈k〉

)−2/3]
2
3 (ln〈k〉 + 1 − 〈k〉) − 1. (33)

Now we turn our attention to the case when GS is already
present. In this case, to a good approximation, we can ignore
those nodes that are not in the bow-tie (they are relevant
only in the average local reaching centrality, but they have
only an infinitesimal contribution). Thinking of the bow-tie
picture, we can assume that there are some nodes that can
reach the whole bow-tie. Thus Cmax

R ≈ |Gin| + |Gout| − |GS |.
The average is slightly different and nontrivial, but let assume
that it is equivalent to the size of the giant out-component
Gout. If we assume that most of the nodes gather in GS , it
is also reasonable that the average size of reachable sets is
dominated by the nodes inGS and they can reach the wholeGout

component [see Fig. 1(d)]. Using these assumptions, the size of
the reachable sets is approximately |Gout|. The relative sizes of
these components are the same as the local reaching centrality.
In the generating function formalism they are given by

|GS |
N

= 1 − g00(u,1) − g00(1,v) + g00(u,v), (34)

|Gin|
N

= 1 − g00(u,1), (35)

|Gout|
N

= 1 − g00(1,v), (36)

where u and v are the smallest nonzero solutions of the
following equations [8]:

u = g01(u,1), (37)

v = g10(1,v). (38)

Since the generating function is symmetrical in its variables,
we have u = v. Using Eq. (24), the solution can be written in
terms of the Lambert W function, giving

u(〈k〉) = − 1

〈k〉W (−〈k〉e−〈k〉). (39)

For GR above the phase transition,

GR = |Gin|
N

− |GS |
N

= g00[u(〈k〉),1] − g00[u(〈k〉),u(〈k〉)]. (40)

The theoretical curve and the measurements are shown in
Fig. 7. The theoretical curve in the kc < 〈k〉 < 2 range is a
little below the numerical results. This is in good agreement
with the assumptions used in deriving Eq. (40): The average
reachable set is approximated by the Gout component;
however, at small average degrees, there are many small
out-components that decrease the average. The relative sizes
of the giant components are depicted in Fig. 8. It is clearly seen
that near the critical average degree, an appreciable portion
of the nodes is outside the giant components and they all have
a very small reachable set. Thus the difference between the
largest and average reaching centralities is larger in the real
network, resulting in a larger GR . The theoretical curve below
kc predicts lower GR , which indicates that the distribution of
P (CR) described by Eq. (26) is no longer valid for the whole
network when approaching the critical average degree.
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FIG. 7. (Color online) Global reaching centrality in the ER
graph. The dots are the average of 1000 independent calculations
on networks with N = 104. The errors are comparable to the size
of the dots. The lines show the different approximations in the two
regimes: below the percolation threshold (solid green line) and above
it (dashed blue line). Both approximations tend to deviate from the
numerical values near the transition point.

E. Exponential network

1. Local reaching centralities

In this section we calculate P (CR) and GR for the exponen-
tial network, motivated by the finding that the distribution of
many real-world networks can be well fitted by an exponential
[32]. An uncorrelated exponential network has a joint degree
distribution of the form

pij = (1 − e−1/κ )2e−(i+j )/κ , (41)

where the average degree can be obtained from the κ param-
eter: 〈k〉 = (e1/κ − 1)−1. The double generating function and
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the nodes.
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FIG. 9. (Color online) Distribution of the small reachable set sizes
in the exponential graph. Numerical results are the average of 1000
measurement on networks with N = 104. The emergence of the giant
components (which are not included by the analytical distribution)
can be clearly seen at 〈k〉 = 1 (gray circles) and 〈k〉 = 1.3 (purple
triangles).

its derivatives are

g00(x,y) = (e1/κ − 1)2

(e1/κ − x)(e1/κ − y)
, (42)

g10(x,y) = 1

〈k〉
(e1/κ − 1)2

(e1/κ − x)2(e1/κ − y)
, (43)

g01(x,y) = 1

〈k〉
(e1/κ − 1)2

(e1/κ − x)(e1/κ − y)2
. (44)

By the formula for the out-components we have

πout
s = 1

〈k〉s(s − 1)!

