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The return-to-origin probability and the first-passage-time distribution are essential quantities for understanding
transport phenomena in diverse systems. The behaviors of these quantities typically depend on the spectral
dimension ds . However, it was recently revealed that in scale-free networks these quantities show a crossover
between two power-law regimes characterized by ds and the so-called hub spectral dimension d (hub)

s due to the
heterogeneity of connectivities of each node. To understand the origin of d (hub)

s from a theoretical perspective,
we study a random walk problem on hierarchical scale-free networks by using the renormalization group (RG)
approach. Under the RG transformation, not only the system size but also the degree of each node changes due to
the scale-free nature of the degree distribution. We show that the anomalous behavior of random walks involving
the hub spectral dimension d (hub)

s is induced by the conservation of the power-law degree distribution under the
RG transformation.
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I. INTRODUCTION

The random walk (RW) approach has been used for
understanding diffusive phenomena in diverse systems [1,2].
The return-to-origin (RTO) probability and the first-passage-
time (FPT) distribution are of particular interest and use to
applications. The RTO probability Rm(t) is the probability that
a RWer returns to a starting position m after t time steps and is
determined by the spectral density of the Laplacian matrix [3].
The FPT distribution Fs→m(t) is the probability that a RWer
starting from site s arrives at m at time t for the first time, and
the mean FPT (MFPT) can be obtained from the first moment
of the FPT distribution. Knowledge of the RTO probability and
FPT distribution in diverse systems such as regular lattices,
disordered fractal lattices in Euclidean space, and complex
networks has long been essential in understanding the transport
properties [4–14].

It is generally known that the decaying exponents of the
RTO probability and FPT distribution as a function of time are
determined by the spectral dimension ds [1,15–22]. Moreover,
the MFPT depends on the system size N as N2/ds for ds < 2
and as N otherwise [6,23–27]. However, a recent study [28]
showed that the MFPT scales as N2/ds even for the case
of a spectral dimension ds > 2 when the target node is a
hub. Moreover, in our previous studies [29,30] we found
numerically that the RTO probability and FPT distribution
depend on the degree of the target node in scale-free networks.
The theory we developed in Refs. [29,30] was successful in
explaining these numerical results by introducing the so-called
hub spectral dimension d (hub)

s ; however, the theory is based on
a heuristic argument and scaling ansatz. Thus, to illustrate
the anomalous behavior of the RTO probability and FPT
distribution due to the presence of the hub, a more rigorous
theory is needed.

To establish rigorous mathematical grounds for our the-
ory, we study an RW problem on hierarchical scale-free
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networks [24,31,32]. We adopt the renormalization group
(RG) transformation approach to trace how the system is
rescaled as the RG transformation proceeds in the hierarchical
network. The occupation probability of the RWers at a certain
node and its rate of change are fundamental quantities for
the RG transformation. The rescaling behavior generates
the hub spectral dimension. The hierarchical network is an
ideal toy model for scale-free networks because it possesses
control parameters that can change the spectral dimension.
We calculate the asymptotic behavior of the RTO probability
and FPT distribution as a function of the control parameters
and obtain the hub spectral dimension for various spectral
dimension values.

We also consider the global MFPT (GMFPT), which is
the average of the mean FPT over all starting nodes of RWs
to a given destination node. This quantity can be used for
understanding how fast diffusive spreading takes place on
a network. Two types of GMFPTs are considered. In the
first type, the average is taken over all starting nodes with
equal weight, while in the second type, the average is taken
with a weight proportional to the source degree. We show
that, counter-intuitively, the qualitative behaviors of the two
GMFPTs are the same.

The paper is organized as follows. In Sec. II we consider
the probability flux of a RWer moving in discrete space and
time and derive the relations between the RTO probability
and FPT distribution for a given starting or target node. We
also introduce the hierarchical model networks. In Sec. III we
obtain the RTO probability for the hub starting node by the
decimation method. In Sec. IV we derive the FPT distribution
and the MFPT. We then summarize and discuss our findings
in Sec. V.

II. MODEL AND METHODS

In this section we first introduce the probability-flux
approach for studying the FPT problem [23], and explain how
to construct the hierarchical networks, called the (u,v) flower
model, on which RWs are carried out.
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A. Probability-flux approach

Let us consider the RWs on a network composed of N nodes
and L undirected links. The occupation probability Pi(t + 1)
of RWs at node i at time t + 1 satisfies the equation

Pi(t + 1) =
∑
j∈V

Aij

kj

Pj (t), (1)

where V = {1,2, . . . ,N} is the set of node indices, Aij = 0
or 1, which is the element of the adjacency matrix, and kj =∑

�∈V Aj� is the degree of node j . The probability flux from
node i to j is defined as

Qij (t) ≡ Pi(t)

ki

− Pj (t − 1)

kj

. (2)