(2s − 2)!

s!
e−(2s−1)/κ . (45)

Substituting e1/κ = 〈k〉+1
〈k〉 we get

πout
s = (2s − 2)!

〈k〉s(s − 1)!s!

( 〈k〉
〈k〉 + 1

)2s−1

. (46)

Translating this to the small reachable sets (see Fig. 9 for a
comparison with numerical calculations) results in

P (CR) = (2CR)!

〈k〉CR+1CR!(CR + 1)!

( 〈k〉
〈k〉 + 1

)2CR+1

. (47)

2. Global reaching centrality

The first task is to find the smallest solution of the equations
u = g01(u,1) and v = g10(1,v). Since we assume uncorrelated
exponential distributions, we have u = v. The equation

u = g01(u,1) = 1

〈k〉(e1/κ − u)
(48)

is quadratic in u and has two solutions u1 = 1 and u2 = 1/〈k〉,
thus for 〈k〉 < 1 there are no giant components and we can use
the rarest component assumption as before with the ER graph.
To do this we have to solve the following equation for CR:

(2CR)!

〈k〉CR+1CR!(CR + 1)!

( 〈k〉
〈k〉 + 1

)2CR+1

= 1

N
. (49)
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Using the Stirling formula (without going into the details), this
equation can be approximated by

(
(〈k〉 + 1)

√
π

Ne

)(
CR + 1

CR

)CR

(CR + 1)3/2

= exp

[
2

3
ln

(
4〈k〉

(〈k〉 + 1)2

)
CR

]
. (50)

We assume that the rarest component is much larger than
one, thus (CR+1

CR
)CR ≈ e. This reduces our equation and we can

rewrite it as

ACR = e−BCR , (51)

where we used the shorthand notation

A =
(

(〈k〉 + 1)
√

π

N

)2/3

, (52)

B = −2

3
ln

(
4〈k〉

(〈k〉 + 1)2

)
(53)

and neglected the additional 1 on the left-hand side. The
solution of Eq. (50) is then

Cmax
R = 1

B
W

(
B

A

)
. (54)

If 〈k〉 > 1, this approximation fails because of the appearance
of the giant components. Using the solution of Eq. (48), the
relative sizes of the parts in the bow-tie diagram are

|GS |
N

=
(

1 − 1

〈k〉
)2

, (55)

|Gin|
N

= 1 − 1

〈k〉 , (56)

|Gout|
N

= 1 − 1

〈k〉 . (57)

By the same argument as with the ER graph, we get for GR

GR = 1 − 1

〈k〉 −
(

1 − 1

〈k〉
)2

. (58)

This result is shown in Fig. 10 along with the numerical results.
The same argument can be applied for the exponential network
as in the preceding section. The predicted curves fit well in the
very small and in the large average degree regimes.

F. Scale-free network

Without an exponential cutoff, the probability distribution
and double generating function of a scale-free network [33,34]
are

pij = (ij )−γ

ζ (γ )2
, (59)

g00(x,y) = Liγ (x)Liγ (y)

ζ (γ )2
, (60)

where Lin(x) is the polylogarithm function of the nth order and
ζ (x) is the Riemann zeta function. The generating functions
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FIG. 10. (Color online) Global reaching centrality of the expo-
nential graph and the predicted curves in the different regimes of 〈k〉.
Each numerical point is the average of 1000 independent runs on
networks with N = 104. The magnitude of the errors is on the order
of the dot sizes.

of the excess degree distributions are

g10(x,y) = Liγ−1(x)Liγ (y)

〈k〉xζ (γ )2
, (61)

g01(x,y) = Liγ (x)Liγ−1(y)

〈k〉yζ (γ )2
. (62)

Newman showed in Ref. [8] that the condition for the existence
of the giant components is

∂x∂yg00(x,y)|x,y=1 > 〈k〉. (63)

For the scale-free network, this equation reads

Liγ−1(x)Liγ−1(y)

xyζ (γ )2

∣∣∣∣
x,y=1

> 〈k〉. (64)

Now, if make use of the relation between the exponent and the
average degree 〈k〉 = ζ (γ−1)

ζ (γ ) and substitute x = 1 and y = 1
we get

〈k〉2 > 〈k〉 (65)

or equivalently

〈k〉 > 1. (66)

Thus there is a giant component if the average degree is larger
than one. However, if we look at the function

ζ (γ − 1)

ζ (γ )
(67)

we can conclude that this condition gives giant components
for any γ � 2. Numerical simulations show that this is not the
case (see Fig. 11).