This quantity describes the difference between the outgoing
flux from i to j at time t and the incoming flux from j to i at
t − 1. The net flux from i is then calculated as

Qi(t) ≡
∑

j∈n.n(i)

Qij (t), (3)

where n.n(i) = {j ∈ V|Aij = 1} denotes the set of the nearest
neighbor nodes of i. If there is no source or sink node in a
system, the sum of the occupation probabilities are conserved,
and the net flux of every node is always zero in a steady state.
From Eqs. (2) and (3), one finds that the generating functions
qi(z) ≡ ∑∞

t=0 Qi(t)zt and pi(z) ≡ ∑∞
t=0 Pi(t)zt are related to

each other by

qi(z) =
∑
j∈V

(kj δij − zAij )
pj (z)

kj

≡
∑
j∈V

Mij (z)
pj (z)

kj

, (4)

where we set Pi(−1) = 0 for all i and introduced the real
symmetric N × N matrix M(z). This equation will be solved
by the decimation method in the next section under selected
initial conditions.

If the RWer starts at a node m, the probability flux becomes
nonzero at the node m at time t = 0, as Pm(0) = 1 and
Pj (−1) = 0 for j the neighbor nodes of m. Otherwise, the
probability flux is zero. Therefore, it follows that Qi(t) =
δimδt0 or equivalently

qi(z) = δim. (5)

Under this boundary condition, let us denote the occupation
probability at node i as Cm→i(t) = Pi(t). Its generating
function cm→i(z) is then obtained by Eq. (4) as

cm→i(z) = kiM
−1
im (z), (6)

which gives the generating function of the RTO probability
rm(z) = kmM−1

mm(z). It should be noted that M(z) is symmetric
and nonsingular if |z| < 1.

Adopting another boundary condition for the probability
flux helps to investigate the FPT distribution of the RW dynam-
ics. Suppose that we study the FPT distribution from node s to
m. Then the quantity can be computed by investigating the RW
with a source of the probability flux at node s and time t = 0
and a sink at node m and time t = tFP , where tFP is the time

of the first arrival at node m and it can be different for different
realizations of the RW dynamics. This condition means that
Ps(0) = 1 and Pm(t) = 0 for all t . The ensemble-averaged
boundary condition for the probability flux is therefore given
by Qi(t) = δisδt0 − Fs→m(t)δim, with Fs→m(t) = 〈δttFP

〉 being
the FPT distribution from node s to m. The generating function
qi(z) is given as

qi(z) = δis − fs→m(z)δim. (7)

For m �= s, the generating function pm(z) is always zero, i.e.,
pm(z) = 0 since the node is just a sink. Note that qm(z) =
−fs→m(z). On the other hand, in case of m = s, it holds that
pm(z) = 1 since the node is a source, and that qm(z) = 1 −
fm→m(z). By Eq. (4) we find for m �= s that

0 = pm(z) = km

[
M−1

ms (z) − fs→m(z)M−1
mm(z)

]
.

For m = s, it follows that

1 = pm(z) = km [1 − fm→m(z)] M−1
mm(z).

Finally we obtain by using Eq. (6)

fs→m(z) = km

rm(z)

cm→s − δms

ks

, (8)

where we used the relation M−1
ms (z) = M−1

sm (z).
For the application to the transport from any source node to

a given target node, we consider the FPT distribution averaged
over all possible starting nodes. One may consider this global
FPT (GFPT) distribution of two different types: Fm(t) and
F̂m(t) defined as

Fm(t) ≡
∑
s∈V

ks

2L
Fs→m(t)

and

F̂m(t) ≡
∑
s∈V

1

N
Fs→m(t). (9)

Fm(t) is the average of Fs→m(t) in the equilibrium state
in which the occupation probability is Pi(t) = ki/(2L). On
the other hand, all the starting nodes have equal weights in
computing F̂m(t).

The generating function of Fm(t) is simply related to that
of the RTO probability as

fm(z) = kmz

(2L)(1 − z)rm(z)
. (10)

The generating function f̂m(z) = ∑
t z

t F̂m(t) involves the
occupation probabilities at the nodes other than m as

f̂m(z) = km

Nrm(z)

∑
s∈V

cm→s(z) − δsm

ks

. (11)

B. (u,v) flower networks

We will derive the RTO probability and the GFPT for hub
nodes in the (u,v) flower networks, the construction of which
is described in detail in Refs. [24,31–33] and in brief below as
well. The model network, which we call the flower network.
Initially, at generation 0, there are two nodes connected by a
link. The two nodes have indices 0 and 1. For n = 1,2, . . . , the
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FIG. 1. (Color online) Construction of a (2,3) flower network.

network at the (n + 1)th generation is obtained by replacing
each link by a leaf as described in Fig 1. Each leaf consists of
two old nodes at both ends, which existed also in the nth
generation, and two linear chains consisting of u − 1 and
v − 1 new nodes, respectively, where u and v are the model
parameters. The growth of the flower network for u = 2 and
v = 3 is illustrated in Fig. 1. Basic properties of the flower
networks are well known [24,31,32] and also summarized in
Table I. As noted in Table I, the flower networks with different
(u,v) may display different characteristic, i.e., being either
nonfractal or fractal network. The spectral dimension may be
larger or smaller than 2 depending on u and v. Therefore, the
model network is useful to survey how the spectral dimension
influences the behaviors of the RTO probability and the GFPT
distribution. For the later use, we introduce V (n) to denote the
indices of the nodes present in the nth generation of the flower
network. We will use the superscript (n) to denote different
generations like, e.g., A

(n)
ij and k

(n)
j .

III. RTO PROBABILITY OF THE HUB

In this section we obtain the RTO probability of one of
the two oldest nodes, indexed by 0 and 1, respectively, in
the (u,v) flower network, which are hubs having the largest
degree 2n at the nth generation. Below we solve Eq. (4) by
performing decimation from the youngest to the oldest nodes
to finally obtain r0(z) = p0(z) of the oldest (hub) node 0 in
the (u,v) flower network. For the purpose, we introduce the
decimation-step-dependent variables a(s) and φj (s) at each
decimation step s with

a(0) = 1/z and φj (0) = pi

k
(n)
i a(0)

(12)

TABLE I. Basic properties of the (u,v) flower network at
generation n.

Number of links L(n) = (u + v)n

Number of nodes N (n) = u+v−2
u+v−1 (u + v)n + u+v

u+v−1
Degree of the oldest node k(n) = 2n

Degree distribution p(k) ∼ k−γ with γ = 1 + log(u+v)
log 2

Spectral dimension ds = 2 log(u+v)
log(uv)

to rewrite Eq. (4) as

qi =
∑

j∈V (n)

[
a(0)k(n)

j δij − A
(n)
ij

]
φj (0). (13)

Here we do not present explicitly the z dependence of φ(s) and
a(s) to focus on their dependencies on the decimation step s.
We are interested in deriving the RTO probability at the nth
generation, r (n)

0 = p0 = φ0(0)a(0)k(n)
0 . We first eliminate φj (0)

for the youngest nodes, i.e., those with index j in V (n)/V (n−1)

and rescale the remaining variables such that the equations
take the same form as in Eq. (13). The decimation process
is described in detail in Appendix A. After decimating the
youngest nodes s times, the equations for the remaining φ

read as

qi =
∑

j∈V (n−s)

[
a(s)k(n−s)

j δij − A
(n−s)
ij

]
φj (s), (14)

where φ(s) and a(s) follow the recursive relations

a(s + 1) = sinh{(u + v) cosh−1[a(s)]}
sinh{v cosh−1[a(s)]} + sinh{u cosh−1[a(s)]}

(15)

and

φj (s + 1) = ξ [a(s)]φj (s), (16)

where

ξ (x) =
√

x2 − 1[csch(u cosh−1 x) + csch(v cosh−1 x)].

(17)

While one can obtain explicitly the solution of Eq. (15) only for
limited cases, i.e., a(s) = 2s[a(0) − 1] + 1 for (u,v) = (1,2)
or a(s) = cosh[us cosh−1 a(0)] when u = v, the exact solution
to Eq. (15) is not required for evaluating asymptotic behavior
of the RTO and the FPT distribution.

We repeat the decimation process until we have the equation
only for the two initial nodes. The remaining equation is(

1

0

)
=
(

a(n) −1

−1 a(n)

)(
φ0(n)

φ1(n)

)
, (18)

and its solution gives φ0(n) = a(n)
a(n)2−1 . Using φ0(n) and

Eq. (16), we find that φ0(0) = φ0(n)
∏n−1

s=0 {ξ [a(s)]}−1 and

r
(n)
0 (z) = 2na(n)a(0)

a(n)2 − 1

n−1∏
s=0

1

ξ [a(s)]
, (19)

where a(0) ≡ 1/z and a(s) for s � 1 are obtained by Eq. (15).
To derive the leading singularity of r

(n)
0 (z), let us consider

r
(n−1)
0 (z′) in the (n − 1)th generation with

z′ = 1/a(1)

= {sinh[v cosh−1(z−1)] + sinh[u cosh−1(z−1)]}
{sinh[(u + v) cosh−1(z−1)]} .
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Using the same decimation method, we obtain that

r
(n−1)
0 (z′) = 2n−1a(n)a(1)

a(n)2 − 1

n−1∏
s=1

1

ξ [a(s)]

= r
(n)
0 (z)

a(1)

2a(0)
ξ [a(0)]. (20)