If we substitute g00(x,y) and its derivatives in Eqs. (3), (37),
and (38) we observe that there are giant components of unit
size for every exponent larger than 2 since the formula

πout
s = 〈k〉

(s − 1)!

[
ds−2

dys−2
(g01(1,y)g10(1,y)s−1)

]
y=0

= 1

ζ (γ )s(s − 1)!

[
ds−1

dys−1
(Liγ (y)s)

]
y=0

(68)
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FIG. 11. (Color online) Distribution of the reachable set sizes
in the scale-free graph. Each data point is the average of 1000
distributions on networks with N = 104. The giant components
emerge at γ = 2 (blue circles) and vanish above this threshold (green
triangles).

gives exactly zero for any s and the equation

u = g01(u,1) = Liγ (u)

ζ (γ )
(69)

has always two solutions u1 = 0 and u2 = 1.
These show the limitations of the generating function

formalism in directed networks. The limits of the method are
already well known in some cases of undirected scale-free
networks as well [9]. In the undirected case, networks with
small exponents tend to have many hubs and the clustering
coefficient also increases remarkably [9]. A large clustering
coefficient means that the graph is not locally treelike, which
is the main assumption of the applied method. Equations (68)
and (69) point out that, for directed networks, the method can
barely be applied to scale-free networks.

However, it is possible to give a qualitative approximation
for GR in the case of γ > 2 (this is the most important regime
in terms of real networks [7]). We use our observation from
the simulations that there is no GS and in scale-free networks
very large degrees can appear. Since a large number of the
nodes have few out-degrees, GR is obviously dominated by
Cmax

R . Let us assume that the network breaks down into small
components that are the neighborhoods of the nodes with large
out-degrees (i.e., every component gathers around a hub). In
this case, the largest reachable set is the largest out-degree. In a
scale-free network with a degree distribution of pk ∝ k−γ , the
largest degree is well approximated by kmax ≈ N1/(γ−1) [35].
Using this approximation for the out-degrees and not taking
into account the in-degrees we get

GR � N (2−γ )/(γ−1). (70)

A comparison of the real GR and this approximation is shown
in Fig. 12. For large exponents, Eq. (70) agrees well with the
numerical results; below γ = 3, it becomes less accurate. Note
that the lower the exponent, the larger the number of nodes that
have a large degree. The predicted GR becomes larger than
the real value at some point (γ ≈ 2.3), that is, the number of
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FIG. 12. (Color online) Global reaching centrality of the scale-
free graph. Numerical results are the average of 1000 independent
calculations on networks with N = 104. Errors have a magnitude of
the dot sizes. The largest degree approximation fits well above γ > 3
and gives a lower value below it.

large hubs increases, which results in a larger average reaching
centrality as well.

It is worth pausing here to understand the nonmonotonic
dependence of GR on the exponent. For large exponents, the
scale-free network tends to behave similarly to the Erdős-
Rényi graph. Thus it becomes more homogeneous. Its average
degree also decreases and instead of the hubs, more and
more small disconnected components appear. As the network
becomes more fragmented, both the average and maximum
reaching centrality decrease, which results in a very small GR .
In the case of small exponents, it is known that the clustering
coefficient of undirected scale-free networks significantly
increases [9]. This phenomenon is likely to be present in
the directed case as well. With large clustering, the number
of directed circles also increases. However, the nodes in a
directed circle have exactly the same reachable set and thus
similar local reaching centrality. This tendency of equalization
in the local reaching centralities affects the heterogeneity of the
distribution and enables multiple nodes to reach (or approach
closely) the maximum reaching centrality. The result is again
a decreasing GR .