With δ ≡ − ln z being small around z = 1, z′ is expanded
as z′ � 1 − uvδ + O(δ2) � exp(−uvδ). Taking the limit n →
∞ with Eq. (20), we find that

r
(∞)
0 (e−uvδ) = r

(∞)
0 (e−δ)

u + v

2uv
, (21)

which, in general, can be satisfied by1

r
(∞)
0 (e−δ) ∼ δ

ln(u+v)−ln 2
ln(uv) −1

. (22)

Here we used the relation ξ (1 + x) = (u + v)/(uv) +
O(x). The singularity of r (∞)(z) around z = 1 in Eq. (22) gives
the RTO probability Rm(t) via the relation (dt/dzt )(1 − z)ζ ∼
t!t−ζ−1 for t large as

R
(∞)
0 (t) � c t

− ln(u+v)−ln 2
ln(uv) = c t−

d
(hub)
s

2 , (23)

where we define the effective spectral dimension of the hub
node as

d (hub)
s ≡ 2

ln
(

u+v
2

)
ln(uv)

. (24)

The hub spectral dimension d (hub)
s is related to the spectral

dimension ds by d (hub)
s = ds(γ − 2)/(γ − 1) [29,30].

The overall constant c cannot be determined within our
approach. The decaying exponent d (hub)

s has been reported in
Ref. [30] and the derivation presented here corroborates the
result by the exact calculation of the RTO probability in the
flower network.

The generating function of the global RTO probability
R(t) ≡ 1

N

∑N
m=1 Rm(t) satisfies Eq. (21) with the factor 2 in the

denominator dropped [33], which gives rise to the difference
between d (hub)

s and ds in the (u,v) flower network. The factor 2
arises in Eq. (21) due to the decrease of the degree of the hub
node by half every decimation step. Not only the hub nodes,
but also all the surviving nodes do so, and thus the degree
distribution preserves its functional form after decimation.

For large but finite n, the RTO probability R
(n)
0 (t) becomes

a constant k(n)
m /(2L(n)) in the limit t → ∞, which is preceded

by the behavior in Eq. (23) as

R
(n)
0 (t) �

{
c t−d

(hub)
s /2 for 1 � t � tc,

2n

(u+v)n for t  tc,
(25)

tc ≡
(

c (u + v)n

2n

) 2

d
(hub)
s = (2c)

2

d
(hub)
s (uv)n. (26)

1Equation (22) may have an additional term A(δ) as r
(∞)
0 (e−δ) ∼

δ
ln(u+v)−ln 2

ln(uv) −1
A(δ), which is the sum of log-periodic function in the form

A(δ) = ∑∞
n=−∞ An|δ|2πin/ log uv . It is known that such a log-periodic

correction term can be negligible [36,37]. In the case of r
(∞)
0 (e−δ), the

coefficients An numerically obtained for (1,2) flower networks [37]
are so small except for A0 = 0.901777, e.g., as A1 = 0.00461688 −
0.0251824i, A5 = 0.000198345 − 0.00525088i, and so on.

These results are in agreement with Eq. (16) of Ref. [29],
considering that the total number of links is given by L =
(u + v)n. Also, the generating function r

(n)
0 (z) for large but

finite n is

r
(n)
0 (e−δ) � c δ

d
(hub)
s

2 −1γ

(
1 − d (hub)

s

2
,δtc

)
+ 2n

(u + v)n
e−δtc

δ
,

(27)

where γ (s,x) = ∫ x

0 t s−1e−t dt is the lower incomplete γ

function.

IV. GFPT DISTRIBUTION OF THE HUB AND
ITS MOMENTS

A. Asymptotic behavior of the GFPT distribution of the hub

We first consider the GFPT distribution of the first type
F0(t) defined in Eq. (9) for the hub in the (u,v) flower network.
Using Eqs. (10) and (27), one can find the nonanalytic behavior
of its generation function f

(n)
0 (z) around z = 1 at the nth

generation, which is given by

f
(n)
0 (e−δ) � 1

γ
(
1 − d

(hub)
s

2 ,δtc
)

cσnδ
d

(hub)
s

2

2n + e−δtc

. (28)

This result is asymptotically true as n goes to infinity. De-
pending on the magnitude of δtc, it shows different behaviors
as

f
(n)
0 (e−δ) �

⎧⎨
⎩

1

1+ d
(hub)
s

2−d
(hub)
s

tcδ

+ O(δtc)2 for δtc � 1

1

(1−d

(hub)
s /2)

(tcδ)−d
(hub)
s /2 for δtc  1

(29)

and the GFPT distribution behaves as

F
(n)
0 (t) �

⎧⎨
⎩

sin(πd
(hub)
s /2)

πt

(
t
tc

)d (hub)
s /2

for t � tc

2−d
(hub)
s

tcd
(hub)
s

exp
[− (2−d

(hub)
s )t

d
(hub)
s tc

]
for t  tc,

(30)

where we use the identity 
(z)
(1 − z) = π/ sin(πz). Notice
that the GFPT distribution is solely governed by d (hub)

s , the hub
spectral dimension.