III. EFFECTS OF CORRELATIONS

A. Degree correlations

In the preceding sections we assumed that the joint
probability distribution of the in- and out-degrees is simply
the product of two independent distributions, i.e., there are no
degree correlations. However, it is known that there are such
correlations in real networks [36]. It is also known that these
correlations have remarkable effects on the different properties
of networks (percolation thresholds, epidemic thresholds, etc.)
[37,38]. In this paper, we numerically study the effect of
two types of correlations on GR: one-point correlations and
directed assortative mixing. The one-point correlation is the
Pearson correlation between the in- and out-degree of the
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TABLE I. One- and two-point correlations of real networks along
with their references. With the exception of the metabolic networks,
most of them have small correlations.

Network 〈k〉 ρ r

Food networks
Ythan [2] 4.452 0.168 −0.249
LittleRock [39] 13.628 −0.138 −0.394
Grassland [2] 1.557 −0.179 −0.233

Electric
s1488 [40] 2.085 −0.274 0.218
s5378 [40] 1.467 −0.137 0.151
s35932 [40] 1.683 −0.074 0.088

Trust
WikiVote [41] 14.573 0.318 −0.083
College [42,43] 3 0.053 −0.159
Prison [42,43] 2.716 0.201 0.129

Regulatory
TRN-Yeast-1 [44] 2.899 0.025 −0.173
TRN-Yeast-2 [45] 1.568 −0.236 −0.220
TRN-EC [45] 1.239 −0.082 0.085

Metabolic
C. elegans [3] 2.442 0.924 −0.174
E. coli [3] 2.533 0.923 −0.167
S. Cerevisiae [3] 2.537 0.923 0.182

nodes

ρ = 〈kinkout〉V − 〈kin〉V 〈kout〉V
σV (kin)σV (kout)

. (71)

The angular brackets denote averages over the nodes and
σV (k) =

√
〈k2〉V − 〈k〉2

V is the standard deviation of the
corresponding degrees. Somewhat similarly, one can define
the Pearson correlation between the out-degree of the start of
an edge and the in-degree of its end term [36]

r = 〈jinkout〉E − 〈jin〉E〈kout〉E
σE(jin)σE(kout)

. (72)

Here jin is the in-degree of the node an edge points to,
kout is the out-degree of the node that an edge comes from,
and σE(k) =

√
〈k2〉E − 〈k〉2

E , where the averages run over the
edges. We will refer to this quantity as the two-point correlation
or directed assortativity since it is a plausible generalization
of the assortativity in undirected networks. Table I shows the
two correlations in several real networks.

B. One-point correlations

1. Numerical results

In order to study the effect of the one-point correlation,
we generated the in- and out-degree lists for the network with
a given distribution and average degree. After randomizing
both lists, we fixed the out-degree list while we successively
swapped randomly chosen elements in the in-degrees. After
every swap, we calculated ρ(kin,kout) and accepted the new list
whenever the correlation increased (decreased). We measured
GR when the difference between the correlation of the current
state and the last measured state was larger than 0.01 [this is the
resolution of the measured GR(ρ) function]. The dependence
of GR on the one-point correlation is shown in Fig. 13. It can

be clearly seen that the behavior of GR varies and depends
strongly on the average degree. In the ER and exponential
graphs, even the monotonicity of the curves changes. In the
scale-free network, GR saturates at some level of correlation
and the exponent effects only the threshold above which further
correlations do not change GR .

2. Qualitative approach

In this section we present a simple argument to understand
the direction of change if small correlations are present in the
graph. It is important to emphasize that the analytic expression
for the effects of correlations is beyond the scope of this
paper and we intend to give only a rather qualitative insight of
the behavior. For this we consider the following joint degree
distribution:

pjk = pjpk + ρσ 2
pmjk, (73)

where the only criteria for the mjk matrix are
∞∑

j=0

mjk =
∞∑

k=0

mjk = 0, (74)

∞∑
j,k=0

jkmjk = 1. (75)