For the derivation the GFPT distribution of the second type
f̂

(n)
0 (z), we refer to the decimation scheme in Sec. III. We will

use the quantities a(0) and φj (0) defined in Eq. (12) and a(1)
and φj (1) in Eqs. (15) and (16) with s = 1 to represent f̂

(n)
0 (z).

To represent explicitly the z dependence of these quantities,
we use φj (z) and φ

′
j (z) instead of φj (0) and φj (1) used in

Sec. III. Note that φ
′
j (z) are the renormalized variables of the

remaining nodes after decimating out the youngest nodes of
the nth generation. Using the relation cm→s(z)/ks = φs(z)a(0),
one can represent f̂

(n)
0 (z) as

f̂0(z) = 1

N (n)φ0(z)

n∑
�=0

φ[�](z) − 1

N (n)r
(n)
0 (z)

, (31)

where φ[�](z) ≡ ∑
s∈V (n) φs(z)δns�, with ns as the birth genera-

tion of node s.
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Summing Eq. (14) over all i ∈ V (n−s) with s = 0 and s = 1,
one can obtain the following normalization relations:∑

j∈V
k

(n)
j φj (z) = 1

a(0) − 1
,

(32)∑
j∈V (n−1)

k
(n−1)
j φ

′
j (z) = 1

a(1) − 1
,

where we used
∑

i qi = 1 from Eq. (5). The degree of node j at
the nth generation is given by 2n−ns+1 except for two hubs, the
degrees of which are 2n. Recalling that φ

′
j (z) = ξ [a(0)]φj (z)

as given in Eq. (16), one can see in Eq. (32) that the summands
of the first line and those of the second line are identical, if the
second line is multiplied by 2/ξ [a(0)], for the nodes born at
the generations from 0 to n − 1. Therefore, we can obtain the
values of φj (z) of the nodes j born at the nth generation as

φ[n](z) = 1

2

1

a(0) − 1
− 1

ξ [a(0)]

1

a(1) − 1
. (33)

Extending the relations in Eq. (32) to the variables in general
decimation steps, we can obtain

φ[n−t](z) = 1

2

ηt

a(t) − 1
− ηt+1

a(t + 1) − 1
, (34)

where ηk ≡ ∏k−1
s=0

1
ξ [a(s)] . Plugging Eq. (34) into Eq. (31), we

obtain the exact expression for the generating function of the
GFPT distribution of the second type given by

f̂0(e−δ) = 2n−1a(0)

Nnr0(e−δ)

[
η0

a(0) − 1
−

n−1∑
s=1

ηs

a(s) − 1

− 1

2n−1a(0)

]
, (35)

where we inserted the generating function of the RTO
probability by using the relation r0(z) = φ0(z)2na(0). The
leading singularity of f̂0(z) around z = 1 can be extracted
by using the expansions a(s) = 1 + (uv)sδ + O(δ2), ηs =

(u + v)s/(uv)s + O(δ) for δ = 1 − z small, which is given
in Appendix B, and Nn = σ+(−2+u+v)σn

−1+u+v
in Table I. Then we

get

f̂0(e−δ) � 2n−1

(u + v)n
1

r0(e−δ)δ
� f0(e−δ). (36)

Comparing with f0(z) of the first type given in Eq. (10), one
can see that the GFPT distribution of the second type is exactly
the same as that of the first type. This implies that the initial
distribution of the RWers cannot significantly affect the long
time behavior of the GFPT distribution.

B. Moments of the GFPT distribution

Here we derive the exact expressions for the moments of
the GFPT distribution in the (u,v) flower network at the nth
generation. Before presenting the derivation, we consider their
scaling properties, which can be identified by the behavior
of the generating function f

(n)
0 (z) in Eq. (29). Since there is

no significant difference between the two types of the GFPT
distributions, we focus only on the first type F (n)

m (t). Its mth
moment 〈tmn 〉 = ∑

t t
mFm(t) is obtained from the generating

function via 〈
tmn
〉 = (−1)m

dm

dδm
f

(n)
0 (e−δ)

∣∣∣∣
δ=0

, (37)

which yields〈
tmn
〉
asym ∼ tmc m! ∼ (uv)nmm! = (

N2/ds

n

)m
m!. (38)

This means that in the (u,v) flower networks at the nth
generation with finite n, tc ∼ N2/ds acts as the characteristic
time scale of the first-passage process, which diverges in the
limit n → ∞. Note that it holds even when ds > 2, which
resolves the counterexample introduced in Sec. I.

Beyond the scaling behavior in Eq. (38), one can derive the
exact expression for the first few moments. Expanding a(s) and
ξ [a(s)] for δ = − ln z small (see Appendix B) and inserting
them into Eq. (19), we find that

r
(n)
0 (e−δ) = h−1δ

−1 + h0 + h1δ + O(δ2), h−1 = −2−1+nσ−n, h0 = 2−2+nσ−n[−2 + 6ρ − σ 2 + ρn(−4 + σ 2)]

3(−1 + ρ)
,

h1 = 2−3+nσ−n[−4 − 80ρ − 60ρ2 + 20σ 2 + 20ρσ 2 − σ 4 − 20ρn(1 + ρ)(−4 + σ 2) + ρ2n(−16 + σ 4)]

45(−1 + ρ2)
, (39)

where ρ = uv and σ = u + v. Therefore the GFPT distribution can be obtained by Eq. (10) as

f
(n)
0 = 1 − δ

1 + 3ρ − σ 2 + ρn(−4 + σ 2)

6(−1 + ρ)
+ δ2

[
9 + 51ρ + 55ρ2 + 60ρ3 + 5σ 2 − 60ρσ 2 − 25ρ2σ 2 + 6σ 4 + 4ρσ 4

180(−1 + ρ)2(1 + ρ)

+ 5ρn(1 + ρ)(3 + 5ρ − 2σ 2)(−4 + σ 2) + 2ρ2n(−4 + σ 2)[−4(3 + 2ρ) + (2 + 3ρ)σ 2]

180(−1 + ρ)2(1 + ρ)

]
+ O(δ3). (40)

The mean GFPT is given as

〈tn〉 = 1 + 3ρ − σ 2 + ρn(−4 + σ 2)

6(−1 + ρ)

� ρn (−4 + σ 2)

6(−1 + ρ)
, (41)

where the last approximation is valid for large n, and again
ρ = uv and σ = u + v. The second moment 〈t2

n〉 for large n

is given as

〈
t2
n

〉 � ρ2n (−4 + σ 2)[−4(3 + 2ρ) + (2 + 3ρ)σ 2]

90(−1 + ρ)2(1 + ρ)
. (42)
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FIG. 2. (Color online) First two moments of the GFPT distribu-
tion for the hub in (1,2) and (2,3) flower networks. Dashed lines are
the ones obtained theoretically from Eqs. (41) and (42).

Note that first two moments are proportional to ρn and ρ2n,
respectively, as expected in Eq. (38). We can also obtain the
exact expressions for the moments of the second-type GFPT
distribution F̂

(n)
0 (t) by inserting Eqs. (B5), (B6), and (39) into

Eq. (35) and the results turn out to be identical to Eqs. (41) and
(42) up to a constant in the large-n limit. For a numerical check
of our results, we performed simulations of RWs on (1,2) and
(2,3) flower networks to compare the first and second moments
of the GFPT distribution with Eqs. (41) and (42) in Fig. 2.

V. SUMMARY AND DISCUSSION

The main results of this work are given in Eqs. (30), (41),
and (42), in which the exact GFPT distribution and its moments
are presented. We formulated the recursive equations relating
the fluxes and the occupation probabilities of the RWs and
solved them exactly by using the decimation method of the
RG transformations [33]. Through this method, we were able
to derive the exact FPT distribution for a given node, the
hub in the hierarchical network. The asymptotic behaviors
and the moments of the GFPT and the relation between
both spectral dimensions are valid for general complex
networks [29,30]. Complementary to the heuristic argument
presented in Ref. [30], we derived an exact expression for
the GFPT distribution and its moments. Comparing the RG
transformations of the global and local RTO probabilities,
we found that preservation of the degree distribution during
the decimation process accompanied by the rescaling of node
degrees underlies the appearance of a hub spectral dimension
that is different from the spectral dimension. Considering the
practical applications to real systems, the exact expressions
for the mean and variance of the FPT obtained here will, in

addition to the scaling properties obtained in previous work,
be of great use in several problems regarding the transport
phenomena in complex networks.
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APPENDIX A: DERIVATION OF EQS. (15) AND (16)

In this Appendix we derive the recursion relations given
in Eqs. (15) and (16) obtained by decimating out the φ

variables from the youngest to the oldest nodes in Eq. (13). We
decompose the (u,v) flower network at the nth generation into
the set of leaves, each of which consists of two linear chains
of length u and v, respectively. The two chains possess u − 1
and v − 1 internal (youngest) nodes and share two boundary
nodes. Let us consider a chain of length (= u or v) in a leaf.
Then, we use φ

(leaf)
i with i = 1,2,3, . . . ,L − 1 to denote the

internal nodes on the chain. φ′
1 and φ′

2 represent two boundary
nodes, respectively. Then, Eq. (13) for the internal nodes for
each chain can be written as

L−1∑
l=1

Hilφ
(leaf)
l = Vi, (A1)

with the (L − 1) × (L − 1) matrix H and the column vector
V of length (L − 1) given by