With these conditions, the one-point degree correlation of the
above joint degree distribution is exactly ρ [36]. Note that
we assumed the same distribution for the in- and out-degrees
[σV (kin) = σV (kout) = σp]. The generating function of the
modified distribution

g00(x,y) = g
p

00(x,y) + ρχ00(x,y), (76)

where the g
p

00 is the generating function of the original joint
degree distribution and we introduced the following function:

χ00(x,y) = σ 2
p

∞∑
j,k=0

xjykmjk. (77)

Above the critical average degree, we have to solve

u = g
p

01(u,1) + ρ

〈k〉∂yχ00(u,1) (78)

and GR is given by the modified generating function

GR = g00(u,1) − g00(u,u). (79)

The exact solution of Eq. (78) depends on the actual choice of
mjk and in most cases it is not possible to find in closed form.
However, for small correlations (ρ � 1), we can describe the
change in GR at a given average degree. In this case, the
solution of Eq. (78) is very close to the solution of the original
equation without the correlations: u = u0 + uρ , where u0 is
the solution of Eq. (37) and uρ is the small change. Expanding
both sides and keeping only the linear terms in ρ and uρ , we
get

uρ = 1

〈k〉
∂yχ00(u0,1)

1 − ∂xg
p

01(u0,1)
ρ = β(u0)ρ. (80)

Here we encapsulated the coefficient of ρ in β(u0). This
coefficient is negative above the transition point for the model
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FIG. 13. (Color online) The GR versus the one-point correlations for different average degrees in the Erdős-Rényi and exponential graphs
and for different exponents in the scale-free network. Each point on the plots is the average of at least 200 independent simulations on networks
with N = 104 nodes. In the case of the scale-free network, only a small negative degree correlation is accessible through random optimization.

networks we are interested in (for the proof, see Appendix B).
In the linear approximation, GR looks like

GR = G
(0)
R + G

(ρ)
R , (81)

where

G
(0)
R = g

p

00(u0,1) − g
p

00(u0,u0) (82)

and

G
(ρ)
R =

[
β(u0)(1 − 2u0)

dg
p

0 (x)

dx

∣∣∣∣
x=u0

− χ00(u0,u0)

]
ρ. (83)

In the derivation of G
(ρ)
R we used the observation that when the

joint degree distribution factorizes, the generating function is
also a product of the single distributions, i.e.,

g
p

00(x,y) = g
p

0 (x)gp

0 (y) (84)

and also

g
p

0 (u0) =
∞∑

j=0

pju
j

0 = 1

〈k〉
∞∑

j,k=0

ku
j

0pjk = g
p

01(u0,1) = u0.

(85)

Now we have to interpret the result we obtained for the change
in GR . First, for simplicity, let us choose mjk as proposed in
Ref. [36]:

mjk = (pj − φj )(pk − φk)

(〈k〉 − 〈k〉φ)2
, (86)

where φj is an arbitrary normalized distribution and 〈k〉φ is
its average. Moreover, we choose the φj distribution such that
〈k〉φ = 1, which is the critical point of the ER and exponential
networks. In this case χ00(u0,u0) � 0 and also note that

β(u0) < 0, (87)

dg
p

0 (x)

dx

∣∣∣∣
x=u0

> 0 (88)

above the transition point. The behavior of G
(ρ)
R is governed

by the relation of the two terms on the right-hand side of
Eq. (83). It is easy to check that near the critical point (u0 ≈ 1),
the second term is very close to zero and G

(ρ)
R is dominated

by the first term, which is positive. This means that when the
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FIG. 14. (Color online) (a) Largest reachable set below the transition point and one of the nodes with large out-degree in the largest reachable
set (A). (b) Without degree correlations, the expected number of in-degrees of A is the average degree and the maximum out-degree of its
in-neighbors is also moderate. (c) With degree correlations, the nodes with a large out-degree have a large in-degree as well; with increasing
number of in-neighbors the expected maximum out-degree of its neighbors increases as well.

average degree is small but the graph already has giant com-
ponents of finite size, small one-point correlations increase its
hierarchical structure, as in Fig. 13. For large average degrees,
u0 → 0 and both terms in Eq. (83) becomes negative, resulting
in a decreasing effect of small correlations, in good agreement
with the numerical results [see Figs. 13(a) and 13(b)]. In the
regime where GR has a maximum (u0 = 1

2 ), Eq. (83) predicts
a negative coefficient for ρ, but as Fig. 13(b) shows, this is
not the case for the exponential network. This discrepancy
suggests that the change in the slope near this point is not
trivial and strongly depends on the details of the addition of
correlations.