H =

⎛
⎜⎜⎜⎜⎜⎝

2a −1 0 · · · · · · · · · 0

−1 2a −1 0 · · · · · · 0

0 −1 2a −1 0 · · · 0

· · · · · · · · · · · ·
0 · · · · · · · · · 0 −1 2a

⎞
⎟⎟⎟⎟⎟⎠ (A2)

and

V = (φ′
1,0,0, . . . ,0,φ′

2)T . (A3)

Here the superscript T means the transpose operation. One can
solve Eq. (A1) to represent all φ

(leaf)
i variables in terms of φ′

1
and φ′

2. To do so, let us consider the eigenvalues λ� and the
corresponding eigenvectors e� with � = 1,2, . . . ,n − 1 of H ,
which are given by [34]

λ�(L) = 2a − 2 cos

(
�π

L

)
,

e�(L) =
√

2

L

[
sin

(
�π

L

)
, sin

(
2�π

L

)
, . . .

. . . , sin

(
(L − 1)�π

L

)]
. (A4)

Then the matrix H is diagonalized with the bases

φ̃
(leaf)
� =

√
2

L

L−1∑
s=1

sin

(
�sπ

L

)
φ(leaf)

s (A5)
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and the solution of Eq. (A1) in these bases is represented as

φ̃
(leaf)
� =

√
2

L

1

λ�(L)

[
sin

(
�π

L

)
φ′

1 + (−1)�+1 sin

(
�π

L

)
φ′

2

]
.

(A6)

Among the φ
(leaf)
i variables, it is only φ′

1 and φ′
2 that are coupled

with φ
(leaf)
1 and φ

(leaf)
L−1 , which are represented as

φ
(leaf)
1 = 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

[φ′
1 + (−1)s+1φ′

2] (A7)

and

φ
(leaf)
L−1 = 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

[φ′
2 + (−1)s+1φ′

1]. (A8)

When we insert Eqs. (A7) and (A8) into Eq. (13), one finds
that

qi =
∑

j∈V (n−1)

(
a′k(n−1)

j δij − A
(n−1)
ij

)
φ′

j , (A9)

where a′ ≡ G/Ḡ and φ′
j ≡ Ḡφj with

G ≡ 2a − 2

u

u−1∑
s=1

sin2
(

sπ
u

)
λs(u)

− 2

v

v−1∑
s=1

sin2
(

sπ
v

)
λs(v)

, (A10)

Ḡ ≡ 2

u

u−1∑
s=1

(−1)s+1 sin2
(

sπ
u

)
λs(u)

+ 2

v

v−1∑
s=1

(−1)s+1 sin2
(

sπ
v

)
λs(v)

.

(A11)

Note that Eq. (A9) is in the same form as Eq. (13) for the
(n − 1)th generation with the renormalized values a′ and φ′

j .
The final recursive relations given in Eqs. (15) and (16) are
obtained by applying the following identities:

a − 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

=
√

a2 − 1 coth[L cosh−1(a)], (A12)

2

L

L−1∑
s=1

(−1)s+1 sin2
(

sπ
L

)
λs(L)

=
√

a2 − 1csch[L cosh−1(a)],

(A13)

for a > 1 and sinh(x + y) = sinh x cosh y + cosh x sinh y.
The two identities in Eqs. (A12) and (A13) are proved below
by considering a more general diffusion problem.

Following the procedures introduced in Ref. [23], we
consider the following diffusion equation for the particle
concentration C(x,t) in a one-dimensional continuous space
of size L and continuous time:

∂2

∂x2
C(x,t) = ∂

∂t
C(x,t), (A14)

with the boundary condition C(0,t) = P̂1(t), C(L,t) = P̂2(t),
and C(x,0) = 0. Notice that P̂1(t) and P̂2(t) are the con-
centration at both boundaries x = 0 and x = L. The con-
centration flux at each boundary can be defined by F̂1(t) =
− ∂

∂x
C(x,t)|x=0 and F̂2(t) = ∂

∂x
C(x,t)|x=L. Taking the Laplace

transformation of Eq. (A14), we obtain(
f̂1

f̂2

)
=
(

α′ −β ′

−β ′ α′

)(
p̂1

p̂2

)
, (A15)

where p̂i(s) = ∫∞
0 e−st P̂i(t)dt and f̂i(s) = ∫∞

0 e−st F̂i(t)dt .
Also we denote α′ ≡ √

s coth(L
√

s) and β ′ ≡ √
s csch(L

√
s).

Now we impose the condition f̂1 = 1 and f̂2 = 0 so that the
instantaneous source is released at the left boundary at time
t = 0.

This problem can be analyzed differently by considering
the one-dimensional space as a subsequent series of L one-
dimensional spaces each of unit size. Then we can relate the
Laplace transform of the flux and the boundary concentrations
f̂

(junc)
i and p̂

(junc)
i for i = 1,2, . . . ,L − 1 from Eq. (A14) as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂1

f̂
(junc)
1

f̂
(junc)
1

...

f̂
(junc)
L−1

f̂2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α −β 0 · · · 0 0

−β 2α −β · · · 0 0

0 −β 2α −β 0 0
...