Below the transition point, there are no giant components
and GR is dominated by the largest reachable set. We can
assume that the node with the largest reachable set [node C in
Fig. 14(a)] or some of its out-neighbors have a large out-degree
since this increases the probability of reaching more nodes.
Consider this neighbor with the large out-degree [node A
in Fig. 14(a)]. In the case of negative or zero correlations,
the expected maximum of the out-degree of its in-neighbors
is small [Fig. 14(b)]. However, in the presence of positive
one-point correlations, the number of in- and out-edges tend
to be similar; in other words, the node in question has a large
in-degree as well. In this case, the expected maximum of
the out-degree of its in-neighbors (and thus of the candidate
node for the largest local reaching centrality) increases and
there are more reachable nodes. The scale-free network is a
special case in the sense that the largest reachable set is to a
good approximation the neighborhood of a hub. Because of
the correlations, this hub tends to have many in-neighbors as
well and is more likely to have a neighbor with many links
[Fig. 14(d)]. The numerical results in Fig. 13(c) suggest that
the maximum out-degree of the nearest neighbors reaches its
saturation level at relatively small correlations.

C. Two-point correlations

The two-point correlation of the type we investigate in
this paper is the generalization of the assortativity to directed
networks [36]. In order to introduce this correlation in our
calculations, let P(jin,jout; kin,kout) denote the probability that
a randomly chosen edge starts at a node with jin in- and
jout out-degrees and points to a node with kin in- and kout

out-degrees. This probability satisfies the following equations:

∞∑
jin,jout=0

P(jin,jout; lin,lout)

=
∞∑

kin,kout=0

P(lin,lout; kin,kout) = plinlout, (89)

which also creates its connection to the joint degree distribu-
tion. Without two-point correlations (and other correlations),
the two-node joint distribution factorizes:

P0(jin,jout; lin,lout) = pjinpjoutpkinpkout . (90)

We can modify it by adding a correlation between pjout and
pkin :

P r (jin,jout; kin,kout)

= pjinpkout

[
pjoutpkin + rσ

(
pjout

)
σ
(
pkin

)
mjoutkin

]
. (91)

However, if we recover the joint degree distribution, the added
term vanishes:

pr
linlout

=
∞∑

jin,jout=0

Pr (jin,jout; lin,lout) = p0
linlout

(92)

because the sum of any row or column of the matrix mjoutkin

must be zero [Eq. (83)]. This means that the assortativity
defined by Eq. (72) does not affect GR directly (via the joint
degree distribution). Figure 15 depicts the numerical results
that were produced by the same protocol as in the preceding
section. In the case of the ER and exponential networks, a small
decrease in GR can be observed, regardless of the average
degree. The scale-free network has a nonmonotonic behavior,
but for larger assortativity, a decrease in GR can be seen. These
results point out that, although the two-point correlation does
not affect the joint degree distribution directly, it changes the
hierarchical structure of the network a little. This small effect
can be understood if we look at the different typical structures
around an edge (Fig. 16). In the case of large two-point
correlations, the nodes with large out-degree (those that are
expected to have a larger reachable set) have out-neighbors
with large in-degrees [Fig. 16(a)]. This means that the nodes
they can directly reach are also reachable from many other
nodes (that also have large out-degrees). This reduces the
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FIG. 15. (Color online) Effect of two-point correlations to GR for the random graph models. Each point is an average of at least 100
independent measure on networks with N = 1000.

difference between the local reaching centralities among
nodes with large CR or, in other words, introduces higher cR(i)
in the definition of GR [see Eq. (2)]. The positive two-point
correlation also introduces bottlenecks in the network [Fig.
16(b)]. These structures accumulate many nodes on the
in-edges that have a similar reachable set, thus also reducing
the differences. In contrast, if the graph has negative two-point
correlations, nodes with a large out-degree can reach their
out-neighbors uniquely [Fig. 16(c)]. Nodes that are reachable

from independent directions also emerge [Fig. 16(d)]. These
nodes have in-neighbors with a small out-degree. Both effects
decrease the ratio of overlapping reachable sets, which results
in a reduced similarity in the CR values.

IV. CONCLUSION

The global reaching centrality GR is a measure constructed
to provide a characteristic number for the flow hierarchy
of a directed network. In this paper we investigated the

(a) r >0 (b) r >0 (c) r <0 (d) r <0

FIG. 16. (Color online) Illustration of the two limiting cases of two-point correlations r defined by Eq. (72). The edges that are correlated
are shown in thick red. In the case of r > 0, the reachable sets of hubs tend to be similar (a) and bottlenecks emerge (b), causing an increase
in the overlap of reachable sets. In negatively correlated networks (r < 0), hubs can have their own reachable sets (c) and nodes with a large
in-degree tend to be reachable from independent parts of the network (d), decreasing the overlap between reachable sets.
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behavior of this measure and its dependence on the joint degree
distribution. We have shown that the hierarchical structure of a
random network strongly depends on the existence of the giant
strongly connected component GS and other giant components
in the network. In the regime of low average degree, GR is
dominated by the node with the largest reachable set that can
be approximated from the distribution of the local reaching
centralities. This distribution is connected to the distribution
of small out-components in a network and can be analytically
determined using the generating function method generalized
to directed networks. In the presence of GS , GR can be
well approximated by the difference in the sizes of the giant
in-componentGin andGS and both can be calculated exactly for
some network models with a given degree distribution. Using
the approximations for GR , we calculated its dependence on
the average degree for different network models: a directed
random tree, the Erdős-Rényi graph, and the exponential and
scale-free networks. The results show that in the sense of
hierarchy, there is an optimal average degree at which GR has
a maximum value. It is a result of the competition between the
size of the largest reachable set (which can be found by nodes in
Gin) and the average size of reachable sets (which is dominated
by the nodes in GS). Near the transition point, the size of Gin

is close to the size of GS and the difference is increasing since
Gin grows faster in the beginning. In the limit of large average
degree, the sizes of both giant components tend to become
equal since even the two set of nodes tend to be the same.

We also investigated the dependence of GR on two types
of degree correlations: the one-point correlation (the in-degree
and out-degree of a node) and the two-point correlation (the
out-degree of the source and the in-degree of the target of a
directed edge). Numerical results show that the hierarchical
structure changes systematically with the one-point correla-
tion. This is in accord with the fact that GR can be expressed
with the joint degree distribution and later is directly affected
by the one-point correlations. We have pointed out that in the
two limiting cases of the average degree, the qualitative effect
of small correlations can be understand by the addition of a
correlation term to the uncorrelated joint degree distribution.
When the average degree is very low, small correlations have
a positive effect on GR . This is not true for the denser graph,
in which correlations decrease GR . There is also a regime
of average degree in which a given level of correlation can
maximize the hierarchy.

Both numerical and analytical results suggest that the
two-point correlation (which is the generalization of the
assortativity for directed networks) does not effect GR directly.
However, a small negative effect can be observed. It can be
understood by looking at the effect of the two-point correlation
on the neighborhood of an edge.

The results on the random network models have shown a
deeper insight into the behavior of GR , but we have to keep
in mind that they are only the first steps in the understanding
of hierarchy. The main message of the results is that hierarchy
is sensitive to the edge density of a network and tends to
emerge more likely in sparse networks. This is in good
agreement with the observation that most of the real-world
networks are in the low-density range and many of them
have an inherent hierarchical structure. The results also point
out that correlations can have a large effect and can change

the hierarchical structures fundamentally (they can produce a
finite magnitude of GR even if the network would have an
infinitesimal GR otherwise). This is another indicator of the
well-known fact that one has to take into account the presence
of correlations when dealing with real networks.
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APPENDIX A: OUT-COMPONENTS IN
DIRECTED GRAPHS

Using the definition of the generating function h0(y), we
can obtain the probabilities for the out-components:

πout
s = 1

(s − 1)!