...
...

. . .
...

...

0 0 0 −β 2α −β

0 0 0 · · · −β α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂1

p̂
(junc)
1

p̂
(junc)
2

...

p̂
(junc)
L−1

p̂1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A16)

Here α ≡ √
s coth(

√
s) and β ≡ √

s csch(
√

s).
We can identify Eqs. (A16) and (A2) by imposing the

condition f̂1 = 1, f̂2 = 0, and f̂
(junc)
i = 0 for i = 1,2, . . . ,L −

1 so that there is no injection or absorption at each junction.
To make the nondiagonal term be unity, we divide by β

[Eq. (A16)], and set a = α/β. Then, Eq. (A16) can be
decomposed by using Eq. (A4) similarly to Eq. (A1) and we
can obtain

p̂
(junc)
1 = 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

[p̂1 + (−1)s+1p̂2] (A17)

and

p̂
(junc)
L−1 = 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

[p̂2 + (−1)s+1p̂1]. (A18)

Eliminating p̂
(junc)
1 and p̂

(junc)
2 in Eq. (A16), we obtain

( 1
β

0

)
=
⎛
⎝ a − 2

L

∑L−1
s=1

sin2( sπ
L )

λs (L) − 2
L

∑L−1
s=1

(−1)s+1 sin2( sπ
L )

λs (L)

− 2
L

∑L−1
s=1

(−1)s+1 sin2( sπ
L )

λs (L) a − 2
L

∑L−1
s=1

sin2( sπ
L )

λs (L)

⎞
⎠

×
(

p̂1

p̂2

)
(A19)

and comparing Eqs. (A15) and (A19) we obtain

a − 2

L

L−1∑
s=1

sin2
(

sπ
L

)
λs(L)

= α′

β
= coth(L

√
s)

csch(
√

s)
,

2

L

L−1∑
s=1

(−1)s+1 sin2
(

sπ
L

)
λs(L)

= β ′

β
= csch(L

√
s)

csch(
√

s)
. (A20)
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By considering the identity a = α
β

= coth
√

s

csch
√

s
= cosh

√
s, we

can replace
√

s by cosh−1 a, which completes the proof of
Eqs. (A12) and (A13).

APPENDIX B: EXPANSION OF a(s) AND ξ (a(s))
FOR ln z SMALL

Equation (15) can be rewritten as b(s + 1) = F[b(s)],
where b(s) = a(s) − 1 and

F(x) = sinh[(u + v) cosh−1(x + 1)]

sinh[v cosh−1(x + 1)] + sinh[u cosh−1(x + 1)]
− 1.

(B1)

This recursion relation can be exactly solved only when
(u,v) = (1,2) or u = v. For arbitrary (u,v), we can guarantee
the existence of the solution of the form b(s) = G(t sc) [35],
where G(z) is an analytic function inside a circle around
z = 0, t = d

dx
F(x)|x=0 = uv ≡ ρ, and c = G−1(b0). Then the

function G(z) satisfies

G(ρz) = F[G(z)] (B2)

with G′(0) = 1. This theorem requires the conditions F(0) =
0 and F ′(0) > 0, where Eq. (B1) holds.

Therefore, we expand Eq. (B1) in the increasing order of x

for small x and insert the first few leading terms to Eq. (B2) to
find

G(z) = z + z2(−1 + 5ρ − σ 2)

6(−1 + ρ)
+ z3(1 − 21ρ + 39ρ2 + 61ρ3 + 5σ 2 − 18ρσ 2 − 27ρ2σ 2 + 2σ 4 + 3ρσ 4)

90(−1 + ρ)2(1 + ρ)
+ O(z4), (B3)

G−1(z) = z + z2(1 − 5ρ + σ 2)

6(−1 + ρ)
+ z3(4 − 24ρ + 36ρ2 + 64ρ3 + 5σ 2 − 22ρσ 2 − 23ρ2σ 2 + 3σ 4 + 2ρσ 4)

90(−1 + ρ)2(1 + ρ)
. (B4)

These equations allow us to obtain the series expansion for
a(s) given by

a(s) = 1 + G{ρsG−1[a(0) − 1]}
= 1 − δρs + δ2ρs[−2 − 2ρ + σ 2 + ρs(−1 + 5ρ − σ 2)]

6(−1 + ρ)

+O(δ3). (B5)

Using the recursion relation Eq. (17) for ξ (x), we can expand
ξ [a(s)] as

ξ [a(s)] = σ

ρ
+ 1

3
δ(−1 + ρ)ρ−1+sσ + 1

90
δ2ρ−1+s

×{10(1 + ρ)σ − 3ρs[−1 + ρ(10 + 7ρ)]σ

+ [−5 + ρs(5 + 7ρ)]σ 3} + O(δ3). (B6)
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