[
ds−1

dys−1

(
h0(y)

y

)]
y=0

. (A1)

Substituting the expression behind the derivation from Eq. (9),
we get

πout
s = 1

(s − 1)!

[
ds−1

dys−1
g00[1,h1(y)]

]
y=0

= 1

(s − 1)!

[
ds−2

dys−2
{∂yg00[1,h1(y)]h′

1(y)}
]

y=0

. (A2)

This equation can be transformed into an integral by the
Cauchy formula:

πout
s = 1

2πi(s − 1)

∮
∂yg00[1,h1(y)]

ys−1

dh1

dy
dy

= 1

2πi(s − 1)

∮
∂yg00[1,h1]

ys−1
dh1. (A3)

The contour goes around the origin and has an infinitesimal
radius, ensuring that it does not enclose poles. In our
calculations y0 = 0. In Eq. (A3) we just changed variables.
We have to note that when y → 0, h1 also converges to zero.
This can be easily seen from Eq. (10). We can also eliminate
y from the argument using Eq. (10):

πout
s = 1

2πi(s − 1)

∮
∂yg00[1,h1]g10[1,h1]s−1

hs−1
1

dh1

= 〈k〉
2πi(s − 1)

∮
g01[1,h1]g10[1,h1]s−1

hs−1
1

dh1. (A4)

A second application of the Cauchy formula gives us the final
form of the out-components:

πout
s = 〈k〉

(s − 1)!

[
ds−2

dys−2
(g01(1,y)g10(1,y)s−1)

]
y=0

. (A5)

APPENDIX B: PROOF OF β(u) < 0

We show that the coefficient

β(u) = 1

〈k〉
∂yχ00(u,1)

1 − ∂xg
p

01(u,1)
(B1)
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that appears in Eq. (80) is negative for any 〈k〉 > kc. The
numerator has the form of

∂yχ00(u,1) = σ 2
p

∞∑
j,k=0

xjkmjk, (B2)

where the only criteria for mjk are Eqs. (74) and (75). They
can be satisfied by the following choice [36]:

mjk = (pj − φj )(pk − φk)

(〈k〉 − 〈k〉φ)2
. (B3)

Here φj is an arbitrary normalized distribution and 〈k〉φ is the
corresponding average. With this form of mjk , the numerator
looks like

∂yχ00(u,1) = σ 2
p

g
p

0 (u) − g
φ

0 (u)

〈k〉 − 〈k〉φ , (B4)

where g
p

0 (u) and g
φ

0 (u) are the corresponding generating
functions for the distributions pj and φj . Assume that 〈k〉 >

〈k〉φ and fix the φj distribution such that 〈k〉φ = kc. It can
be easily seen that for the ER and exponential networks,
g

p

0 (u) < g
φ

0 (u) for any u.
We only have to show that ∂xg

p

01(u,1) < 1 above the
transition point. For this to see, let us consider the function
in question as a function of the average degree

F (〈k〉) = ∂xg
p

01[u(〈k〉),1] (B5)

 1

kc

F(
〈k

〉)

〈k〉

F′ < 0

FIG. 17. (Color online) Illustration of F (〈k〉) for the proof of
β(u0) < 0. Its value at kc follows directly from the definition and its
derivative is examined in the text.

and note that F (kc) = 1. Furthermore, F (x) is a decreasing
function of its argument

dF (〈k〉)
d〈k〉 = ∂2

xg
p

01(x,1)
∣∣
x=u(〈k〉)︸ ︷︷ ︸

>0

du(〈k〉)
d〈k〉︸ ︷︷ ︸
<0

. (B6)

The first term on the right-hand side is positive for all 0 <

u < 1 because it is a sum of positive numbers. In contrast, the
second term is negative in the ER and exponential networks
because the size of the giant components increases with the
average degree. Thus F (〈k〉) < 1 (see Fig. 17).
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